
A Rewriting Approach to the Combination of
Data Structures with Bridging Theories

Paula Chocron1, Pascal Fontaine2?, and Christophe Ringeissen2

1 IIIA-CSIC, Bellaterra, Catalonia, Spain
2 INRIA, Université de Lorraine and LORIA, Nancy, France

Abstract. We introduce a combination method à la Nelson-Oppen to
solve the satisfiability problem modulo a non-disjoint union of theories
connected with bridging functions. The combination method is particu-
larly useful to handle verification conditions involving functions defined
over inductive data structures. We investigate the problem of determin-
ing the data structure theories for which this combination method is
sound and complete. Our completeness proof is based on a rewriting ap-
proach where the bridging function is defined as a term rewrite system,
and the data structure theory is given by a basic congruence relation.
Our contribution is to introduce a class of data structure theories that
are combinable with a disjoint target theory via an inductively defined
bridging function. This class includes the theory of equality, the the-
ory of absolutely free data structures, and all the theories in between.
Hence, our non-disjoint combination method applies to many classical
data structure theories admitting a rewrite-based satisfiability proce-
dure.

1 Introduction

The modular construction of reasoning engines appears very often in logic and
automated deduction, for instance to check whether a property still holds in a
union of theories when this property holds in component theories. Working with
signature-disjoint theories obviously simplifies the problem, e.g. in the Nelson-
Oppen combination method where a satisfiability procedure for T1 ∪ T2 is built
from the satisfiability procedures for the two signature-disjoint theories T1 and
T2. Even in that case, the signature-disjointness of T1 and T2 is not sufficient
for the combination since additional “semantic” requirements on theories are
required to get a complete satisfiability procedure. A first solution by Nelson and
Oppen was to require stably infinite theories. This condition can be refined, and
several other classes of kind theories have been recently investigated: shiny [20],
polite [15] and gentle theories [10]. The Nelson-Oppen combination method is

? This work has been partially supported by the project ANR-13-IS02-0001 of the
Agence Nationale de la Recherche, by the European Union Seventh Framework Pro-
gramme under grant agreement no. 295261 (MEALS), and by the STIC AmSud
MISMT

now well-understood for disjoint unions of theories, and it is widely adopted to
solve Satisfiability Modulo Theories (SMT) problems. It has become the core
component of modern SMT solvers. But there is still an increasing demand
on non-disjoint combinations. The extension of the Nelson-Oppen combination
method to unions of non-disjoint theories has been already investigated during
the last decade [11, 19]. This has led to the design of non-disjoint combination
methods requiring some strong “semantic” assumptions on theories. However,
these assumptions are difficult to meet in practical applications. For this reason,
the use of non-disjoint combination methods in SMT solving is currently very
limited.

We focus on simple techniques for non-disjoint combinations where the no-
tions of polite and gentle theories [8] initially introduced for the disjoint case
are also useful. In this paper, we consider a simple but meaningful non-disjoint
case where the two theories T1 and T2 are connected by a bridging theory, whose
axioms can be easily processed for any combined satisfiability problem. In this
way, these non-disjoint combinations are reducible to disjoint ones. This avoids
the need for complicated non-disjoint combination methods. Practical applica-
tions often involve a data structure theory T1 and an arithmetic theory T2. This
particular union has been extensively studied, especially to combine an equa-
tional theorem prover processing (the axioms of) T1 with an arithmetic solver
for T2 [7,21]. This problem was first studied for disjoint combinations, but non-
disjoint unions naturally arise when considering a bridging theory to relate the
data structure theory T1 to the arithmetic theory T2, e.g. the length function
for the data structure of lists [13,14,16]. The Ghilardi non-disjoint combination
method [11] has been already applied to handle some connections between the-
ories [3, 13, 14]. In [13, 14], the idea is to use superposition-based satisfiability
procedures to process theory extensions of T2. In that context, it is always a
difficult and tedious task to design a new superposition calculus incorporating
T2 as a built-in theory.

In this paper, we develop a lightweight approach which is sufficient to handle
the special case of bridging theories. This work is clearly inspired by the locality-
based approach presented in [16] to handle bridging functions in local theory
extensions. We consider the same problem by introducing a combination-based
approach using a slight adaptation of the Nelson-Oppen disjoint combination
method. Our approach has been initiated in [9] by studying the case of abso-
lutely free data structures, with a particular focus on the adaptation required
by the restriction to standard interpretations [6, 18, 22]. Like a locality-based
satisfiability procedure applies to other theories of constructors [17], the com-
bination method is actually applicable beyond the case of absolutely free data
structures. In this paper, we investigate the constructor-based theories for which
the combination method is sound and complete.

The main contribution of this paper is to identify a class of data structure
theories for which our combination method is complete. In this class, theories
are many-sorted, with disjoint sorts to denote respectively the data instances
and the structure instances. Our combination method solves the satisfiability

problem in a union of a data structure theory plus a target theory and a bridging
theory. With this method, the target theory can be arbitrary. Actually, this is
due to the fact that we are focusing on data structure theories that fulfill a form
of politeness [12, 15]. Hence, our work can be considered as a way to extend
the use of polite theories to some simple non-disjoint combinations. The class
of data structure theories is clearly of practical interest since it includes well-
known theories for which a rewriting approach to satisfiability can be successfully
applied [1, 2]. In this class, one can find the theory of equality, the theory of
(acyclic) lists, the theory of absolutely free data structures (with or without
selectors).

The completeness of our combination method requires the construction of a
combined model from the models available in the component theories. For that
purpose, we introduce the notion of basic data structure theory, for which a sat-
isfiable input admits a Herbrand model with a very particular basic congruence
relation E. The originality of our approach is to define a bridging theory as a
convergent term rewrite system F , and to analyse the interplay between F and
E. The careful study of F ∪ E as a convergent rewrite system modulo E leads
to the construction of the combined model.

