Expressiveness + Automation + Soundness:
Towards Combining SMT Solvers
and Interactive Proof Assistants

Pascal Fontaine, Jean-Yves Marion, Stephan Merz,
Leonor Prensa Nieto, and Alwen Tiu

LORIA — INRIA Lorraine — Universié de Nancy

Abstract. Formal system development needs expressive specification laegyuag
but also calls for highly automated tools. These two goals are not easydio-re
cile, especially if one also aims at high assurances for correctnetsss lpaper,
we describe a combination of Isabelle/HOL with a proof-producing SMat-(S
isfiability Modulo Theories) solver that contains a SAT engine and a decision
procedure for quantifier-free first-order logic with equality. As a esuuser
benefits from the expressiveness of Isabelle/HOL when modelingtansybut
obtains much better automation for those fragments of the proofs thatithiih

the scope of the (automatic) SMT solver. Soundness is not comprobesadse

all proofs are submitted to the trusted kernel of Isabelle for certificalibis ar-
chitecture is straightforward to extend for other interactive proof asssstnd
proof-producing reasoners.

1 Introduction

Deductive tools for system verification can be classifiecbetiog to the axes oéx-
pressivenesslegree of automatioandguarantees of soundnessn ideal tool would
score high everywhere: expressive input languages sucligherforder logic or set
theory allow a user to write natural and concise models,raatit verification takes
care of a large fraction of the proof obligations, and thaiemsce of soundness gives
confidence in the result. In practice, these goals are inicarffbr example, interactive
proof assistants encode rich logics, which are at the békiglaly expressive (and user-
extensible) modeling languages. Their verification envinent is usually built around
a small trusted code base, ensuring that theorems can oplptaced from explicitly
stated axioms and proof rules. At the other end of the spactwme finds automatic
verification tools, including model checkers and decisimtpdures. These tools come
with fixed input languages in which to express the models,thag implement fully
automatic verification algorithms tailored for these laages. Using sophisticated op-
timizations, they aim to scale up to large problems; howetés all too easy to inad-
vertently introduce bugs that compromise soundness.

Itis clearly desirable to combine interactive and autooagrification tools in order
to benefit from their respective strengths. Proof assistaften provide a back door
for using automated tools in the form of trustedacles it suffices to translate the
formulas to prove into the input language of the automatsoeer and to invoke it. If

the proof succeeds, the proof assistant will accept thedtarras a theorem. However,
this mechanism makes the oracle a part of the trusted coée drad therefore weakens
the guarantees of soundness. Even if one may be inclinedsbthre external reasoner,
the translation function can be non-trivial, for exampleewhranslating from higher-

order to first-order logic; moreover, the translation witlem undergo much less testing
than the external reasoner itself.

One way to avoid this problem is to make the external reagmogiuce proof traces
that can be checked independently. Usually, checking af jg@much simpler prob-
lem than finding it in the first place, so the checker can befgtedeas part of the trusted
code base. Even more, proof checking can be implementeiledyaeasily within an
interactive proof assistant so that the size of the trustéeded does not augment beyond
what users of the proof assistant accept anyway. The cohlbiré offers the full ex-
pressiveness of the proof assistant, but provides the atitomof the external reasoner
over its domain, without compromising soundness guarantee

An alternative would be to verify the algorithm of the autdimgrover within a
proof assistant and to extract an implementation whosedsmss is guaranteed, with-
out the need of checking individual proofs. (Note that coxteagtion or interpretation
becomes part of the trusted code base.) It is not clear yethtissapproach can produce
implementations whose efficiency can compete with reasoimaplemented as, say,
highly optimized C programs. Mahboubi [14] describes ongavork with the aim of
implementing cylindrical algebraic decomposition in Coq.

In this paper we describe an implementation of proof cedtiiion for a decision pro-
cedure for the quantifier-free first-order language of werprteted function and predi-
cate symbols implemented in haRVey [7] within Isabelle/H[2B], the encoding of
higher-order logic in Isabelle. The SMT (Satisfiability Mdd Theories) solver haR-
Vey combines a SAT solver with decision procedures. In ahalttsthe SAT solver
maintains a Boolean abstraction of the input formula. Whenaypropositional model
for this abstraction is found, it is submitted to the deaispsocedure(s). If the model
is found to be incompatible with a theorygcanflict clausds produced in order to ex-
clude a class of models. This process continues until eimeodel is found, in which
case the input formula is satisfiable, or until the SAT soldetermines the Boolean
abstraction to be unsatisfiable. Because the SAT solves @agentral role in haRVey,
we first introduce in Sect. 3 proof reconstruction in Isadér SAT solvers. In Sect. 4
we describe how haRVey has been extended to produce proestaad how we imple-
ment proof reconstruction for these traces (Sect. 5). Tleeadivapproach generalizes
to other theories implemented in SMT solvers, includingyfr@nts of arithmetic and
set-theoretical constructions.

