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Abstract. The satisfiability problem in real closed fields is decidable.
In the context of satisfiability modulo theories, the problem restricted to
conjunctive sets of literals, that is, sets of polynomial constraints, is of
particular importance. One of the central problems is the computation
of good explanations of the unsatisfiability of such sets, i.e. obtaining
a small subset of the input constraints whose conjunction is already
unsatisfiable. We adapt two commonly used real quantifier elimination
methods, cylindrical algebraic decomposition and virtual substitution,
to provide such conflict sets and demonstrate the performance of our
method in practice.
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1 Introduction

Among the reasons for the current success of Satisfiability Modulo Theory (SMT,
we refer to [1] for more information) solvers is the ability to handle large formulas
in an expressive language. Since arithmetic is pervasive in applications of SMT,
this language should include some kind of arithmetic theory. Linear arithmetic
(on reals and integers) was one of the first theories considered for SMT [22], and
integrated in practice into SMT solvers [2,14]. Non-linear arithmetic is also men-
tioned in the fundamental combination of theories paper [22]. Although many
applications do require non-linear arithmetic reasoning — our motivating ap-
plication was the verification of a clock synchronization algorithm [3] — it is
considered in practice only since quite recently (e.g. [19]), and few solvers in-
tegrate non-linear arithmetic reasoning capabilities. Up to now, no technique is
accepted as the right way to integrate non-linear reasoning capabilities into SMT
solvers.

The theory of real closed fields (reals with order, addition, and multiplication)
has however been extensively studied in the area of symbolic computation, and
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mature tools exist to handle sets of constraints in this language, e.g. [16,4]. The
results presented here aim at adapting those tools so that they can be integrated
into an SMT framework. Indeed, whereas developing dedicated techniques for
non-linear arithmetic within SMT is crucial, a lesson from linear arithmetic is
that mature (external) tools should also be adapted for cooperation with SMT
solvers. For instance, a reasonably efficient linear programming tool suitably
incorporated into the SMT solver CVC4 provided an impressive improvement of
efficiency compared to the dedicated SMT techniques alone [20].

To integrate a theory reasoner in an SMT framework, some features are valu-
able (see Section 1.4.1 in [1]). Since we envision fast and incomplete techniques
tightly integrated within SMT, backed up by a complete and robust but also
heavy engine, it is not of foremost importance for this engine to be incremental
and backtrackable: it will only be called as a last resort on a full assignment
when the heuristic solver failed to show unsatisfiability. However, a critical fea-
ture is that the complete engine provides models, both for feedback to the user
but also for model-based combination with other theories [12,13]. Adapting es-
tablished real closed field decision procedures to produce models has been the
subject of a previous work [21]. The other critical feature is to be able, from
an unsatisfiable set of constraints, to extract a small conflict set. Without this
ability, the cooperation of the SMT solver and the engine would most probably
fail because the SMT solver would enumerate an exponential number of slightly
different assignments, successively submitted to the engine. The engine would
reject them one by one, but they would essentially be unsatisfiable for the same
reason. With small conflict set production, all these assignments are blocked by
the strong conflict clause added within the SMT solver in just one call to the
external engine.

We here focus on the computation of small conflict sets from unsatisfiable
sets of non-linear constraints. Two commonly used real quantifier elimination
methods, namely cylindrical algebraic decomposition and virtual substitution,
are considered. They basically share a feature that provides the key to efficiently
compute conflict sets: a finite set of test points is generated in the process.
These test points falsify some of the input constraints. If the tentative conflict
set contains enough constraints so that at least one of them is false for each test
point, it is indeed a conflict set.

Section 2 briefly describes the two decision procedures for sets of polyno-
mial constraints on the reals, Section 3 presents the small conflict set extraction
method, and experimental results are discussed in Section 4.

2 Real Quantifier Elimination

Given a quantified formula φ, quantifier elimination is the process of finding
an equivalent, quantifier-free formula φ′. Whether or not quantifier elimination
is possible in theory and practice in general depends on the considered formal
system and the underlying theory.
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For first-order logic formulas over the reals it is well known that quantifier
elimination is possible. This was first proven by Tarski in 1951 [23], but the
first successful algorithmic approach to the problem was developed by Collins
in 1974 [8]. To formally define the problem, consider a quantifier-free first-
order formula ϕ(x1, . . . , xn, u1, . . . , um) over the reals in the variables x1, . . . , xn,
u1, . . . , um. Given the formula

φ ≡ Q1x1, . . . Qnxn : ϕ(x1, . . . , xn, u1, . . . , um),

with Qi ∈ {∀,∃} for 1 ≤ i ≤ n, the quantifier-elimination problem consists in
finding a quantifier-free first-order formula φ′(u1, . . . , um) such that φ′ is logically
equivalent to φ. It was proven independently by Weispfenning [24] and Davenport
and Heintz [11] that solving the quantifier elimination problem over real closed
fields can require double exponential space.