Section 2 recalls the classical notations and concepts used for the equational
reasoning and the combination problem. In Section 4, we present the class of
basic data structure theories. Section 3 introduces a combination procedure for
extensions of basic data structure theories with bridging functions. By using a
rewriting approach, the completeness of this combination procedure is proved in
Section 5. Finally, Section 6 reports directions for future work.

2 Preliminaries: Notations and Combinations

We assume an enumerable set of variables V and a first-order many-sorted sig-
nature Σ given by a set of sorts and sets of function and predicate symbols
(equipped with an arity ar). Nullary function symbols are called constant sym-
bols. We assume that, for each sort σ, the equality “=σ” is a logical symbol
that does not occur in Σ and that is always interpreted as the identity relation
over (the interpretation of) σ; moreover, as a notational convention, we omit the
subscript for sorts and we simply use the symbol =. The notions of Σ-terms,
atomic Σ-formulas and first-order Σ-formulas are defined in the usual way. In
particular an atomic formula is either an equality, or a predicate symbol applied
to the right number of well-sorted terms. Formulas are built from atomic for-
mulas, Boolean connectives (¬, ∧, ∨, ⇒, ≡), and quantifiers (∀, ∃). A literal
is an atomic formula or the negation of an atomic formula. A flat equality is
either of the form t0 = t1 or t0 = f(t1, . . . , tn) where each term t0, . . . , tn is a
variable or a constant. A disequality t0 6= t1 is flat when each term t0, t1 is a
variable or a constant. A flat literal is either a flat equality or a flat disequality.
An arrangement over a finite set of variables V is a maximal satisfiable set of
well-sorted equalities and disequalities x = y or x 6= y, with x, y ∈ V . Free vari-
ables are defined in the usual way, and the set of free variables of a formula ϕ is

denoted by Var(ϕ). Given a sort σ, Varσ(ϕ) denotes the set of variables of sort
σ in Var(ϕ). A formula with no free variables is closed, and a formula without
variables is ground. A universal formula is a closed formula ∀x1 . . . ∀xn.ϕ where
ϕ is quantifier-free. A (finite) Σ-theory is a (finite) set of closed Σ-formulas.
Two theories are disjoint if no predicate symbol or function symbol appears in
both respective signatures.

From the semantic side, a Σ-interpretation I comprises non-empty pairwise
disjoint domains Iσ for every sort σ, a sort- and arity-matching total function
I[f] for every function symbol f , a sort- and arity-matching predicate I[p] for
every predicate symbol p, and an element I[x] ∈ Iσ for every variable x of
sort σ. By extension, an interpretation defines a value in Iσ for every term of
sort σ, and a truth value for every formula. We may write I |= ϕ whenever
I[ϕ] = >. A Σ-structure is a Σ-interpretation over an empty set of variables.
Given a Σ-interpretation I and signature Σ′ ⊆ Σ, the Σ′-reduct of I is the
Σ′-interpretation, denoted by IΣ′

, obtained from I by restricting it to interpret
only the symbols in Σ′.

A model of a formula (theory) is an interpretation that evaluates the formula
(resp. all formulas in the theory) to true. A formula or theory is satisfiable (or
consistent) if it has a model; it is unsatisfiable otherwise. A formula G is T -
satisfiable if it is satisfiable in the theory T , that is, if T ∪ {G} is satisfiable. A
T -model of G is a model of T ∪ {G}. A formula G is T -unsatisfiable if it has
no T -models. In our context, the T -satisfiability problem for any set of literals
can be equivalently defined as establishing the consistency of T ∪ {G} for a
set of ground literals G expressed over the signature extended with some fresh
constants.

A theory T is stably infinite if any T -satisfiable set of literals is satisfiable
in a model of T whose domain is infinite. A Σ-theory T can be equivalently
defined as a pair T = (Σ,A), where A is a class of Σ-structures, and given a
signature Σ′ ⊆ Σ, the Σ′-reduct of T is TΣ

′
= (Σ′, {AΣ′ | A ∈ A}). Given a

set of Σ-equalities E, the relation =E denotes the equational theory of E which
is defined as the smallest relation including E which is closed by reflexivity,
symmetry, transitivity, congruence and substitutivity. As usual, the equivalence
classes of ground Σ-terms modulo E defines the Σ-structure of ground terms
modulo E, denoted by T (Σ)/ =E . A term rewrite system R is a set of oriented
equalities. A convergent term rewrite system R is defined in the usual way [4],
and it implies the existence and the unicity of a normal form, denoted by t ↓R
for each equivalence class of a term t modulo =R.

Let us now introduce some key notions for the combination problem [15].

Definition 1 (Smoothness). Let Σ be a signature and S = {σ1, . . . , σn} a set
of sorts in Σ. A Σ-theory T is smooth with respect to S if:

– for every T -satisfiable quantifier-free Σ-formula ϕ,

– for every T -interpretation A satisfying ϕ,

– for every cardinal number κ1, . . . , κn such that κi ≥ |Aσi |, for i = 1, . . . , n,

there exists a T -interpretation B satisfying ϕ such that

|Bσi
| = κi for i = 1, . . . , n

Definition 2 (Self witnessability). Let Σ be a signature, S a set of sorts in
Σ, and T a Σ-theory. A quantifier-free Σ-formula ϕ is S-populated if V arσ(ϕ) is
non-empty for each σ ∈ S. A T -satisfiable S-populated quantifier-free Σ-formula
ϕ is self witnessable in T with respect to S if there exists a T -interpretation
A satisfying ϕ such that Aσ = {A[v] | v ∈ Varσ(ϕ)} for each σ ∈ S. T is
self witnessable with respect to S if any T -satisfiable S-populated quantifier-free
Σ-formula ϕ is self witnessable in T with respect to S.