Related work.We are not aware of any existing combination of SMT solvers@oof
assistants, but the use of proof certification for tool carabon is widely accepted. For
example, an interface between Coq and the rewriting systeANH21] lets ELAN
compute proof objects (2sterms) that are submitted to Coq, and a similar approach
has been implemented for Coq and the first-order theoremesddliksem [4] and
Zenon. Because explicit proof objects can be huge, Neculd.aa [18] propose tech-
niques to compress them. In contrast, we do not compute fatfpobjects but just
“hints” that guide Isabelle during proof reconstructiore et al. describe a combina-

tion of Isabelle and resolution-based first-order theoreowgrs [16], and a similar ap-
proach underlies the combination of Gandalf and HOL withie Prosper project [13].
The work on the TRAMP system reported by Meier [15] is usedhim ®mega sys-
tem [25], and it appears to be closely related to ours bedhesg@rget logic is similar;
also, our “proof hints” can be understood as a form of proafhplng.

2 Motivation for tool integration

Our motivation for combining interactive proof assistasmsl SMT solvers comes from
case studies that we performed for the verification of distdd algorithms, including
a framework for clock synchronization protocols [3, 26].€Ek case studies were car-
ried out in Isabelle/HOL, and this formalism allowed us toteveasily understandable
system specifications. When it came to verification, we woypictlly instantiate the
higher-order abstractions in a few initial proof stepsyieg us with first-order verifi-
cation conditions. Many of these subgoals would fall wittlie domain of automatic
decision procedures. A typical example is provided by tileviong lemma that appears
within the context of clock synchronization:

lemmabounded-drift
assumess<t and correct pt and correct gt
and rboundl1 C and rbound2 C and rboundl D and rbound2 D
shows|C pt—Dqt|<|Cps—Dqgg+2xpx(t—59)

The lemma establishes a bound on the drift betweemtlvounded clock€ andD
for processorp andq that are supposed non-faultgofrec) at timet. It relies on the
following definition ofp-boundedness:

rbound1 C £ vp,s,t. correct ptAs<t — C pt—C ps<(1l+p)x(t—s9)
rbound2 C £ Vp,s,t. correct ptAs<t — (1-p)x(t—s)<Cpt—Cps

The Isabelle proof of this lemma in [26] requires a serientérimediate lemmas,
which were rather tedious to prove. In particular, Isabelhiilt-in tactic for linear
arithmetic is unable to prove the lemma, even after mansshintiation of the quanti-
fiers. This is mainly due to the appearance of the subgern(t — s), which falls outside
the scope of linear arithmetic. In contrast, it is not hardee that the lemma is correct,
and CVC-Lite [2] was able to prove it automatically. CVC+.is an SMT solver whose
core consists of a combination of decision procedures &mgrfrents of first-order logic;
other tools in this category include MathSAT [5], ICS [10parices.

As a first step towards tool combination, we tried an oratlesntegration and
implemented ML functions that translate a fragment of I1dalf¢éOL to the input lan-
guages of SMT solvers. The recent emergence of the commonlL3®input for-
mat [24] turned out to be very helpful, because the samel&tmss worked for many
different tools. By using SMT solvers as oracles, we couldcemtrate on the high-
level structure of the verification and leave tedious detsiich as the above lemma to
the external tools.

However, we were also quickly reminded of the dangers witltlerstyle integra-
tion: a simple typo in the translation functions was enoughdrrupt soundness. The
translation from a higher-order setting to a (multi-soytBst-order language is non-
trivial. In short, it was all too easy to introduce bugs in trenslation, which suggested
to us that we should investigate techniques of proof ceatifio.

3 Proof reconstruction for propositional logic

SAT solvers decide the satisfiability problem for propasitil logic, and they are an es-
sential component of SMT solvers. Given a propositionaiiaea, a SAT solver either
computes a satisfying valuation or reports that the forrsulmsatisfiable. Modern SAT
solvers implement the DPLL algorithm [6] due to Davis, Patnhogemann, and Love-
land, enhanced by optimizations such as conflict analysisxan-chronological back-
tracking, good branching heuristics, and efficient datacstires [29]. These solvers
expect the input to be presented as a set (i.e., conjunafocipuses, which are dis-
junctions of literals. In preparation for using a SAT soJwee must convert arbitrary
propositional formulas into conjunctions of clauses, preig satisfiability.

A naive conversion to conjunctive normal form (CNF) simplgtdbutes disjunc-
tions over conjunctions. However, this could result in ajanation whose size is expo-
nential in the size of the original formula. For example, fibrenula

(aaAbp) V...V (anAbp)

gives rise to 2 conjuncts. For our purposes, we do not need to produce amadeui
CNF formula, but only have to preserve (un)satisfiabilityg @ is well known that a
conversion of linear complexity is possible in this casee €lassical technique, due to
Tseitin [1, 27], is to introduce new Boolean variables taesent complex subformulas.
In the above example, we would introduce additional vaésk, . . ., x, and obtain the
clauses

X1V...VXy, =% Va, % Vb, xv-ogv-b (i=1,...,n).

The first clause represents the original formula, whereagemaining clauses arise
from “definitional” equivalences; = a Ab;. This idea can be implemented in Isabelle
by a tactic that repeatedly applies the theorem

(AAB)VC = (3x.(x=AAB)A(xVC))

in order to obtain a quantified Boolean formatac; A ... A ¢y, that is equivalent to the
original formula. The clauseas, ..., cy are then passed on to the SAT solver.

