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Abstract

This paper discusses advantages and disadvantages of some possible alternatives for infer-
ence rules that handle quanti�ers in the proof format of the SMT-solver veriT. The quanti�er-
handling modules in veriT being fairly standard, we hope this will motivate the discussion
among the PxTP audience around proof production for quanti�er handling. This could
generate ideas to help us improve our proof production module, and also bene�t the SMT
community.

1 Introduction

In the typical architecture of an SMT-solver, the core automated reasoner is a propositional
SAT-solver, and quanti�ers are handled by independent modules [8]. In veriT [4], essentially
universal quanti�ers are handled by an instantiation module, which heuristically chooses terms
to instantiate such quanti�ed variables. The instantiation module is called on-demand as rarely
as possible (to reduce the number of generated instances) and only on essentially universally
quanti�ed subformulas. Essentially existential quanti�ers, on the other hand, are handled by a
skolemization module that is called only in a pre-processing phase and replaces all the essentially
existentially quanti�ed variables by skolem terms.

Currently, these modules are not proof-producing: if the input problem contains quanti�ers
that require skolemization, the proof produced by veriT will take as starting point the skolemized
formula. If the instantiation module is called, generated instances will be used to deduce unsatis-
�ability, and the proof produced by veriT will contain holes. This paper discusses advantages and
disadvantages of possible inference rules to handle quanti�ers in the proof format of the SMT-
solver veriT. We believe veriT's instantiation module behaves mostly like those in other solvers
that handle quanti�ers, e.g. CVC3 [2] or Z3 [5]. We thus believe that the following discussion is
relevant in the larger context of SMT solving for quanti�ed formulas.

We aim at developing inference rules for skolemization and instantiation that take into ac-
count the following requirements:

• Proof size: the proofs produced by the skolemization and by the instantiation modules
should be as short as possible, relative to the size of the formula that needs to be skolemized
or instantiated.

• Faithfulness to the inner workings of the quanti�cation modules: the proposed inference
rules should re�ect what actually happens inside the solver, so that they can also be used
for precisely tracing executions; from a tool engineering perspective, this is important for
debugging, pro�ling and maintainability.
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• Ease of programming: our solver has a generic framework for proof production; it is desir-
able that the new inference rules comply with this framework.

• Compatibility with the proof format: veriT's input format follows the SMT-LIB standard;
its output format also obeys the proposed proof format [3]. Hence the inference rules should
be expressible in this format.

• Fine-grainedness and simplicity: the inference rules should describe instantiation and
skolemization in steps that are as small and simple as possible.

• Generality: inference rules having a broader range of applicability should be preferred to
over-specialized inference rules that can be used only for speci�c purposes.

• Elegance: the proposed inference rules should �t into the style of rules already existing in
the solver.

• Complexity of proof-checking: it should be possible for an external proof checker to e�-
ciently check instances of the proposed inference rules.

• User-friendliness: the proposed inference rules should be suitable for the users of the solver
and their applications.

In this paper we discuss some alternative inference rules, focusing on the more objective and
more easily measurable criteria mentioned above (e.g. proof size, �ne-grainedness and complexity
of proof-checking). And we leave the more subjective criteria for future work.

2 The Proof Format

veriT's proof format follows a proposed format [3] in the philosophy of the SMT-LIB standard [1].
Its grammar is partially shown below. Clauses are sets of arbitrary formulas (not only liter-
als), and inference rules have an arbitrary number of clauses as premises and a single clause as
conclusion. Optionally, an inference rule may also take terms and attributes as arguments.

〈gen_clause〉 ::= 〈clause_id〉
| (〈rule_id〉

(:clauses (〈gen_clause〉∗) | :all-clauses)?
(:terms (〈term〉∗))?
〈attribute〉∗
(:conclusion 〈clause〉)?)

| (subproof 〈proofstep〉∗ (:conclusion 〈clause〉)? )

This document describes inference rules abstractly, using a proof-theoretical notation that is
independent from any concrete proof format. The translation from this notation to the proof
format is easy. An inference with the form

Γ1 . . . Γn

Γ
rule_id(term∗; attribute∗)

becomes
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(rule_id
(:clauses (η(Γ1) . . . η(Γn)))?
(:terms (〈term〉∗))?
〈attribute〉∗
(:conclusion Γ)?)

where η(Γi) is either the clause id of Γi or an inference rule instance that derives Γi or a subproof
that derives Γi.