Definition 3 (Perfect politeness). Let Σ be a signature and S a set of sorts
in Σ. A Σ-theory T is perfectly polite with respect to S if it is both smooth and
self witnessable with respect to S.

A typical example of a perfectly polite theory is the theory of equality. A perfectly
polite theory is a particular polite theory [12,15]. As shown in [12,15], there exists
a combination method to decide the satisfiability problem in a union of theories
Ts ∪ Tt if

– Ts and Tt do not share function symbols but share a set of sorts S;
– Ts is polite with respect to S;
– and the satisfiability problem is decidable in both Ts and Tt.

In this paper, the considered polite theories are perfectly polite.

3 Combination with Bridging Theories

We investigate the satisfiability problem modulo a non-disjoint union Ts∪Tf∪Tt,
where Ts is a data structure theory, e.g., the theory of absolutely free data
structures [16]. The source and target theories Ts and Tt are connected with
some theory Tf specifying a bridging function f by structural induction over the
“constructors” of Ts. A typical example is trees of sort struct over elements of
sorts in Elem, with tree size as bridging function. We now define these theories.

Definition 4. Consider a set of sorts Elem, and a sort struct /∈ Elem. Let Σ
be a signature whose set of sorts is {struct}∪Elem and whose function symbols
c ∈ Σ (called constructors) have arities of the form:

c : σ1 × · · · × σm × struct× · · · × struct→ struct

where σ1, . . . , σm ∈ Elem. To each n-ary constructor c, we associate the selectors
sc1, . . . , s

c
n that are disjoint from Σ and such that sci = sdj iff i = j and c = d. Let

Σ+ = Σ ∪ {sci | c ∈ Σ, i = 1, . . . , ar(c)}. Consider the following axioms (where
upper case letters denote implicitly universally quantified variables)

(Inj c) c(X1, . . . , Xn) = c(Y1, . . . , Yn)⇒
∧n
i=1Xi = Yi

(Disc,d) c(X1, . . . , Xn) 6= d(Y1, . . . , Ym)
(AcycΣ) X 6= t[X] if t is a non-variable Σ-term
(Proj c,i) sci (c(X1, . . . , Xn)) = Xi

The Σ-theory of Absolutely Free Data Structures is

AFDSΣ =
(⋃
c∈Σ

Inj c
)
∪
(⋃
c,d∈Σ,c 6=d

Disc,d
)
∪AcycΣ

and the Σ+-theory of Absolutely Free Data Structures with selectors is

AFDS+
Σ = AFDSΣ ∪

⋃
c∈Σ

(

ar(c)⋃
i=1

Proj c,i)

The class of Data Structure Theories DST+ consists of all theories Ts such that
Ts is any union of axioms among Inj c, Disc,d, AcycΣ, and Proj c,i. The subclass

DST of DST+ consists of all theories without axioms Proj c,i.

DST+ includes inductive data structures (with selectors) such as lists and trees,
but also, e.g., the theory of equality or injective functions alone.

Given a tuple e of terms of sorts in Elem and a tuple t of terms of sort
struct, the tuple e, t may be written e; t to distinguish terms of sort struct

from the other ones. Hence, a Σ-term is denoted by c(e; t).

Definition 5. Consider two signatures Σ and Σt possibly sharing sorts except
struct but no function symbols, where Σ complies with Definition 4. Let f be
a new function symbol f with arity struct → t, where t is a sort in Σt. A
bridging theory Tf associated to f has the form:

Tf =
⋃
c∈Σ

{
∀e∀t1, . . . , tn . f(c(e; t1, . . . , tn)) = fc(e; f(t1), . . . , f(tn))

}
where fc(x;y) denotes a Σt-term.

Notice that the notation fc(x;y) does not enforce all elements of x;y to occur
in the term fc(x;y): in particular only elements in x of sort in Σt are allowed
in fc(x;y). Throughout the paper, we assume that for any constant c in Σ, fc
denotes a constant in Σt, and the equality f(c) = fc occurs in Tf . For instance,
in the case of length of lists, `(nil) = `nil = 0.

For the rest of this section, let T = Ts ∪ Tf ∪ Tt where

– Ts is a Σs-theory in DST+;
– Tt is a stably infinite Σt-theory such that Σs and Σt do not share function

symbols, and struct does not occur in Σt;
– Tf is a bridging theory.

We describe below a decision procedure for checking the T -satisfiability of
sets of literals. As usual, the input set of literals is first purified to get a separate
form.

Definition 6. A set of literals ϕ is in separate form if ϕ = ϕstruct ∪ ϕelem ∪
ϕt ∪ ϕf where:

– ϕstruct contains only flat Σs-literals of sort struct
– ϕelem contains only flat Σs-literals of sort in Elem that are not Σt-literals
– ϕt contains only Σt-literals
– ϕf contains only flat equalities of the form fx = f(x), where fx denotes a

variable associated to f(x), such that fx and f(x) occur once in ϕf and each
variable of sort struct in ϕstruct occurs in ϕf .

It is easy to convert any set of literals into an equisatisfiable separate form by
introducing fresh variables to denote impure terms.

Unlike classical disjoint combination methods, guessing only one arrangement
on the shared variables is not sufficient to get a modular decision procedure.
An additional arrangement on variables of sort struct is considered and the
resulting set of flat Σ-equalities E is translated to a set of Σt-literals CPE .