SAT solvers try to compute a satisfying assignment of tratlues to atoms by re-
peatedly applying two basic operations [17]: Boolean aaist propagation determines
the values of Boolean variables that appeaurit clausesi.e. clauses that contain a
single unassigned literal. Second, truth values are gddésseariables whose value has
not yet been determined. In case these guesses are founthtmbepatible with the in-
put clauses, the search backtracks, remembering the wssfotguesses adearned
clausethat is added to the original set of clauses in order to hefxtihe search.

Problem # clauses SAT time Total time
MSC007-1.008 204 208 11546

PUZ015-2.006 184 005 2435
PUZ016-2.005 117 003 1158

PUZ030-2 63 @02 Q0485
PUZ033-1 13 @03 Q078
SYNO090-1.008 65 @02 Q0492
SYNO093-1.002 26 @05 Q0133
SYNO094-1.005 82 @05 Q742

Table 1. Running time for SAT proof reconstruction.

In a theorem-proving context, we show a formula to be valicdebtablishing the
unsatisfiability of its negation, and we are therefore nyostterested in verdicts of
unsatisfiability. As explained in [30], SAT solvers such agmifAT [9] or zChaff [29]
can produce justifications of unsatisfiability verdictsiatslof binary resolution steps.
Each step operates on two clauses= a1 Vv...Va andc, = by V...V b that contain
a complementary literal (salg; = az) to produce the clausa V... Vac vy V... Vhy;
hence, a step can be represented as a triple of integer#ydenthe two participating
clauses and the propositional variable to resolve on. Thefgands with establishing
the empty clause, which is trivially unsatisfiable.

The proof trace produced by the SAT solver is passed to Ieglvdiere it is used to
guide a proof of the unsatisfiability of the formua.c; A ... A ¢y Obtained by the CNF
transformation. The unsatisfiability of this latter forrau$ easily reduced to the proof
of the sequenfc;y;...;cm] = False i.e. to deriving a contradiction from the hypothe-
sescy, ..., Cm. At this point, the representation of the clausgi Isabelle becomes
important. A naive representation of clauses as disjunstad literals in Isabelle/HOL
requires associativity and commutativity of disjunctiorbe applied prior to each res-
olution step so that the complementary literal appears, &aghe first disjunct. This
complication can be circumvented when clauses are encalsdquents, observing
that the clausey V ...V g can be represented as the seqyent...;a] — False
whereg denotes the complement of the liteggl With this representation, binary res-
olution essentially becomes an application of the cut iMlere precisely, given two
clausex; = [a;...;a] = Falseandc; = [by;...;b] = Falsein sequent repre-
sentation such that, say, = &, we deduce frone; the equivalent sequent

= [as.. ;e nas..a] =&
and then join the two sequents using a primitive operatiomiged by Isabelle to obtain
the sequent representation of the resolvent, i.e.
[as;...;&-1;8i41;.. ;86 b1 .. .;bj_1;bj11;. ..] = False

We have tested our method with proofs generated by MiniSATtgnzChaff, and
it is now available as theat andsat x tactics (the latter based on the definitional CNF
conversion described above) in the Isabelle 2005 standstribdtion. Table 1 shows

Propositional “model”

Theory
reasoning

TN
SAT solver
v

Conflict clause

Fig. 1. Cooperation between a SAT solver and a theory reasoner.

experimental results for several examples taken from tHePTRenchmark, based on the
solver zChaff. We can successfully check proofs for prollefra few hundred clauses
and that require about 10000 binary resolutions. As for ttex@tion time (given in
seconds, measured on a Pentium-1V with 1.6 GHz and 512 MB meaimory under
Linux), “SAT time” refers to the running time of the SAT solvalone whereas “Total
time” includes the time taken by Isabelle to reconstrucpifomf. One can see that proof
checking by Isabelle takes at least two orders of magnitadgdr than it takes zChaff
to determine unsatisfiability and to produce the proof. Thainly comes from the
underlying representation of formulas and theorems indéabwhich accommodates
arbitrary higher-order syntax, and is not optimized forgmsitional logic. On the other
hand, the default automated tactics offered by Isabelleatzsolve any but the smallest
problems of Tab. 1.

Weber [28] has independently suggested a way to perfornt pegonstruction in
Isabelle from proof traces obtained from SAT solvers. Higrapch is based on rewrit-
ing entire sets of clauses, whereas our sequent reprasengdbws us to operate on
comparatively small objects, and our implementation isualam order of magnitude
faster for most of the examples of Tab. 1.

4 Proof traces from SMT solvers

The integration of SAT solving with Isabelle is essential $opporting SMT solvers
that handle more expressive, though still quantifier-flaaguages. Roughly, SMT
solvers are SAT solvers working together with theory reasaras illustrated in Fig. 1.
The information exchanged at the interface are conflictsdalof the theory reasoner,
introduced in Sections 4.1 and 4.2. These clauses alsoigdhtaessence of a formal
proof: the conjunction of the clauses implies the unsabdfig of the goal formula by
purely propositional reasoning. The conflict clauses tledwes are proved by laws of
equational logic (reflexivity, symmetry, transitivity, drongruence), and in Sect. 4.3
we address the generation of these proofs from the datatstescof the underlying
decision procedure.