3 Rules for Instantiation of Essentially Universal Quanti�ers

Essentially universal quanti�ers are universal quanti�ers that occur with positive polarity or ex-
istential quanti�ers that occur with negative polarity. Essentially universally quanti�ed variables
can be instantiated by any term of the suitable sort. When a satisfying assignment that does not
generate any theory con�ict contains an essentially universally quanti�ed formula, the instan-
tiation module generates and returns singleton clauses whose only formulas are instances of an
instantiation axiom schema. The instantiation terms are usually chosen by a heuristic based on
E-matching [6, 9]. This heuristic selects ground terms that appear in the literals composing the
satisfying assignment, sometimes based on annotations called triggers (i.e. sets of term patterns).
If a quanti�ed formula is of the form ∀x1. . . . .∀xn.A[x1, . . . , xn] or ¬∃x1. . . . .∃xn.A[x1, . . . , xn] �
with A[_] being a formula not starting with an essentially universal quanti�er � the instantiation
module instantiates not only the �rst universally quanti�ed variable x1, but all the variables xi at
once. This instantiation heuristic (based on E-matching) is incomplete, and a simple clause set
that is unsatis�able but irrefutable due to this incompleteness is simple: {∀x.P (x) ; ∀y.¬P (y)}.
To �nd a refutation, the solver shall instantiate x and y to the same arbitrary term t and resolve
the two unit clauses with each other.

Taking these remarks into account, the most straightforward inference rules for the instanti-
ation module would be:

∀~x.F (~x)→ F (~a)
forall_inst_axiom

F (~a)→ ∃~x.F (~x)
exists_inst_axiom

where ~x denotes a sequence of variables x1, . . . , xn and ~a a sequence of terms a1, . . . , an of suitable
sort.

An obvious and easily implementable idea to improve these rules is to combine them with
the clause form transformation rule for implication, as shown below. This reduces the size of
proofs, since it eliminates the need to always apply the implication rules after the instantiation
axioms.

¬∀~x.F (~x), F (~a)
forall_inst_cnf_axiom

¬F (~a),∃~x.F (~x)
exists_inst_cnf_axiom

In �rst-order resolution proofs, it is usual to follow a convention that considers variables to
be implicitly universally quanti�ed. Universal quanti�ers then simply do not (need to) appear
in the proof. One might wonder if it would be desirable to adopt a similar convention in the
presented proof format and rules. The answer is negative: because the SMT-LIB standard does
not enforce any naming convention to distinguish identi�ers for constants and for free variables,
a proof checker would not be able to (easily) tell whether a given identi�er (e.g. x) is a constant
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or a variable. With explicit rules for omiting the quanti�ers, a more sophisticated proof-checker
could keep track of which identi�ers are variables. However, this would imply an undesirable
loss of simplicity of the proof format and of the proof checker.

4 Rules for Skolemization of Essentially Existential Quanti�ers

Essentially existential quanti�ers are existential quanti�ers that occur with positive polarity
or universal quanti�ers that occur with negative polarity. veriT eliminates them by skolemiza-
tion during a pre-processing phase. The simplest solution would be to disregard this kind of
pre-processing in the proof production. However, this would go against the style of veriT's proof
format, since veriT does produce proofs for other pre-processing tasks such as clause form transfor-
mation. Another simple solution consists of having a single macro inference rule that skolemizes
all essentially existential quanti�ers:

F
sk(F )

skolemize_all

where sk(F ) is any skolemization of F.

The rule skolemize_all is simple to implement in veriT and simple to check by an independent
proof checker. The proof checker just needs to traverse F and sk(F ) once, checking that each
essentially existential quanti�er is eliminated and the quanti�ed variables it binds are replaced
by skolem terms headed by skolem symbols that do not occur anywhere else in the proof and
whose arguments are (a subset, depending on the skolemization algorithm used, of) variables
bound by essentially universal quanti�ers having scope over the eliminated quanti�er. This rule
is also convenient from the point of view of size, since it is clearly linear in the size |sk(F )| of
sk(F ). |sk(F )|, however, is in the worst case Θ(|F |2), if F is a tree-formula. To see that |sk(F )|
is O(|F |2), just note that the number of essentially existential quanti�ers in |F | is O(|F |) and
each of these quanti�ers is replaced by a skolem-term of size O(|F |). To see that in the worst
case |sk(F )| is Ω(|F |2), just consider the following example sequence:

Fn = ∀x1 . . . ∀xn∃y1 . . . ∃yn.P (x1, . . . , xn, y1, . . . , yn)

If F is a dag-formula, skolemization may require it to be transformed to an exponentially bigger
tree-formula �rst. In this case, the worst-case size of |sk(F )| is Θ(2|F |)). An example where this
happens is available in [7].