Definition 7. Given a bridging theory Tf , the target encoding of a set of flat
Σ-equalities E is the set of Σt-literals

CPE = {fx′ = fc(e; fx1
, . . . , fxn

) | c(e;x1, . . . , xn) = x′ : struct ∈ E}
∪ {fx′ = fx | x = x′ : struct ∈ E}

The combination procedure below is presented in [9] for the particular case
of absolutely free data structures.

Lemma 1. Let ϕ = ϕstruct∪ϕelem∪ϕt∪ϕf be a set of literals in separate form,
V = Var(ϕstruct ∪ ϕelem) ∪ Varstruct(ϕf), and Vt = Var(ϕt) ∪ Vart(ϕf). The
formula ϕ is T -satisfiable if and only if there exist an arrangement Arrt over
V ∩ Vt and an arrangement Arrstruct over the set of variables of sort struct in
V , such that

– ϕstruct ∪ ϕelem ∪Arrt ∪Arrstruct is Ts-satisfiable,
– ϕt ∪Arrt ∪ CPE is Tt-satisfiable,

where E is the set of equalities in ϕstruct ∪Arrstruct.

Proof. (Only if direction: soundness) Straightforward, since Tf ∪Tt ∪ϕ |= CPE .
(If direction: completeness) See Lemma 2 in Section 5.

ut

For the sake of simplicity in Lemma 1, we have chosen to use arrangements
to fix E. In practice however another solution would be to use a saturation-
based Ts-satisfiability procedure with the capability to deduce E, like the one
introduced in Section 4.

Example 1. Let Tt be the theory of integers and a theory of binary trees over
integers, with Elem = {int}, constructors Σ = {nil : struct, cons : int ×
struct × struct → struct}, and selectors val, left , right , formally defined by
Ts = {val(cons(I,X, Y)) = I, left(cons(I,X, Y)) = X, right(cons(I,X, Y)) =
Y }. The bridging theory for the function sum : struct → int is Tsum =
{sum(nil) = 0, sum(cons(I,X, Y)) = I + sum(X) + sum(Y)}.

Consider the T -satisfiability of

ϕ = {a = cons(e, b, c), d = cons(0, left(a), right(a)), a 6= d,

sum(a) ≤ sum(left(a)) + sum(right(a)), e ≥ 0}

or in separate form ϕstruct ∪ ϕt ∪ ϕsum with

ϕstruct = {a = cons(e, b, c), d = cons(e′, a1, a2),

a1 = left(a), a2 = right(a), a 6= d}

ϕt = {suma ≤ suma1 + suma2 , e
′ = 0, e ≥ 0}

ϕsum = {sumx = sum(x) | x ∈ {a, a1, a2, b, c, d}}

Let us compute the arrangements used in Lemma 1. First, Arrstruct relates a,
b, c, d, a1 and a2; notice that a1 = left(a) = left(cons(e, b, c)) = b and similarly
a2 = c, so these equalities should belong to Arrstruct, as well as a 6= d (from
ϕstruct). Second, Arrt should be {e 6= e′}, since otherwise a = cons(e, b, c) =
cons(e′, b, c) = cons(e′, a1, a2) = d holds, in contradiction with Arrstruct.

The target encoding CPE will contain suma = e + sumb + sumc, as well as
sumb = suma1 , sumc = suma2 , derived from the equalities in Arrstruct. From
suma ≤ suma1 + suma2 in ϕt, we get e = 0, contradicting Arrt since e′ = 0. �

Example 2. Assume that Tsum and Tt are defined as in Example 1. The formula

ϕ = {a = cons(e, b, c), a = cons(e′, a1, a2), sum(a) ≤ sum(a1) + sum(a2), e > 0}

can easily be shown unsatisfiable modulo AFDSΣ ∪ Tsum ∪ Tt. However, in the
combination EQΣ ∪ Tsum ∪ Tt where EQΣ is the theory of equality over Σ,
Arrstruct can be such that a, a1, a2, b, c are all different, and Arrt = {e 6= e′}:

– ϕstruct ∪ ϕelem ∪Arrt ∪Arrstruct is trivially EQΣ-satisfiable
– ϕt ∪Arrt ∪ CPE is satisfiable in the theory of integers, e.g. with e′ = 0.

Consequently, ϕ is satisfiable modulo EQΣ ∪ Tsum ∪ Tt. �

The combination method requires only few restrictions on the target theory
to be sound and complete (cf. Section 5). Actually, Tt could be also a data struc-
ture theory obtained from a previous application of the combination method.
Consider the case T = Ttree ∪ Tsz ∪ Tt where Ttree denotes a theory of trees and
Tsz denotes the bridging theory defining the tree size thanks to a target theory
Tt = Tlist ∪ T` ∪ TZ corresponding to a theory of lists extended with a bridging
function ` computing the list length. Applying twice the combination method
is a way to build a T -satisfiability procedure where T corresponds to the union
of two disjoint data structure theories extended with their respective bridging
functions to TZ: T = (Ttree ∪ Tsz ∪ TZ) ∪ (Tlist ∪ T` ∪ TZ). In the same vein, the
combination method applied twice yields a satisfiability procedure for a theory
of lists of trees extended with tree size sz and list length `. The above examples
illustrate the generality of our combination method.

4 Basic Data Structure Theories

The class DST+ introduced above includes theories of practical interest worth
considering for non-disjoint combinations with bridging functions. It contains the
theory of Absolutely Free Data Structures, but also the theory of equality and
other theories for which a rewriting approach to satisfiability can be successfully
applied [2]. It appears that those theories satisfy a nice model-theoretic property,
instrumental to prove the completeness of the above combination procedure.
They admit some particular Herbrand models similar to the ones we can build
for the theory of equality. Hence, it is another way to consider data structure
theories that can be “reduced” to the theory of equality. In the same vein, one
could use the locality approach [17] to get a “reduction” to the theory of equality
through a finite instantiation of axioms. Our model-based approach eases the
construction of a model for data structures extended with bridging functions.