4.1 SAT solvers beyond Boolean logic

Assume that we wish to decide the satisfiability of the formul

x=yA () # 1)V (=p() A P). (1)

We first construct a Boolean abstraction by consistentacépg first-order atoms by
Boolean variables. For our example, we obtain the promositiformula

P1A (—P2V (—p3A pa)))

where the Boolean variablgs, p2, ps andp, correspond to the first-order atoms:y,
f(x) = f(y), p(x) and p(z). This Boolean abstraction has two (sets of) models that
respectively satisfy the literalspi, —pz} and {p1, —ps, pa}. The first abstract model
(i.e. the one that makgg true andp; false) does not correspond to a model for the
original formula (1), because it is not possible to have a@htltht would makec=y
true andf (x) = f(y) false. The second abstract model corresponds to a concrete o
since{x =Yy,—p(x), p(z)} is satisfiable. In general, a formula is satisfiable if and/onl
if there exists a model for the Boolean abstraction of thenfda that corresponds to a
satisfiable set of literals. Formula (1) is indeed satiséiabl

Notice that this process of first building a Boolean abstoadb extract an abstract
model, and then checking the corresponding sets of firsrditgérals, allows the the-
ory reasoner to operate on sets of literals only. The Boostarcture of formulas is
managed efficiently by the SAT solver.

Now if in Formula (1) we replac@(z) by p(y), we obtain the unsatisfiable formula

x=yA(f(x) # f(Y) V (=p(X) A P(Y)))-

Its Boolean abstraction is still (2) byy now representp(y). The models for the ab-
straction do not correspond to models for the original fdemsince the sets of literals
{x=y,f(x) # f(y)} and{x=y,—-p(x), p(y) } are both unsatisfiable. To reduce the satis-
fiability problem to a purely propositional one, it is suféot to add conjunctively to (2)
conflict clauseshat express the unsatisfiability of the abstract modelkerfitst-order
theory. In our example, we obtain the conflict clausgs Vv p2 and—p1 V p3 VvV —pa4,
corresponding to the valid formulas£ yV f(x) = f(y) andx# yV p(x) vV —=p(y).

To summarize, the cooperation between the SAT solver andetision procedure
for sets of literals is depicted in Fig. 1. The SAT solver progls models for the Boolean
abstraction (that are not necessarily models for the aldormula). If the sets of first-
order literals that correspond to those models are unsdtisfithey are rejected by the
theory reasoning module, and the Boolean abstractioefisedby a conflict clause.
For a satisfiable input, an abstract model correspondingtisfiable set of first-order
literals will eventually be found. For an unsatisfiable ihghe successive refinements
with conflict clauses will eventually produce an unsatidégiyopositional formula.

4.2 Improving efficiency

In practice, the Boolean abstraction of a given formula Walve many models. It is
therefore important to find conflict clauses that eliminaigjast one, but many abstract
models.

The first ingredient to remove several abstract models simebusly is to extract
partial modelsfrom the propositional abstraction rather than full modéispartial
model assigns a truth value to a subset of the propositicar@iMes used in the ab-
straction, such that every interpretation that extendsghitial model is a (full) model.

A partial model assigning variables for a formula usinm variables representg™2"
full models. Adding a conflict clause to reject a partial mad®ws us to reject a large
number of full models. In [11] we introduced a simple techugido efficiently compute
a minimal partial model from a full model for a set of clauses.

Second, the set of literals corresponding to an abstract (partial) model can still
be huge. On the contrary, the very reason for which this sehsatisfiable is often
quite small: it can be expressed as a small subsét thfat is unsatisfiable with re-
spect to the theory, the remaining literals being irrelév&enerating conflict clauses
that correspond to small unsatisfiable subsets will, intpmaccontribute to an efficient
cooperation of the SAT solver with the theory reasoner. Heoty reasoner should
therefore be able, given an unsatisfiable set of literaldetect those literals that were
really useful to conclude that the set is unsatisfiable. Tmgence closure algorithm
described in Sect. 4.3 has been designed for this purpose.

Because proof reconstruction essentially relies on thélicbolauses produced by
the theory reasoner, it also benefits from this effort to cot@gmall conflict clauses.

4.3 Congruence closure

A congruence closure algorithm decides the satisfiability set of ground first-order
logic literals in the theory of uninterpreted predicated &mctions. It does so by con-
structing equivalence classes of terms. Two terms belotigetgame class if and only
if the equalities from the input force the terms to be equeegualities play no role
in building equivalence classes. A set of literals may beatisable for two rea-
sons. First, if it contains a pair of complementary literaiglt from the same pred-
icate such that the corresponding arguments are in the sangguznce class as in
{a=b,p(a,b),—p(b,a)}. Second, if there is a disequality between two terms in a sin-
gle congruence class: for instance the{get b, f(a) # f(b)} is unsatisfiable.