However, the rule skolemize_all has the disadvantage of being very coarse-grained, since
it skolemizes the whole formula at once. In trying to develop more �ne-grained inference
rules, it would be desirable to have something analogous to the rules forall_inst_axiom and
exists_inst_axiom. This could be attempted with rules such as the following:

∃x.F (x)→ F (fnew(x1, . . . , xn))
exists_skolem_axiom

F (fnew(x1, . . . , xn))→ ∀x.F (x)
forall_skolem_axiom

¬∃x.F (x), F (fnew(x1, . . . , xn))
exists_skolem_cnf_axiom

¬F (fnew(x1, . . . , xn)), ∀x.F (x)
forall_skolem_cnf_axiom
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where x1, . . . , xn are the free variables occurring in F (x), fnew is a fresh new skolem symbol,
not occurring anywhere else in the proof. The rules above are validity-preserving only if we
just consider models in which fnew(x1, . . . , xn) has a �xed interpretation as the witness of the
essentially existentially quanti�ed variable it replaces (if such a witness exists). Otherwise, these
rules are merely satis�ability-preserving.

In the case of instantiation of essentially universal quanti�ers, when a quanti�ed formula g
(e.g. ∀x.F (x)) needs to be instantiated, g is one of the formulas in a clause c (e.g. Γ,∀x.F (x)).
So, after stating an instantiation axiom clause c′ (e.g. ¬∀x.F (x), F (a)), we can do the actual
instantiation of g in c simply by resolving c with c′. This replaces g by its instance in c.
However, in the case of skolemization, a quanti�ed formula g (e.g. ∃x.F (x)) may often occur not
shallowly as a direct formula of a clause c but more deeply as a subformula of a formula in c (e.g.
Γ, ∀y.∃x.F (x)). Therefore, replacing g by its instance in c cannot be done simply by resolution
with a skolemization axiom. To overcome this problem, a deep version of resolution is proposed,
so that one of the resolved formulas can occur arbitrarily deep inside another formula. This rule
may be used in the more general case of the replacement of a deep occurrence of a subformula
by another:

Γ,¬F1, F2 ∆, F+(F1)

Γ,∆, F+(F2)
deep_resolution+

Γ,¬F1, F2 ∆, F−(F2)

Γ,∆, F−(F1)
deep_resolution−

where the signs + and − indicate the polarity of the annotated subformula.

Note that deep_resolution+ and deep_resolution− are analogous to deep applications of
modus ponens and modus tollens, but �t better in the style of veriT's proof format, which is
based on resolution.

Γ, F1 → F2 ∆, F+[F1]

Γ,∆, F+[F2]
deep_modus_ponens

Γ, F1 → F2 ∆, F−[F2]

Γ,∆, F−[F1]
deep_modus_tollens

Γ, F1 ↔ F2 ∆, F [F1]

Γ,∆, F [F2]
deep_replacement

This approach with skolemization axioms and deep resolution has many problems, though.
Firstly, there is a signi�cant increase in the size of proofs: if m quanti�ers need to be skolemized
and for the sake of �ne-grainedness a deep replacement is performed separately for each of
the quanti�ers, then there will be Θ(m) inferences, whose conclusions are of size O(|sk(F )|).
Consequently, there is also a signi�cant increase in the proof-checking time. Anti-prenexing the
quanti�ers as much as possible could reduce this problem in the average case.

