Combinations of theories and the Bernays-Schönfinkel-Ramsey class

Pascal Fontaine

Verify'07
July 15-16
Bremen, Germany

Outline

(2) Combining BSR theories
(3) Conclusion

Introduction

Formal development frameworks (e.g. B, TLA ${ }^{+}, \ldots$)

- generate a lot of proof obligations
- on expressive languages (for instance, set theory)

Validation platforms

- automation (for simple proofs)
- interactive tools (for difficult proofs)

Introduction

Formal development frameworks (e.g. B, TLA ${ }^{+}, \ldots$)

- generate a lot of proof obligations
- on expressive languages (for instance, set theory)

Validation platforms

- automation (for simple proofs)
- interactive tools (for difficult proofs)

SMT solvers?

SMT solvers expressivity

SMT solvers: incremental approach to raise expressivity

- SAT solvers

$$
\neg[(p \Rightarrow q) \Rightarrow[(\neg p \Rightarrow q) \Rightarrow q]]
$$

- Congruence closure (uninterpreted symbols + equality)

$$
a=b \wedge[f(a) \neq f(b) \vee(p(a) \wedge \neg p(b))]
$$

- Some arithmetic

$$
a \leq b \wedge b \leq a+x \wedge x=0 \wedge[f(a) \neq f(b) \vee(p(a) \wedge \neg p(b+x))]
$$

- ... (Combination of theories)
- Sets
$a \leq b \wedge b \leq a+x \wedge x=0 \wedge f(a) \in(A \cap B) \wedge[f(a) \in A \backslash B \vee f(b) \notin B]$

Bernays-Schönfinkel-Ramsey (BSR) theories

BSR class:

- decidable
- conjunction of $\exists^{*} \forall^{*} \varphi$ formulas
- φ quantifier-free, function-free
- =, predicates, constants, and Boolean connectives allowed

Examples:

- $\forall x, y \cdot p(x, y) \equiv p(y, x)$
- $a \neq b \wedge a \neq c \wedge b \neq c \wedge \forall x . x=a \vee x=b \vee x=c$

Goal

Combining BSR (decidable) theories with other theories Using linear arithmetic, uninterpreted symbols,... and predicates defined by a BSR theory

SMT solvers expressivity

SMT solvers: incremental approach to raise expressivity

- SAT solvers

$$
\neg[(p \Rightarrow q) \Rightarrow[(\neg p \Rightarrow q) \Rightarrow q]]
$$

- Congruence closure (uninterpreted symbols + equality)

$$
a=b \wedge[f(a) \neq f(b) \vee(p(a) \wedge \neg p(b))]
$$

- Some arithmetic

$$
a \leq b \wedge b \leq a+x \wedge x=0 \wedge[f(a) \neq f(b) \vee(p(a) \wedge \neg p(b+x))]
$$

- ... (Combination of theories)
- Sets, relations, ...
$a \leq b \wedge b \leq a+x \wedge x=0 \wedge f(a) \in(A \cap B) \wedge[f(a) \in A \backslash B \vee f(b) \notin B]$

Outline

(1) Introduction
(2) Combining BSR theories

- Combining disjoint decision procedures
- Combining non-stably infinite theories
- BSR theories and cardinalities

Combining disjoint decision procedures (1)

A combination of disjoint languages:

$$
L=\{x \leq y, y \leq x+f(x), P(h(x)-h(y)), \neg P(0), f(x)=0\}
$$

uninterpreted symbols (P, f, h), and arithmetic $(+,-, \leq, 0)$.

Combination of disjoint decision procedures

Combination of the empty theory and theory for linear arithmetic (both stably-infinite)

Separation using new variables:

$$
\begin{aligned}
& L_{1}=\left\{x \leq y, y \leq x+v_{1}, v_{1}=0, v_{2}=v_{3}-v_{4}, v_{5}=0\right\} \\
& L_{2}=\left\{P\left(v_{2}\right), \neg P\left(v_{5}\right), v_{1}=f(x), v_{3}=h(x), v_{4}=h(y)\right\}
\end{aligned}
$$

L and $L_{1} \cup L 2$ both satisfiable or both unsatisfiable.