Subsequently we describe two widely used real quantifier elimination meth-
ods. Both approaches are based on the same general idea which we discuss first
before going into details about the specifics for each method. Our goal is to give
a comprehensible and intuitive introduction to these procedures and not to de-
scribe them in thorough technical detail. References to more in depth treatments
of the subjects are given for the interested reader.

While these methods work in a general context, our focus lies on input for-
mulas found in the SMT setting with only existential quantifiers and no free
variables:

φ ≡ ∃x1, . . .∃xn : ϕ(x1, . . . , xn), (1)

It is clear that then either true or false is a quantifier-free equivalent of φ.
Over the reals, quantifier-free formulas are Boolean combinations of polyno-
mial expressions of the form p(x1, . . . , xn) ./ 0 where p is a polynomial in
R[x1, . . . , xn] and ./ is a relation symbol in {<,≤,=, 6=, >,≥}. Given a point
(a1, . . . , an) ∈ Rn, we can see if ϕ holds for this point by substituting ai for xi
for all 1 ≤ i ≤ n. If we were able to perform the substitution for all points in
R

n in finite time, we could easily see if φ holds or not.
The approach of the two quantifier elimination methods cylindrical algebraic

decomposition (CAD) and virtual substitution (VS) is to reduce the set of in-
finitely many points in Rn to a finite set of test points, i.e. to find a finite
subset T of Rn such that φ holds over Rn if and only if it holds over T .

2.1 Cylindrical Algebraic Decomposition

Cylindrical algebraic decomposition [8] is the most widely used real quantifier
elimination method to date. It is based on a simple observation: given a finite,
non-empty set P of polynomials in n variables, one can define an equivalence
relation on Rn that decomposes the space into finitely many connected cells such
that all the given polynomials are sign invariant in each cell.

Definition 1. Let P be a non-empty set of polynomials in R[x1, . . . , xn]. For
a, b ∈ Rn we say that a is equivalent to b if there exists a path γ : [0, 1] → R

n
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from a to b such that for all s, t ∈ [0, 1] and all p ∈ P we have that

sgn(p(γ(s))) = sgn(p(γ(t))).

The term cell refers to the preimage of an equivalence class under the canonical
homomorphism which maps a point to its equivalence class. We call the set of
all cells an (algebraic) decomposition of Rn.

Example 1. To illustrate the basic idea, we consider the bivariate case, and the
following set of polynomials.

P = {x2 + y2 − 1︸ ︷︷ ︸
p1

, x2 − y + 1/2︸ ︷︷ ︸
p2

}

The first polynomial defines three connected, sign invariant cells in R2 given by

{(a, b) ∈ R2 | p1 < 0}, {(a, b) ∈ R2 | p1 = 0}, {(a, b) ∈ R2 | p1 > 0},

and similarly, p2 also decomposes R2 into three cells when not taking p1 into
account. The combination of the cells induced by p1 and the cells induced by p2
gives rise to a new decomposition where the original cells either persist, collapse
into common cells or form new cells via intersection. The decomposition of R2

induced by P consists of 5 different cells in total, as illustrated in Figure 1.

1

2

3

4

5

Fig. 1. The sign invariant cells of Example 1. Note that cell no. 5 is given by the union
of the varieties of p1 and p2.

To study a quantified formula φ, we want to collect in a set P all the poly-
nomial expressions in φ and then compute a sample point for each cell in the
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decomposition induced by P . While it seems easy to identify the different sign
invariant cells simply by inspection of the plot of the varieties in Figure 1, it is
a non-trivial task for a computer and for more involved polynomial systems (in
more than two variables).