Many implementations of congruence closure exist, notgidyNelson-Oppen al-
gorithm [20], and the algorithm due to Downey, Sethi andaa(DST for short) [8].
The simple Nelson-Oppen algorithm has a complexityo¢h?) wheren is the total
number of nodes in the tree or DAG representations of thefdaerals. The DST al-
gorithm is more complicated but is of complexi®(nlogn), as long as enter and query
operations on a hash table are assumed to be constant inh@REgey implements a
variant of DST: its complexity i€ (nlogn), and terms are represented as DAGs for
maximal sharing of subterms. This algorithm is describedigtail in [11].

Very abstractly, the congruence closure algorithms worla grartition of a set of
terms. This set must be closed under the subterm relatiialljneach term is alone in
its own class. The partition of terms is successively uptitdeake into account a set
of equalities. When an equality=t’ is given to the algorithm, the classes for terims
andt’ are merged. Any class merge may produce the merge of furdses because
of the congruence rule

ti=t] - th=t,
fty,...th) = f(t],...t))

For instance, assumeandy belong to two classes that are merged. Theti()
and f (y) belong to two different classes, those two classes shostde merged. Im-

(3)

plementations of congruence closure algorithms rely oniefft data structures to rep-
resent classes of terms, and on indexing techniques tolgdicH the classes that have
to be merged because of the congruence rule.

As an example, consider the set of terms

{a,b, f(a),g(a),g(b),g(g(a)), f(g(b)),a(f(a))}.

This set is closed under the subterm relation. Assume thatvisie to compute the
equivalence classes of this set of terms for the equalitiesf(a), f(a) = f(g(b)),
f(g(b)) = 9(f(a)) andg(b) = g(g(a)). Initially every term is in its own class. Process-
ing the equalitya = f(a) merges the classes farand f (a). Because of congruence,
the classes fog(a) andg(f(a)) will also be merged. Taking into account the equal-
ity f(a) = f(g(b)) merges the classes for the two terms, without inducing artpédu
merging operations. At this point, the partition of terms is

{{a f(a), f(g(b))},{b},{9(a),9(f(a))}.{g(b)}.{9(a(a))} }.

Now, processing the equalify(g(b)) = g(f(a)) merges the classes for those two terms,
that is, the classes fa andg(a). This entails, by congruence, thgta) andg(g(a))
are equal. Processing the last equalit) = g(g(a)) results in all terms except fdr
forming a single class.

Notice that only the congruence axiom is applied explicithe data structure (i.e.
a partition of terms) makes implicit the equivalence prtipsrof equality, i.e. the laws
of reflexivity, symmetry, and transitivity. Two classes arerged because two terms are
found to be equal, either because a literal in the input egudem, or by propagation
according to the congruence rule. If we want to store thatrmétion for later use, we
can store the pair of terms that are responsible for a meogether with its reason.
This information is enough to reconstruct, for any two teohs class, a small set of
equations that entail their equality.

Back to the previous example, we can draw a graph that surnesatie successive
merges. The nodes of the graph are just the terms handlee: lajgbrithm. Each time
two classes are merged because of an equation in the inpuhétancea = f(a)),
we draw a plain edge between the left- and right-hand sides@f the equation, and
label the edge by the equation. If two classes are mergedibeaaf an application
of the congruence rule (for instangéa) andg(f(a))), we draw a dashed edge. The
full merge-history graph for the congruence closure atoriapplied to our example
appears in Fig. 2.

It is easy to verify that merge-history graphs enjoy thedielhg properties:

— the equality of two terms is entailed by a set of equatioms (he two terms are in
the same class), if and only if there is a path between thesponding nodes in
the merge-history graph;

— there is a unique path between any two terms in the same class;

— the equality between two terms in the same class follows thgxiegity, symmetry,
and transitivity of equality from the conjunction of the edigbels along the path
between the two terms;

Fig. 2. Merge-history graph.

— two terms connected by a dashed edge have the same topmdstlsamd the
corresponding subterms are in the same classes. The gdustiiteen those two
terms follows, by congruence only, from equalities betweieect subterms.

As a consequence, it is easy to use a merge-history graprctong®seé the jus-
tification of the equality of two terms into elementary stdpat involve either only
congruence or only reflexivity, symmetry, and transitivafyequality.

Assume that the algorithm concludes the unsatisfiabilitya afet containing the
equalitiesa = f(a), f(a) = f(g(b)), f(g(b)) =g(f(a)) andg(b) = g(g(a)) and the
disequalitya # g(b), possibly among many other literals. It does so by buildimg t
classes of terms according to the equalities in the input tla@n discovering a conflict
with the disequalitya # g(b). At this point, the algorithm uses the merge-history graph
to produce a minimal unsatisfiable subset of the input lisexad outputs a justification
of the unsatisfiability of this set that will be used for preetonstruction.

The idea of using representations similar to merge-hisgoaphs to extract small
conflict sets has appeared before [19, 12, 22], but we arewarezof a previous use of
these graphs to justifg posteriorithe equality of terms by elementary proof steps.

5 Proof Reconstruction for Congruence Closure

In this section we describe our implementation of the iateefbetween Isabelle and
haRVey, with the focus on proof reconstruction for the colgice closure reasoning
part of haRVey, as it is described in Section 4. This interfadmplemented as a proof
method called v in Isabelle, i.e., as an ML program.