Combining disjoint decision procedures (2)

Cooperation by exchanging equalities:

$$
\begin{aligned}
& L_{1}=\left\{x \leq y, y \leq x+v_{1}, v_{1}=0, v_{2}=v_{3}-v_{4}, v_{5}=0\right\} \\
& L_{2}=\left\{P\left(v_{2}\right), \neg P\left(v_{5}\right), v_{1}=f(x), v_{3}=h(x), v_{4}=h(y)\right\}
\end{aligned}
$$

Combining disjoint decision procedures (2)

Cooperation by exchanging equalities:

$$
\begin{aligned}
& L_{1}=\left\{x \leq y, y \leq x+v_{1}, v_{1}=0, v_{2}=v_{3}-v_{4}, v_{5}=0\right\} \\
& L_{2}=\left\{P\left(v_{2}\right), \neg P\left(v_{5}\right), v_{1}=f(x), v_{3}=h(x), v_{4}=h(y)\right\}
\end{aligned}
$$

From $L_{1}, x=y$:

$$
\begin{aligned}
& L_{1}=\left\{x \leq y, y \leq x+v_{1}, v_{1}=0, v_{2}=v_{3}-v_{4}, v_{5}=0\right\} \\
& L_{2}^{\prime}=\left\{P\left(v_{2}\right), \neg P\left(v_{5}\right), v_{1}=f(x), v_{3}=h(x), v_{4}=h(y), x=y\right\}
\end{aligned}
$$

From $\begin{aligned} L_{2}^{\prime}, v_{3} & =v_{4}: \\ L_{1}^{\prime} & =\left\{x \leq y, y \leq x+v_{1}, v_{1}=0, v_{2}=v_{3}-v_{4}, v_{5}=0, v_{3}=v_{2}\right. \\ L_{2}^{\prime} & =\left\{P\left(v_{2}\right), \neg P\left(v_{5}\right), v_{1}=f(x), v_{3}=h(x), v_{4}=h(y), x=y\right\}\end{aligned}$

$L_{2}^{\prime \prime}$ is unsatisfiable.

Combining disjoint decision procedures (2)

Cooperation by exchanging equalities:

$$
\begin{aligned}
& L_{1}=\left\{x \leq y, y \leq x+v_{1}, v_{1}=0, v_{2}=v_{3}-v_{4}, v_{5}=0\right\} \\
& L_{2}=\left\{P\left(v_{2}\right), \neg P\left(v_{5}\right), v_{1}=f(x), v_{3}=h(x), v_{4}=h(y)\right\}
\end{aligned}
$$

From $L_{1}, x=y$:

$$
\begin{aligned}
& L_{1}=\left\{x \leq y, y \leq x+v_{1}, v_{1}=0, v_{2}=v_{3}-v_{4}, v_{5}=0\right\} \\
& L_{2}^{\prime}=\left\{P\left(v_{2}\right), \neg P\left(v_{5}\right), v_{1}=f(x), v_{3}=h(x), v_{4}=h(y), x=y\right\}
\end{aligned}
$$

From $L_{2}^{\prime}, v_{3}=v_{4}$:

$$
\begin{aligned}
& L_{1}^{\prime}=\left\{x \leq y, y \leq x+v_{1}, v_{1}=0, v_{2}=v_{3}-v_{4}, v_{5}=0, v_{3}=v_{4}\right\} \\
& L_{2}^{\prime}=\left\{P\left(v_{2}\right), \neg P\left(v_{5}\right), v_{1}=f(x), v_{3}=h(x), v_{4}=h(y), x=y\right\}
\end{aligned}
$$

$L_{2}^{\prime \prime}$ is unsatisfiable.

Combining disjoint decision procedures (2)

Cooperation by exchanging equalities:

$$
\begin{aligned}
& L_{1}=\left\{x \leq y, y \leq x+v_{1}, v_{1}=0, v_{2}=v_{3}-v_{4}, v_{5}=0\right\} \\
& L_{2}=\left\{P\left(v_{2}\right), \neg P\left(v_{5}\right), v_{1}=f(x), v_{3}=h(x), v_{4}=h(y)\right\}
\end{aligned}
$$

From $L_{1}, x=y$:

$$
\begin{aligned}
& L_{1}=\left\{x \leq y, y \leq x+v_{1}, v_{1}=0, v_{2}=v_{3}-v_{4}, v_{5}=0\right\} \\
& L_{2}^{\prime}=\left\{P\left(v_{2}\right), \neg P\left(v_{5}\right), v_{1}=f(x), v_{3}=h(x), v_{4}=h(y), x=y\right\}
\end{aligned}
$$

From $L_{2}^{\prime}, v_{3}=v_{4}$:

$$
\begin{aligned}
& L_{1}^{\prime}=\left\{x \leq y, y \leq x+v_{1}, v_{1}=0, v_{2}=v_{3}-v_{4}, v_{5}=0, v_{3}=v_{4}\right\} \\
& L_{2}^{\prime}=\left\{P\left(v_{2}\right), \neg P\left(v_{5}\right), v_{1}=f(x), v_{3}=h(x), v_{4}=h(y), x=y\right\}
\end{aligned}
$$