To facilitate the algorithmic identification of different cells, new polynomials
are added to P so that the decomposition becomes cylindrical in the following
sense:

Definition 2. A decomposition of Rn is called cylindrical if n = 1 or if there
exists a projection π : Rn → Rn−1 that acts on the elements of Rn by removing
one of their coordinates such that the following two conditions hold:

1. For two cells C1, C2 ⊂ Rn, either π(C1) = π(C2) or π(C1) ∩ π(C2) = ∅.
2. The decomposition of Rn−1 induced by the images under π of the cells in the

decomposition of Rn is cylindrical.

We call a set of polynomials P ⊂ R[x1, . . . , xn] cylindrical if the decomposition
of Rn induced by P is cylindrical.

Again, this can easily be illustrated by an example.

Example 2. (Example 1 continued.) The decomposition induced by P as in Ex-
ample 1 is not cylindrical. We can, however, refine it by adding four linear

polynomials to the set. Let c =
√

0.5(
√

7− 2) (c is such that p1(±c) = p2(±c))
and set

P ′ = P ∪ {x+ 1, x+ c, x− c, x− 1}.

P ′ is cylindrical and the decomposition is illustrated in Figure 2. It consists of
47 different cells.

Starting from a set of sample points from each cell in the induced decompo-
sition of R (represented by the dots on the horizontal axis in the figure), we can
easily find all cells in R2 “above” a fixed cell in R by keeping the x1 value fixed
and looking for roots of any polynomial in P with that x1 value. In the picture,
this corresponds to moving along the dotted line and looking for sign changes.

The full CAD algorithm works in three major steps. We start with a formula φ
of the form (1) and collect the contained polynomials in a set Pn ⊂ R[x1, . . . , xn].
The first step, the projection phase, recursively adds new elements to Pn such
that its induced decomposition becomes cylindrical. We denote this superset of
Pn by cadp(Pn). If n = 1, then P1 is always cylindrical, so cadp(P1) := P1. For
n > 1, we compute a set Pn−1 which contains all polynomials in Qn := Pn ∩
R[x1, . . . , xn−1] as well as the image Pn\Qn under a so called projection operator
and return cadp(Pn) := Pn∪cadp(Pn−1). The projection operator is a map such
that cadp(Pn) is cylindrical if cadp(Pn−1) is. Intuitively it adds polynomials
in R[x1, . . . , xn−1] to Pn−1 that correspond to asymptotes orthogonal to the
projection direction, intersections and self intersections of the algebraic curves
defined by the polynomials in Pn \Qn. In Example 2, x± 1 corresponds to the
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Fig. 2. A cylindrical algebraic decomposition of R2 induced by the polynomials in
Example 2.

vertical asymptotes of the algebraic curve given by p1 and x± c corresponds to
the intersection of the two curves given by p1 and p2.

In the second step, the extension phase, sample points of the cells in the
decomposition of R induced by P1 are obtained by computing the roots of the
polynomials in P1 and points from the intervals between these roots. The cells
of R are extended to cells of R2 by keeping the x1 values of the sample points
fixed and computing the roots of the polynomials in P2 regarded as univariate
polynomials in x2. This step is iterated to obtain the cells in R3, R4 etc. In
the last step, the sample points of the cells in Rn are plugged into the the
polynomials in P and φ is evaluated.

It was shown by Brown and Davenport [5] that the complexity of CAD is
double exponential in the number of variables. Many improvements of the base
algorithm like the ones found in [9,6,7], however, allow for solving moderately
sized systems via CAD.

2.2 Virtual Substitution

The virtual substitution technique takes a more symbolic view on the roots of a
polynomial. It was introduced by Weispfenning in 1988, see [25], and several im-
provements and generalizations have been developed since. It is not as prevalent
as CAD due to its current degree limitations in practice, but usually performs
much better in terms of computing time.

To get a good understanding of VS, consider first univariate polynomials and
a special form of the quantifier-free formula φ that contains no strict inequalities
but only Boolean combinations of expressions of the form p(x) ./ 0 with ./
∈ {≤,=,≥}. Similarly to CAD, VS decomposes the space into connected cells.
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However, while CAD does not really exploit the literals but only the polynomials
appearing in them, the cells in VS are constructed such that the truth value of φ
(rather than the signs of the images of the polynomials) remains invariant in
each cell.

Let p1, p2 ∈ R[x] and φ = p1 ≥ 0 ∧ p2 ≥ 0. The real roots r1, . . . , rk of p1
given in ascending order decompose R into finitely many intervals

(−∞, r1], (r1, r2], . . . , (rk−1, rk], (rk,+∞).