Rather than handling a set of literals and a theory, we will consider the theory
extension including a set of (ground) literals.

Definition 8. Consider a finite constant expansion Σs ∪ C of a signature Σs
such that Cσ is non-empty for each sort σ in Σs, and a Σs-theory Ts. A ground
flat Ts-extension is a Σs ∪ C-theory defined as the union Ts = Ts ∪ G such
that G is a finite set of ground flat Σs ∪ C-literals. Ts = Ts ∪ G is said to be
subpopulated if C contains for each sort a constant not occurring in G.

The consistency of a ground flat Ts-extension Ts corresponds to a Ts-satisfia-
bility problem of a set of flat literals. We focus on theories admitting models
defined as structures of terms generated by some constructors and (a superset
of) the free constants occurring in Ts. We will see in the proof of Proposition 1
that the unused constant generators in subpopulated Ts are required to build
the models in the presence of selectors.

The model-theoretic properties of DST+ theories are essential for combina-
tions: models can be generated from some of their symbols (i.e., the construc-
tors). The following definition captures these properties:

Definition 9. Consider a set of sorts Elem, and a sort struct /∈ Elem. Let Σs
be a signature whose set of sorts is {struct}∪ Elem. Let Σ ⊆ Σs be a signature
containing only function symbols whose codomain sort is struct. Let Ts = Ts∪G
be a ground flat Ts-extension whose signature is Σs ∪ C. A Σ-basic Herbrand
model of Ts is a model H of Ts such that HΣ∪C is T (Σ ∪ C)/ =E, where E is
a finite set of ground flat Σ ∪C-equalities defined as the set of Σ ∪C-equalities
in G plus some additional equalities between constants of C occurring in G.

A consistent Σs-theory Ts is a Σ-basic (resp., perfect Σ-basic) data structure
theory if any subpopulated (resp., arbitrary) consistent ground flat Ts-extension
admits a Σ-basic Herbrand model.

A Σ-basic Herbrand model is constructed on a subsignature Σ of Ts. This
introduces a natural distinction between constructors in Σ and defined symbols
in Σs \Σ. The constructors are used to build the domain of the basic Herbrand

model whilst the defined symbols are interpreted as operators on this domain. A
classical example is AFDS+

Σ where the selectors are the defined symbols. From
now on, we assume that function symbols c ∈ Σ have arities as in Definition 4:

c : σ1 × · · · × σm × struct× · · · × struct→ struct.

Notice also that the above definition is suitable for a deductive approach in
contrast to a guessing approach. In a guessing approach, the set E of equalities
would be maximal (obtained from an arrangement) and in that case no additional
equality would be needed.

We now prove that all the source theories Ts considered in Section 3, ranging
from the theory of equality to AFDS+

Σ , are Σ-basic data structure theories.
For any of these source theories Ts, a saturation-based calculus (see Figure 1)
provides a Ts-satisfiability procedure. As a side effect, the saturated set computed
by this calculus yields a Σ-basic Herbrand model.

Proposition 1. Theories in DST+ are Σ-basic data structure theories, and
theories in DST are perfect Σ-basic data structure theories.

Proof. Consider any finite set of ground flat Σs ∪C-literals G and Ts = Ts ∪G.
To check the consistency of Ts, we can use a (simplified) superposition calculus.
It can be viewed as an abstract congruence closure procedure for the theory
of equality extended with additional simplification rules on ground clauses to
take into account the axioms listed above. In Figure 1, we provide a version of
this calculus instantiated for the case of AFDS+

Σ . One may remark that there
is a one to one correspondence between the axioms of AFDS+

Σ and inference
rules of this calculus. If we want to omit an axiom of AFDS+

Σ , we just have to
remove the corresponding inference rule, to get a satisfiability procedure. Hence,
if we omit Injc, Disc,d, AcycΣ and Projc,i, we retrieve the inference system
for the satisfiability problem in the theory of equality. This inference system is
parametrised by an ordering on constants.

For any considered Ts, the calculus terminates by computing a finite satura-
tion. If this finite saturation does not contain the empty clause, Ts is consistent.
Moreover, it is possible to construct a model using the model-generation tech-
nique introduced by Bachmair and Ganzinger [5]: the set of equalities in the finite
saturation leads to a convergent term rewrite system R such that the structure
of R-normal forms T (Σs ∪C)↓R is a model of Ts. Let E be the set of equalities
corresponding to ground flat rules in R. Then, we must distinguish two cases:

– If Ts does not include the Projection axiom, R only consists of ground flat
rules. In that case, we can take Σ = Σs, and T (Σs ∪ C)↓R is isomorphic to
T (Σ ∪ C)/ =E .

– Otherwise, we consider the signature Σ obtained from Σs by removing se-
lectors, and a structure whose domain is T (Σ ∪ C) ↓R. By assumption on
the constants used in G, there is a constant us ∈ C not occurring in Ts, for
each s in Σs. On this domain, the selector sci with s as codomain sort is
interpreted as follows:

• For any normal form which is a constant x, sci (x) = x′ if sci (x)↓R= x′ ∈
C, otherwise sci (x) = us.

• For any normal form which is a term t = c(t1, . . . , tn), sci (t) = ti
• For any other normal form t, sci (t) = us.