The idea behind the interface is not to use haRVey to give gotatm proof for a
given goal, rather, it is used to provide a list of interm#égllammas, namely the conflict
clauses described in Section 4, to guide proof search ireleatMore precisely, given
a goal formulaF, the interface performs the following steps:

1. Convert the negated goaiit) to SMT-LIB format and give it to haRVey.

2. If —=F is unsatisfiable, haRVey produces a list of formulas...,C, (the conflict
clauses) along with a proof trace for eaCh If —F is satisfiable, the interface
displays the model found by haRVey and aborts.

1 Decomposition terminates due to the inductive construction of mergeshigtaphs from the
two elementary merge operations.

3. Construct a proof for each conflict clausein Isabelle, based on the justification
output by haRVey.

4. Construct a proof for the sequdntF;Cy; - - - ;C,] = False

5. Apply modus ponens to the formulas obtained in (3) andq4)et—F — False
and hence prove.

Step (5) is implemented straightforwardly in Isabelle gsiesolution. Step (4) ap-
plies the SAT interface described in Section 3. We now dbschie proof reconstruction
for each conflict claus€;.

The haRVey prover produces a compact proof trace for eactictariause, sum-
marizing the kind of reasoning needed to prove the clausesd proof traces consist
of lists of sequents labeled with hints how they can be prpaesdollows:

TRANS: <sequent >
CONGR: <sequent >
PRED : <sequent>
INEQ : <sequent>

and end with the line
CONFL: <fornul a>

The formula following the keywor@ONFL is the conflict clause. We shall look at the
overall structure of the proof trace, before explaining &tails the meaning of the
other keywords. Implicit in the proof format is the (backdjresolution proof for

deriving the conflict clause. More precisely, suppose thalist of sequents preceding

the conflict clause are
l1: [C11;--;Cuy] = B1

In: [Cnas- - ;Crk,] == Bn
where each labd] is eitherTRANS, CONGR, PRED or | NEQ. The first sequent is always a
statement of a contradiction, i.8; is False The assumptior§;; in the sequeritsatisfy
the following requirement: each of them either appears gatedd form in the conflict
clause, or it is the conclusion of a later sequent, i.e.Biidor somek > i. The conflict
clause is therefore proved by contradiction, as the resutismlving its negation with
all the intermediate sequents above uRélseis derived. The corresponding inference
in Isabelle looks something like:

[-C;Ch1;--;Ch] = Bn --- [-C;Cay;---;Cu]| = False
C

whereC is the conflict clause. This is a valid inference because €gds either justified
by —C, oritis By for somek > i. In the implementation, this inference scheme is realized
by a series of resolution steps between seqidot several (possibly all) > 1, with
the first sequent.

We shall now turn to the proofs of the intermediate sequéltis. keywords pre-
ceding the sequents indicate the kind of reasoning needptbt@ the sequent. The

INEQ [a=gh; a#gb]— False

TRANS: [a=fa;fa=f(gb); f(gb)=g(fa);
g(fay=g(ga);gb=g(ga)=a=gb

CONGR fa=ga=g(fa)=g(ga)

TRANS: [g(fa)=ga f(gb)=g(fa);fa=f(gb)]—= fa=ga

CONGR a=fa=g(fa)=ga

CONFL: a=gbva#favfa#f(gbVvf(gb#g(fajvgb#g(ga)

Fig. 3. Proof trace for a conflict clause.

keywordPRED indicates that the sequent can be proved using one sulustifutd fol-
lowed by proof-by-contradiction. That is, the sequent is ttase is of the form:

[s=t;Ps—(Pt)] = False
The keyword NEQindicates that the sequent contains a contradictory paiqoélities:
[s=t;s#t] = False

Proof reconstruction for both cases are easily done in llgabsing substitution and
proof by contradiction.

The keywordTRANS means that the sequent is provable by using the reflexivity,
symmetry, and transitivity of equality alone. We have inmpémted a special tactic in
Isabelle to do this type of equality reasoning. We could hasexd the built-in simplifier
tactics (based on rewriting) but these may not terminatage ©f equalities that result
in looping rewrite rules.

The labelCONGR indicates that the sequent is provable by using the congeuen
rule (3). As in the case witfiRANS, we could use Isabelle’s built-in rewriting engine,
but faster proofs are obtained using a custom-built taBecause terms are represented
in curried notation in Isabelle/HOL, we only need to rely osiagle axiom scheme,
independently of the arity of the function symbol:

[f=0 x=y]= fx=gyY.

Proof construction proceeds recursively from the last meut of a function applica-
tion: to provef x1--- Xy =g y1- - - Yn, first showx, = y, and then recursively construct a
proof forf X3+ Xn—1 =09 Y1+ Yn_1.

Example. Given the formula (cf. Fig. 2)
a=fanfa=f(gb)Af(gb)=g(fa)Agb=g(ga)=a=gh,

haRVey produces one conflict clause, which is just the foanitisklf, but in CNF. It
also produces a proof trace for the conflict clause, whicteappin Fig. 3. For better
readability, we have presented in boldface letters th@ddisations that come from the
conflict clause (the last line of the proof trace). The rermgjr{dis)equations appear
as conclusions of sequents below in the proof trace. It égtitforward to construct a
refutation proof from the above sequents.