The real roots of p2 then refine this decomposition such that in each interval,
the truth values of the inequalities and equations in φ do not change within an
interval.

Example 3. Let p1 = 10−1(x + 5)(x + 2)(x − 6) and p2 = x2 − 9 and Φ = ∃x :
p1 ≥ 0 ∧ p2 ≤ 0. Then the truth invariant decomposition induced by the real
roots of p1 and p2 consists of the intervals

(−∞,−5], (−5,−3], (−3,−2], (−2, 3], (3, 6], (6,+∞).

By plugging in the upper interval bounds (and evaluating the polynomials at +∞),
we see that φ ≡ true via the test point x = −3.

Fig. 3. Plot of the polynomials in Example 3.

When dealing with multivariate polynomials in R[x1, . . . , xn], the idea is to
choose one variable xi and view the polynomials as univariate in xi. Then we
are in the univariate setting where we can (symbolically) compute the interval
decomposition. Here, the interval bounds are not real numbers but expressions
in the variables x1, . . . , xi−1, xi+1, . . . , xn.

Example 4. Let p1 = x1x2−1 and p2 = x1−3 and φ = ∃x1∃x2 : p1 ≥ 0∧p2 ≤ 0.
As univariate polynomials in R(x1)[x2], p2 either vanishes identically or has no
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roots. The polynomial p1 has either no roots or a root at x−11 . We substitute
this root expression for x2 and get

p1(x−11 /x2) = x1x
−1
1 − 1 = 0, p2(x−11 /x2) = x1 − 3.

This substitution is only possible if we require that x1 6= 0. Therefore, after the
substitution, φ becomes

∃x1 : 0 ≥ 0 ∧ x1 − 3 ≤ 0 ∧ x1 6= 0,

and one quantifier has been removed. Continuing the process will give Φ ≡ true

via the test point (3, 13 ).

In the example, the root expression has to be substituted into all polynomial
constraints, but it is also necessary to ensure that the substitution term is valid.
Here, this is achieved by adding a constraint to the formula to prevent division by
zero. Such additional constraints are called guards of the substitution term. Also,
substitution in the above example generates a (quantified) Boolean combination
of polynomial constraints; this is not always the case. Indeed substitution can
lead for instance to rational functions. In virtual substitution, this problem is
circumvented by a more sophisticated substitution process.

Assume that after the substitution the resulting formula contains a relation
of the form p/q ./ 0 with p and q coprime polynomials in R[x1, . . . , xk]. In order
to remove the denominator, we can multiply the relation by q. We do not know,
however, if in the subsequent substitution steps we derive values for x1, . . . , xk
such that q would evaluate to a strictly positive or negative number and thus
whether the relation sign ./ changes or not. Note that guards prevent q to be
zero. A way out is to multiply by q2 (which is certainly positive) rather than q.

Example 5. In the formula

∃x1∃x2 : x1x2 − 1 ≥ 0 ∧ x2 + x1 − 3 ≤ 0.

we substitute x2 by x−11 via virtual substitution and obtain the equivalent for-
mula

∃x1 : x1 + x21(x1 − 3) ≤ 0 ∧ x1 6= 0.

In the full VS algorithm, several other substitution rules are necessary to
avoid non-polynomial expressions. These are detailed in [25] for virtual sub-
stitution for polynomials of degree at most two. Also included are rules that
allow strict inequalities by substitution of ε-terms. In theory, the method can
be extended to an arbitrary but fixed degree bound, see [27], but there are still
obstacles to overcome for higher degree implementations.

Virtual substitution performs significantly better in theory and practice com-
pared to CAD. As shown in [26], VS is double exponential in the number of
quantifier alternations but only single exponential in the number of quantified
variables for a fixed quantifier type. Since the input in the SMT setting does
not contain quantifier alternations, virtual substitution is significantly better
compared to cylindrical algebraic decomposition for these formulas in terms of
theoretical complexity.
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3 Finding Conflict Sets

In order to benefit from the interplay between SAT-solvers and special theory
solvers, it is required from the theory solver to provide small conflict sets. The
input to the theory solver is a conjunction of literals and if this conjunction is not
satisfiable, an answer in the form of a (hopefully small) subset of the input literals
that is unsatisfiable itself should be returned. We call this answer a conflict set.
Such a conflict set should ideally be as small as possible. A minimum conflict
set is a conflict set with minimum size, whereas a minimal conflict set does not
contain unnecessary literals, that is, all its subsets are satisfiable. A minimum
conflict set is minimal, but a minimal conflict set might not have the smallest
size. The procedure here is not guaranteed to produce minimum or even minimal
conflict sets, but we will show in Section 4 that it is efficient at finding small
conflict sets. We now describe how virtual substitution and cylindrical algebraic
decomposition can be adapted to provide such answers.