Using this interpretation, we get a structure of the desired form that is still
a model of Ts, when Ts includes the Proj c,i axiom. ut

Sup : x = x′, x = y ` x′ = y if x > x′, x > y
Cong1 : xj = x′j , x = f(. . . , xj , . . .) ` x = f(. . . , x′j , . . .) if xj > x′j
Cong2 : x = f(x1, . . . , xn), x′ = f(x1, . . . , xn) ` x = x′

Param : x = x′, x 6= y ` x′ 6= y if x > x′, x > y
Ref : x 6= x ` �
Injc : x = c(x1, . . . , xn), x = c(x′1, . . . , x

′
n) ` x1 = x′1 . . . xn = x′n if c ∈ Σ

Disc,d : x = c(x1, . . . , xn), x = d(y1, . . . , ym) ` � if c, d ∈ Σ, c 6= d
AcycΣ : x = t1[x1], . . . , xn−1 = tn[x] ` � if t1, . . . , tn are Σ-terms of depth 1
Projc,i : x = c(x1, . . . , xn) ` xi = sci (x)

Fig. 1. Ts-satisfiability procedure

Proposition 2. Theories in DST are perfectly polite with respect to Elem.

Proof. Self witnessability directly follows from the definition of a perfect Σ-basic
data structure theory. The smoothness is a consequence of the fact that sorts in
Elem are only inhabited by constants in C. Thus, the set of generators C can be
extended to any set of generators whose cardinality is larger than the cardinality
of C, and the related term-generated structure remains a model. ut

5 Completeness Proof

We study the satisfiability problem modulo T = Ts ∪ Tf ∪ Tt where Tf is a
bridging theory between a source theory Ts and a target theory Tt fulfilling the
following assumption:

Assumption 1 (Theories) The Σs-theory Ts and the Σt-theory Tt share no
function symbol. The set of sorts in Σs is Elem ∪ {struct}, and struct does
not occur in Σt. One of the following three cases hold:

– sorts in Σs and Σt are disjoint, Ts is a Σ-basic data structure theory and
Tt is arbitrary

– Σs and Σt share sorts, and either
• Ts ∈ DST and Tt is arbitrary
• Ts ∈ DST+\DST and Tt is stably infinite.

The combination procedure described in Section 3 is sound and complete also for
the cases listed above. We prove the completeness of the combination procedure
thanks to a combined model constructed using rewriting techniques. Given a
bridging function f : struct → t where t is a sort from the target theory, we
define a bridging theory via a convergent term rewrite system F such that for
any term s of sort struct, its normal form f(s)↓F corresponds to a term that
can be interpreted in a model of the target theory. To solve this problem, we
must carefully study the interplay between the equational theory E related to a
Σ-basic Herbrand model and the term rewrite system F .

For convenience, we will consider theory extensions including the sets of
(ground) literals rather than handling literals and theories separately.

Assumption 2 (Input formulas) Let Ts and Tt be theories as in Assump-
tion 1. The signatures Σs ∪ C and Σt ∪ Ct are finite constant expansions of Σs
and Σt, respectively.

1. Ts is a consistent Σs ∪ C-theory defined as a subpopulated ground flat ex-
tension of Ts. It admits a Σ-basic Herbrand model H such that HΣ∪C is
T (Σ ∪C)/ =E. The set of C ∩Ct-literals occurring in Ts is an arrangement
denoted by Arrt.

2. Tt is a Σt∪Ct-theory defined as the union of Tt and some finite set of ground
Σt ∪ Ct-literals, such that Tt ∪Arrt is consistent.

From now on, we assume a context where Assumption 1 and Assumption 2 hold.

A bridging theory Tf (from Definition 5 above) is an equational theory. It
happens that it can naturally be oriented as a term rewrite system F .

Proposition 3. Let Tf be a bridging theory as introduced in Definition 5, and
let TF = Tf ∪ {f(x) = fx | x : struct ∈ C}. The term rewrite system F =
{f(l)→ r | f(l) = r ∈ TF } is convergent and satisfies the following properties:

– f(c(e; t1, . . . , tn)) ↓F= fc(e; f(t1) ↓F , . . . , f(tn) ↓F) for any non-constant
constructor c ∈ Σ;

– f(c)↓F= fc for any constant c in Σ, where fc is a constant in Σt;
– f(x)↓F= fx for any constant (x : struct) ∈ C, where (fx : t) ∈ Ct.

Example 3. Consider the length function ` from lists to integers, and let Ts =
{a = cons(e, b), b = cons(e′, c), c = nil, a 6= c}. The set of constants of sort
struct in Ts is {a, b, c} and the related term rewrite system F is given by
{`(cons(W,X))→ 1 + `(X), `(nil)→ 0} ∪ {`(a)→ `a, `(b)→ `b, `(c)→ `c}. �

We focus on the problem of checking the Ts ∪ TF ∪ Tt-consistency. To get
a well-defined interpretation for f : struct → t, we need a Tt-model in which
f returns the same value of sort t for all E-equal input terms of sort struct.
This motivates the following definition of E-compatibility. Below, a struct-term
denotes a Σ-term in which constants of sort struct are in C.

Definition 10. F is E-compatible in a model A of Tt if for any struct-terms
s and t, s =E t⇒ A[f(s)↓F] = A[f(t)↓F].

Proposition 4. If F is E-compatible in a model of Tt, then Ts ∪ TF ∪ Tt is
consistent.

Proof. Consider the set of sorts S shared by Σs and Σt. Let us first assume
S = ∅. We know that F is E-compatible in a model A of Tt, and there exists a
model H of Ts such that HΣ∪C is T (Σ ∪C)/ =E . Given A and H, let us define
an interpretation M as follows. The domains of M are:

– Mt = At for any sort t in Σt
– Ms = Hs for any sort s in Σs

The function symbols are interpreted as follows3:

– For any g in Σt ∪ Ct, M[g] = A[g]
– For any g in Σs ∪ C, M[g] = H[g]
– For any struct-term t, M[f]([[t]]) = A[f(t)↓F]

M is well-defined due to the assumption that F is E-compatible in A. Let us
check that M is a model of Ts ∪ TF ∪ Tt.