Formula Size # confl. Times (s)
nodes atoms clauses haRVey Isabelle

SEQO004-size5 18795 6967 143 0.41 115.68
SEQO11-size2 7355 3471 73 0.02 9.69

SEQO015-size2 331 47 20 0.02 3.10
SEQO020-size2 7963 3775 74 0.02 7.16
SEQO032-size2 255 43 20 0.01 2.66

SEQO042-size2 947 293 49 0.09 11.17
SEQO050-size2 779 213 105 0.11 3242

Table 2.Running time for proof reconstruction for congruence closure.

Benchmark.We have tested our interface to haRVey with proof reconsbmavith a
number of example formulas. The running times needed t@sbkse problems using
ther v tactic are given in Tab. 2. The benchmarks were run on a maetith a 1.5 GHz
Intel Pentium-IV processor and 1024 MB memory under Linux. &ach formula, we
indicate the number of nodes in the dag representation diotineula, the number of
distinct atoms that occur in the formula, and the number oflai clauses produced by
haRVey. We also indicate the times taken by haRVey to rehaefdrmula and output
the proof trace, and by Isabelle to parse the proof trace hadkahe proof.

For all these examples, the running time it took for haRVeyind a refutation
is negligible (less than a second). For formulas of smaé#,silie number of conflict
clauses produced is up to 20 clauses. In those cases, pawfsteuction succeeds
within one to five seconds. For larger test cases, we makef ssene of the benchmark
problems used in the SMT 2005 competition. Note that “smalbfems” in the compe-
tition are actually quite large formulas, in comparisonhe kind of lemmas shown in
Sect. 2. We see that the times taken for proof reconstrutiitsabelle are again more
than two orders of magnitude larger than the running timelsad®\Vey, and that they
depend mostly on the number of conflict clauses producedefrgrar also that each
conflict clause is justified by a number of low-level reasgrsteps).

None of these examples succumbs to Isabelle’s existingraito proof methods.
Isabelle 2005 contains a preliminary implementation, auithproof reconstruction, of
the combination of resolution-based theorem provers aitklie described by Meng et
al. [16], and we have not succeeded in using this implemientéd prove the examples
of Tab. 2: for the larger examples, the first-order provendiicomplete within 5 min-
utes. For the smaller examples, Isabelle was unable to paesessult of the prover,
which also took orders of magnitude longer than haRVey. &kjgeriment seems to in-
dicate to us that the combination with an SMT solver can b&lig® certain problems.

6 Conclusion

We have proposed a technique for combining interactive fpagsistants and proof-
producing SMT solvers. Because proofs are certified by tistdd kernel of the interac-
tive prover, theorems established in this way come with &émessoundness guarantees

as those theorems established interactively. The conibmatith an efficient exter-
nal reasoner allows us to significantly raise the degree tanaation while retaining
the expressiveness of the input language for specificaflan current implementation
combines Isabelle/HOL with the fragment of haRVey that hesiduantifier-free first-
order logic with uninterpreted function and predicate sgtebHowever, the overall
approach extends to other interactive provers and to odable fragments of first-
order logic. In particular, we plan to address linear arigtimalong the same lines by
making haRVey output compact proof traces that can be reglaythin Isabelle/HOL.

On the implementation level, we observe that the time I$akiakes to replay a
proof trace significantly exceeds the time taken by haRVeintbthe proof, although
basically no proof search is required. We believe that aifsdgmt part of this run-time
penalty comes from the overhead incurred by the supportifiven-order abstract syn-
tax, but more investigation will be necessary into this eratt also remains to be seen
whether efficiency of proof reconstruction is a big issuetfarse verification condi-
tions that we expect to see in practical applications (wherere mostly interested in
stronger theories). Also, proof reconstruction can be diffibne, whereas an oracle-
style combination should be sufficient for interactive groo

On a conceptual level, we propose to study and identify umifformats for proof
traces for SMT solvers, akin to the SMT-LIB input format, twable comparisons be-
tween different solvers and to standardize the interfaseitds interactive proof assis-
tants (and, in fact, independent proof checkers).

AcknowledgementsiNe are grateful to Kamal Kant Gupta, who contributed to the sy
tactic translation from Isabelle to the SMT format, and tarkjWeber for his help with
integrating and maintaining our code for SAT proofs wittie tsabelle distribution.

References

1. M. Baaz, U. Egly, and A. Leitsch. Normal form transformations.JIiA. Robinson and
A. Voronkov, editorsHandbook of Automated Reasoninglume |, chapter 5, pages 273—
333. Elsevier Science B.V., 2001.

2. C. Barrett and S. Berezin. CVC Lite: A new implementation of the catjpey validity
checker. InNCAV, volume 3114 o£ NCS pages 515-518. Springer, Apr. 2004.

3. D. Barsaotti, L. Prensa-Nieto, and A. Tiu. Verification of clock symetization algorithms:
Experiments on a combination of deductive tools.Phoc. of the Fifth Workshop on Auto-
mated Verification of Critical Systems (AVOCBNTCS, 2005. to appear.