From $L_{1}^{\prime}, v_{2}=v_{5}$:

$$
\begin{aligned}
& L_{1}^{\prime}=\left\{x \leq y, y \leq x+v_{1}, v_{1}=0, v_{2}=v_{3}-v_{4}, v_{5}=0, v_{3}=v_{4}\right\} \\
& L_{2}^{\prime \prime}=\left\{P\left(v_{2}\right), \neg P\left(v_{5}\right), v_{1}=f(x), v_{3}=h(x), v_{4}=h(y), x=y, v_{2}=v_{5}\right\}
\end{aligned}
$$

$L_{2}^{\prime \prime}$ is unsatisfiable.

Combining disj. DPs : "unsatisfiable" scenario

Combining disj. DPs : "satisfiable" scenario

Really SAT?

- all disjunctions of equalities propagated
- models agree on cardinalities

Combining disj. DPs : "satisfiable" scenario

Really SAT?

- all disjunctions of equalities propagated
- models agree on cardinalities

Ensuring agreement on cardinalities?

Different frameworks (and capabilities)

- Nelson-Oppen:
requirement on theories: stably infinite (not suitable for BSR) if satisfiable, there is an infinite model (FOL theories $\Rightarrow \aleph_{0}$)
- Combining with the empty theory (and some others): the empty theory does not constraint much the cardinalities
- BSR theory and theory with only finite models: check every finite model against BSR theory
We show:
- possible to know exactly accepted cardinalities for BSR theory
- thus, combination possible if other theory can say if it accepts given cardinality

BSR theories and cardinalities

Well-known result:
Finite model property
If a BSR theory has a model, it has a finite model
Size: at most the number of ground terms k
Simple property

- If it has a model with cardinality j, it has a model for every j^{\prime} such that $k \leq j^{\prime} \leq j$

BSR theories and cardinalities (2)

Two scenarios for a given BSR theory

- has infinite model, and accepts models for every cardinality $\geq k$

Combination? Check if other theory accepts model greater than k

- has no infinite model, and accepts a finite number of cardinalities, all cardinalities between k and the max j being accepted

Combination? Finite number of cardinalities to check How to know which scenario occurs?
Does a BSR theory has an infinite model?

BSR theories and cardinalities (3)

Theorem
 A BSR-theory has an infinite model if and only if it has a finite model with some (see paper) symmetry properties

Checking if such a finite model exists is decidable

From set (or relation) operators to BSR

For instance:

$$
a=b \wedge(\{f(a)\} \cup E) \subseteq A \wedge f(b) \notin C \wedge A \cup B=C \cap D
$$

becomes

$$
\begin{aligned}
& a=b \wedge \forall x[(x=f(a)\vee E(x)) \Rightarrow A(x)] \\
& \wedge \neg C(f(b)) \\
& \wedge \forall x .[A(x) \vee B(x)]
\end{aligned}>[C(x) \wedge D(x)]
$$

with separation variables:

Finally: combination of a BSR theory with empty theory

From set (or relation) operators to BSR

For instance:

$$
a=b \wedge(\{f(a)\} \cup E) \subseteq A \wedge f(b) \notin C \wedge A \cup B=C \cap D
$$

becomes

$$
\begin{aligned}
a=b \wedge \forall x[(x=f(a) \vee E(x)) \Rightarrow A(x)] & \wedge \neg C(f(b)) \\
& \wedge \forall x .[A(x) \vee B(x)]
\end{aligned}
$$

with separation variables:

$$
\begin{gathered}
a=b \wedge y=f(a) \wedge z=f(b) \wedge \\
\forall x[(x=y \vee E(x)) \Rightarrow A(x)] \wedge \neg C(z) \wedge \forall x .[A(x) \vee B(x)] \equiv[C(x) \wedge D(x)]
\end{gathered}
$$

Finally: combination of a BSR theory with empty theory

Outline

(9) Introduction
 (2) Combining BSR theories

(3) Conclusion

Conclusion

- BSR theory has an infinite model? decidable
- decidability result on combining BSR theories
- removing strong requirements from previous combination frameworks
- BSR + theories with infinite models
- BSR + linear arithmetic + uninterpreted symbols + arrays +...
- Adding set (relation,...) operators to language of SMT solvers
- First prototype for the combination with the empty theory
- Future work: the general case in practice, proof reconstruction (w.i.p.)