Secondly and perhaps more seriously, proof-checking the skolemization axiom rules and the
deep resolution rules depends on being capable of distinguishing identi�ers of free variables and
constants, and the SMT-LIB standard does not enforce any distinction. To understand this issue,
consider the following formulas:

F1 := ∀x.∃y.P (x, c, y) F2 := ∀c.∀x.∃y.P (x, c, y)

and consider the following exists_skolem_axiom:

∃y P (x, c, y)→ P (x, c, fnew(x))
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Proof-checking this axiom depends on being able to tell whether c is a variable or a constant,
for if it were a variable, then c should also have been listed as an argument of fnew. Moreover,
both F1 and F2 might occur in a proof, and then c occurs both as a constant identi�er and
as a variable identi�er. In such cases, the proof-checker should be able to accept this skolem
axiom, it should be able to accept a deep resolution (or modus ponens) with F1 (concluding
∀x.P (x, c, fnew(x))), but it should also be able to reject an incorrect deep resolution (or modus
ponens) with F2 (unsoundly concluding ∀x.P (x, c, fnew(x)) instead of ∀x.∀c.P (x, c, fnew(x, c))).
This simple example shows that the combination of skolem axioms, deep replacement rules and no
distinction between identi�ers for constants and for variables leads to unsoundness. This could
be �xed by requiring non-local side conditions in the deep replacement rules, so that a deep
replacement is only allowed if any skolem function symbol occuring in the replacing formula
has as arguments all the identi�ers that occur free in the replacing formula and that become
bound after the replacement. Although this is technically feasible, it is questionable whether the
increase in the complexity of proof-checking is a reasonable price to pay for the �ne-grainedness
and elegance provided by the deep replacement rules and the skolem axioms.

This means that the proof checker would not be able the check the correctness of a skolem-
ization axiom inference locally; it would not be able to verify whether the list of arguments of the
skolem function, which ought to contain all the free variables (but not the constants) of F (x),
is correct. The proof checker would only be able to tell whether the arguments of the skolem
function are variables or constants when the deep resolutions are performed. Proof-checking
would not be just local anymore, since the proof checker would need to keep track of some global
correctness conditions. One way to keep proof-checking local, while still keeping �ne-grainedness
would be to combine the skolemization axiom rule and the deep resolution rule into a single
unary inference rule, as follows:

Γ, G+[∃x.F (x)]

Γ, G+[F (fnew(x1, . . . , xn))]
exists_skolem

Γ, G−[∀x.F (x)]

Γ, G−[F (fnew(x1, . . . , xn))]
forall_skolem

where x1, . . . , xn are the free variables of F (x) that are bound in G(Qx.F (x)).

Another approach would be to give up using skolem terms and use Hilbert's epsilon terms
instead. A problem with this approach is that the size of the transformed formula epsilon(F ) for
a �rst-order formula F is in the worst-case Ω(2|F |) for tree-like F . This lower bound can be easily
proved by considering the sequence of linearly growing formulas Fn := ∃x1 . . . ∃xn.P (x1, . . . , xn)
and checking that the sequence epsilon(Fn) grows indeed in Ω(2n). For dag-like F , another
exponential blow up is possible, since the formula may need to be transformed to a tree, and
hence the size is Ω(22

|F |
).

∃~x.F (~x)→ F (ε~x.F (~x))
epsilon_axiom_1

F (ε~x.¬F (~x))→ ∀~x.F (~x)
epsilon_axiom_2

Yet another alternative worth considering would be to stop doing skolemization as a pre-
processing step altogether, and do it only on demand, when an essentially existentially quanti�ed
formula occurs shallowly as a direct formula of a clause. In this case, no deep replacement would
be necessary, and skolem terms would be always just skolem constants. Equivalently, strong
quanti�er rules or axioms that instantiate the essentially existentially quanti�ed variables by
eigen-variables could be used.
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5 Conclusions

In this paper we have presented a few alternative inference rules for handling quanti�ers in the
proof format of veriT. We showed that each alternative has advantages but also disadvantages
with respect to the requirements mentioned in the introduction. Therefore, we found none of
the alternatives completely satisfactory.

Since it seems to be di�cult to �nd the right balance to satisfy most if not all the require-
ments simultaneously, we have implemented some of these alternative rules in veriT selecting those
that seemed to �t better within the existing proof style of that tool. The quanti�er instantia-
tion module produces instances of the rules forall_inst_axiom and exists_inst_axiom to justify
lemmas that are added to the Boolean satis�ability solver. The clauses they introduce are then
combined with existing rules for CNF transformation and resolution. Skolemization is applied
to the input formula only on essentially existentially quanti�ed variables occuring at the outer-
most level, and thus only produce skolem constants. Also, since the formulas generated by the
quanti�er instantiation module might reveal essentially existential quanti�ers at the outermost
level, skolemization is also applied to instances. In both cases, exists_skolem_cnf_axiom and
forall_skolem_cnf_axiom are used in the proof, and the resulting clauses are further combined
using deep_resolution rules.
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