4. M. Bezem, D. Hendriks, and H. de Nivelle. Automated proof corsisn in type theory
using resolutionJ. Autom. Reasonin@9(3-4):253-275, 2002.

5. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossur8¢cBulz, and R. Se-
bastiani. The MathSAT 3 System. GADE volume 3632 o NCS pages 315-321, Tallinn,
Estonia, 2005. Springer.

6. M. Davis, G. Logemann, and D. Loveland. A machine program feorthm-provingComm.
of the ACM 5(7):394-397, 1962.

7. D. Déharbe and S. Ranise. Light-weight theorem proving for debuggidgenifying units
of code. InSoftware Engineering and Formal Methods (SEFMages 220-228. |IEEE
Comp. Soc., Sept. 2003.

10.

11.
12.
13.

14.

15.

16.

17.
. G. Necula and P. Lee. Efficient representation and validation ofdbgioofs. InLogics in

19.
20.
21.
22.
23.

24.
25.

26.

27.

28.

29.

30.

. P.J. Downey, R. Sethi, and R. E. Tarjan. Variations on the commmexpressions problem.

Journal of the ACM27(4):758-771, 1980.

. N. Eén and N. 8rensson. An extensible SAT-solver. In E. Giunchiglia and A. Tacchella

editors,SAT, volume 2919 of NCS pages 502-518. Springer, 2003.

J.-C. Fillatre, S. Owre, H. Ruel3, and N. Shankar. ICS: integrated canomdescdver. In
G. Berry, H. Comon, and A. Finkel, editor€AV, volume 2102 olLNCS pages 246-249.
Springer, 2001.

P. FontaineTechniques for verification of concurrent systems with invariaRisD thesis,
Institut Montefiore, Universé de Lige, Belgium, Sept. 2004.

P. Fontaine and E. P. Gribomont. Using BDDs with combinations of ifeom M. Baaz
and A. Voronkov, editord,PAR volume 2514 of NCS pages 190-201. Springer, 2002.
J. Hurd. Integrating Gandalf and HOL. Trheorem Proving in Higher-Order Logics
(TPHOLs99) volume 1690 o£ NCS pages 311-322, Nice, France, 1999. Springer.

A. Mahboubi. Programming and certifying the CAD algorithm inside theg system. In
T. Coquand, H. Lombardi, and M.-F. Roy, editd¥athematics, Algorithms, Progfgolume
05021 ofDagstuhl Seminar ProceedingSchloss Dagstuhl, Germany, 2005.

A. Meier. TRAMP: Transformation of machine-found proofs intD4droofs at the assertion
level. In D. McAllester, editorCADE, volume 1831 oLNCS pages 460—464, Pittsburgh,
PA, 2000. Springer.

J. Meng, C. Quigley, and L. C. Paulson. Automation for interactieefp First prototype.
Information and Computatigrio appear.

D. G. Mitchell. A SAT solver primerEATCS Bulletin85:112-133, 2005.

Computer Science (LICS'98)ages 93—-104. IEEE Press, 1998.

G. C. Necula.Compiling with Proofs PhD thesis, Carnegie Mellon University, Oct. 1998.
Available as Technical Report CMU-CS-98-154.

G. Nelson and D. C. Oppen. Fast decision procedures basemgruence closurelournal
of the ACM 27(2):356—364, 1980.

Q. H. Nguyen, C. Kirchner, and H. Kirchner. External rewritioggkeptical proof assistants.
J. Autom. Reason29(3-4):309-336, 2002.

R. Nieuwenhuis and A. Oliveras. Union-find and congruenceicdaagorithms that produce
proofs. In C. Tinelli and S. Ranise, editoRDPAR 2004.

T. Nipkow, L. Paulson, and M. Wenzdkabelle/HOL. A Proof Assistant for Higher-Order
Logic. Number 2283 in LNCS. Springer, 2002.

S. Ranise and C. Tinelli. The SMT-LIB standard : Version 1.1, 12005.

J. H. Siekmann and many others. Proof development with OMEB&ADE, pages 144—
149, 2002.

A. Tiu. Formalization of a generalized protocol for clock synciration in Isabelle/HOL.
Archive of Formal Proofsht t p: / / af p. sour cef or ge. net, 2005.

G. S. Tseitin. On the complexity of derivation in propositional calculoA. O. Slisenko,
editor,Studies in Constructive Mathematics and Mathematical Logitume Il, pages 115—
125. 1970.

T. Weber. Using a SAT solver as a fast decision procedure figgogitional logic in an
LCF-style theorem prover. In J. Hurd, E. Smith, and A. Darbari, esljiitheorem Proving
in Higher Order Logics (TPHOLs 2005), Emerging Trendages 180-189. Oxford Univ.
Comp. Lab., Prog. Res. Group, 2005. Report PRG-RR-05-02.

L. Zhang and S. Malik. The quest for efficient Boolean satisfiabitityess. In A. Voronkov,
editor, CADE, volume 2392 ot NCS pages 295-313. Springer, 2002.

L. Zhang and S. Malik. Validating SAT solvers using an independesalution-based
checker. InDesign, Automation and Test in Europe (DATE 20Q#)ges 10880-85, Mu-
nich, Germany, 2003. IEEE Comp. Soc.