– MΣs∪C = H, which is a model of Ts by assumption.
– MΣt∪Ct = A, which is a model of Tt by assumption.
– For any struct-term t, we have that

M[f(t)] =M[f]([[t]]) = A[f(t)↓F] =M[f(t)↓F]

by definition of M. Therefore M is a model of TF .

Consider now the case S 6= ∅. By Assumption 1, Ts is smooth with respect
to Elem, and more precisely there exists also a larger model H of Ts such that
HΣ∪C is T (Σ ∪ C ∪D)/ =E , where

– D is a set of elements of sort in S ⊆ Elem,
– Hσ = Aσ for each sort σ ∈ S.

Then the construction of M follows directly from the case S = ∅. In particular,
M is well-defined on C ∩ Ct due to the arrangement Arrt. ut

The missing piece of the method is to provide a way to check E-compatibility
of F in a model of Tt. In the following, we show that this property can be reduced
to a Tt-satisfiability problem.

Proposition 5. F is E-compatible in a model of Tt if the theory Tt∪Arrt∪CPE
is consistent, where CPE is the target encoding of E (Definition 7).

Proof. LetA be a model of Tt∪Arrt∪CPE . Let R be the convergent term rewrite
system associated to E. Since A satisfies Arrt, we have that A[e↓R] = A[e] for
any constant e of sort in Σs∩Σt. We first prove by structural induction that for
any struct-term u, A[f(u↓R)↓F] = A[f(u)↓F].

(Inductive case) Assume u = c(e;u1, . . . , un).

3 For any struct-term t, [[t]] is the equivalence class of t modulo =E .

– If c(e;u1, . . . , un)↓R= c(e↓R;u1 ↓R, . . . , un ↓R), then we have:

A[f(c(e;u1, . . . , un)↓R)↓F]
= A[f(c(e↓R;u1 ↓R, . . . , un ↓R))↓F]
= A[fc(e↓R; f(u1 ↓R)↓F , . . . , f(un ↓R)↓F)]
= fc(A[e↓R];A[f(u1 ↓R)↓F], . . . ,A[f(un ↓R)↓F)]
= fc(A[e];A[f(u1 ↓R)↓F], . . . ,A[f(un ↓R)↓F)]
= fc(A[e];A[f(u1)↓F], . . . ,A[f(un)↓F])
= A[fc(e; f(u1)↓F , . . . , f(un)↓F)]
= A[f(c(e;u1, . . . , un))↓F]

– Otherwise, c(e;u1, . . . , un)↓R is necessarily a constant x′, and u1, . . . , un are
constants x1, . . . , xn. Then, by assumption on A, we have

A[f(x′)↓F] = A[fx′] = A[fc(e; fx1
, . . . , fxn

)] = A[f(c(e;x1, . . . , xn))↓F]

(Base case) Assume u is a constant x. If x↓R= x, then we have f(x↓R)↓F=
f(x)↓F , and so A[f(x↓R)↓F] = A[f(x)↓F]. Otherwise, we have x↓R= x′. Then,
by assumption on A, we have A[f(x′)↓F] = A[fx′] = A[fx] = A[f(x)↓R].

To conclude the proof, let s and t be any struct-terms. If s =E t, then
s ↓R= t ↓R and A[f(s) ↓F] = A[f(s ↓R) ↓F] = A[f(t ↓R) ↓F] = A[f(t) ↓F]. This
means F is E-compatible in the model A of Tt. ut

Example 4. (Example 3 continued). Let Tt be the theory of integers. We have
E = {a = cons(e, b), b = cons(e′, c), c = nil} and so CPE = {`a = 1 + `b, `b =
1+`c, `c = 0}. Since Tt∪CPE is consistent, we get the consistency of Ts∪TF ∪Tt
by applying Proposition 5 and then Proposition 4. �

As a side remark, in the trivial case of F = {f(xk) → fxk
}k∈K , the com-

bination becomes disjoint, and the consistency of Ts ∪ TF ∪ Tt corresponds to
the consistency of the union of three disjoint theories, including the theory of
equality for f .

Proposition 4 and Proposition 5 are instrumental to prove the completeness
of the combination procedure. We thus get this result, subsuming Lemma 1:

Lemma 2. Let T = Ts ∪ Tf ∪ Tt, where Ts, Tt follow Assumption 1 and Tf is a
bridging theory according to Definition 5. The combination procedure introduced
in Lemma 1 is sound and complete for T -satisfiability.

Proof. The soundness is straightforward just like in Lemma 1. Let us focus on
the completeness. Consider the separate form ϕ and the sets of variables V and
Vt given in Lemma 1. By viewing ϕ as a set of ground literals in a constant
expansion of Σs ∪ Σf ∪ Σt, we can introduce the same theories Ts, Tt and TF
as in Assumption 2 and Proposition 3:

– the Σs ∪ C-theory Ts is Ts ∪ ϕstruct ∪ ϕelem ∪Arrt ∪Arrstruct,
– the Σt ∪ Ct-theory Tt is Tt ∪ ϕt,
– TF = Tf ∪ ϕf ∪

⋃
x:struct∈C\V {f(x) = fx},

where C and Ct are as follows:

– C = V when Ts ∈ DST. Otherwise, C is equal to V plus one fresh constant
for each sort in Ts.

– Ct = Vt ∪
⋃
x:struct∈C\V {fx}.

Assume ϕstruct∪ϕelem∪Arrt∪Arrstruct is Ts-satisfiable and ϕt∪Arrt∪CPE is
Tt-satisfiable. Equivalently, Ts and Tt are consistent. By applying Proposition 4
and Proposition 5, we get that Ts∪TF ∪Tt is consistent, and so Ts∪Tf ∪Tt∪ϕ
is consistent, or equivalently, ϕ is T -satisfiable. ut

6 Conclusion

In this paper, we present a combination method to solve the satisfiability problem
in some particular non-disjoint union of three theories including a source, a target
and a bridging theory from the source to the target. The combination method is
sound and complete for a large class of source data structure theories, ranging
from the theory of equality to the theory of absolutely free data structures. For
all these axiomatized theories, the satisfiability problem can be solved by using
an off-the-shelf equational theorem prover.

We envision several further investigations. First, we would like to consider
the case of non-absolutely free constructors, e.g., associative-commutative con-
structors, to allow a more general congruence relation E in the definition of a
data structure theory. Second, it would be interesting to allow non-convex data
structure theories, such as the theory of possibly empty lists [1]. Third, to go be-
yond the considered bridging axioms, a natural continuation is to identify other
“simple” connecting axioms that could be compiled into a combination method
à la Nelson-Oppen.

References

1. A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. New results on rewrite-
based satisfiability procedures. ACM Trans. Comput. Log., 10(1), 2009.

2. A. Armando, S. Ranise, and M. Rusinowitch. A rewriting approach to satisfiability
procedures. Inf. Comput., 183(2):140–164, 2003.

3. F. Baader and S. Ghilardi. Connecting many-sorted theories. J. Symb. Log.,
72(2):535–583, 2007.

4. F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University
Press, 1998.

5. L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with
selection and simplification. J. Log. Comput., 4(3):217–247, 1994.

6. C. Barrett, I. Shikanian, and C. Tinelli. An abstract decision procedure for a
theory of inductive data types. JSAT, 3(1-2):21–46, 2007.

7. P. Baumgartner and U. Waldmann. Hierarchic superposition with weak abstrac-
tion. In Automated Deduction - CADE-24 - 24th International Conference on Au-
tomated Deduction, Lake Placid, NY, USA, volume 7898 of LNCS, pages 39–57.
Springer, 2013.

8. P. Chocron, P. Fontaine, and C. Ringeissen. A Gentle Non-Disjoint Combination
of Satisfiability Procedures. In S. Demri, D. Kapur, and C. Weidenbach, editors,
Proc. of the 7th International Joint Conference on Automated Reasoning, IJCAR,
volume 8562 of LNCS, pages 122–136. Springer, 2014.

9. P. Chocron, P. Fontaine, and C. Ringeissen. A Polite Non-Disjoint Combination
Method: Theories with Bridging Functions Revisited. In A. P. Felty and A. Mid-
deldorp, editors, Proc. Conference on Automated Deduction (CADE), volume 9195
of LNCS, pages 419–433. Springer, 2015.

10. P. Fontaine. Combinations of theories for decidable fragments of first-order logic. In
S. Ghilardi and R. Sebastiani, editors, Frontiers of Combining Systems (FroCoS),
volume 5749 of LNCS, pages 263–278. Springer, 2009.

11. S. Ghilardi. Model-theoretic methods in combined constraint satisfiability. Journal
of Automated Reasoning, 33(3-4):221–249, 2004.

12. D. Jovanovic and C. Barrett. Polite theories revisited. In C. Fermueller and
A. Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR’10), volume 6397 of LNCS, pages 402–416. Springer, 2010.

13. E. Nicolini, C. Ringeissen, and M. Rusinowitch. Combinable extensions of Abelian
groups. In R. A. Schmidt, editor, Proc. Conference on Automated Deduction
(CADE), volume 5663 of LNCS, pages 51–66. Springer, 2009.

14. E. Nicolini, C. Ringeissen, and M. Rusinowitch. Combining satisfiability procedures
for unions of theories with a shared counting operator. Fundam. Inform., 105(1-
2):163–187, 2010.

15. S. Ranise, C. Ringeissen, and C. G. Zarba. Combining data structures with non-
stably infinite theories using many-sorted logic. In B. Gramlich, editor, Frontiers
of Combining Systems (FroCoS), volume 3717 of LNCS, pages 48–64. Springer,
2005.

16. V. Sofronie-Stokkermans. Locality results for certain extensions of theories with
bridging functions. In R. A. Schmidt, editor, Proc. Conference on Automated
Deduction (CADE), volume 5663 of LNCS, pages 67–83. Springer, 2009.

17. V. Sofronie-Stokkermans. Automated reasoning in extensions of theories of con-
structors with recursively defined functions and homomorphisms. In T. Ball,
J. Giesl, R. Hähnle, and T. Nipkow, editors, Interaction versus Automation: The
two Faces of Deduction, number 09411 in Dagstuhl Seminar Proceedings. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2010.

18. P. Suter, M. Dotta, and V. Kuncak. Decision procedures for algebraic data types
with abstractions. In M. V. Hermenegildo and J. Palsberg, editors, Principles of
Programming Languages (POPL), pages 199–210. ACM, 2010.

19. C. Tinelli and C. Ringeissen. Unions of non-disjoint theories and combinations of
satisfiability procedures. Theoretical Comput. Sci., 290(1):291–353, Jan. 2003.

20. C. Tinelli and C. G. Zarba. Combining non-stably infinite theories. Journal of
Automated Reasoning, 34(3):209–238, Apr. 2005.

21. D. Tran, C. Ringeissen, S. Ranise, and H. Kirchner. Combination of convex the-
ories: Modularity, deduction completeness, and explanation. J. Symb. Comput.,
45(2):261–286, 2010.

22. T. Zhang, H. B. Sipma, and Z. Manna. Decision procedures for term algebras with
integer constraints. Inf. Comput., 204(10):1526–1574, 2006.