3.1 Conflict Sets and Linear Programming

The problem can be stated as follows: given an unsatisfiable quantified formula φ
of the form

φ = ∃x1 . . . ∃xn :
∧

1≤i≤m

pi ./i 0, (2)

with pi ∈ R[x1, . . . , xn] and ./i ∈ {<,≤,=, 6=, >,≥}, find a subset I ⊂ {1, . . . ,m}
as small as possible such that the formula

φ′ = ∃x1 . . . ∃xn :
∧
i∈I

pi ./i 0,

is unsatisfiable.
As was stated in the beginning of Section 2, virtual substitution and cylin-

drical algebraic decomposition share the same basic idea of finding a finite set T
of test points that suffice to determine the unsatisfiability of φ. The key to the
problem of finding a conflict set is a reformulation of the problem in terms of
these test points. For that, denote by ri the ith polynomial constraint in φ for
i ∈ {0, . . . ,m} and for each i let ei : T → {0, 1} be such that ei(a) = 0 if ri holds
at a and 1 otherwise. Applying CAD or VS to φ will result in T = {t1, . . . , tk}
such that for each t ∈ T there exists an i with ei(t) = 1. Now let vi be the
vector (ei(t1), ei(t2), . . . , ei(tk)). Then the problem of finding the smallest con-
flict set can be restated as a linear optimization problem.4 Considering a vector
w ∈ {0, 1}m, it is indeed equivalent to minimizing w1 + · · ·+wm under the linear
constraints

Mw ≥ 1,

4 Alternatively, since ei(tk) is either 0 or 1 for each i and k, the problem can be recast
into propositional logic, and reduces then to finding the smallest implicant of a set
of clauses, that is, the smallest set of literals implying all clauses.
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where M is the matrix that contains the vi as columns and 1 = (1, . . . , 1). We
will refer to matrices M constructed in this way as evaluation matrices. If the
vector w is as desired, then an entry 1 at the ith position means that ri is part
of the computed conflict set.

Note that our reformulation yields a 0-1-linear integer programming problem
of the form

min
bw
{w ∈ {0, 1}m |Mw ≥ 1}, with b = 1 = (1, . . . , 1),M ∈ {0, 1}k×m, (3)

and we can use highly optimized linear programming techniques to find an op-
timal or approximate solution.

This is only one of the benefits that the reformulation provides us. Another
one is that the information necessary to construct the matrix M , i.e. the test
points and images under the evaluation functions ei, is already computed during
the quantifier elimination. We will further investigate this fact in the next section.

We can easily deduce that solving the linear optimization problem is not
harder than solving the original minimum conflict set problem:

Theorem 1. Let A be an algorithm that solves the problem of finding a mini-
mum conflict set. Then there exists a polynomial time algorithm B that trans-
forms a matrix with entries in {0, 1} into a system of polynomials such that A◦B
is an algorithm for solving linear optimization problems of the form (3)

Proof. For a given matrix M ∈ {0, 1}k×m, we show how to construct an equiv-
alent conflict set problem in polynomial time, i.e. a formula φ whose minimum
conflict set immediately yields a solution to the linear programming problem (3).
Let φ be the quantified formula given by

φ = ∃x :
∧

i∈{1,...,m}

pi = 0,

with

pi =

k∏
j=1

(x− j)1−M(j,i).

One can easily check that the indices of the constraints in any minimum conflict
set give rise to a solution of the linear programming problem. Multiplication of
polynomials can be done in polynomial time, which proves the claim. ut

3.2 Conflict Sets and Quantifier Elimination Optimization

One of the main reasons why CAD and VS perform reasonably fast in practice
is that since their initial development, many improvements have been made to
speed up the computation. For CAD, many of these improvements take the form
of specialized projection operators that reduce the number of cells that are con-
structed in the projection phase for certain kinds of input. Another major con-
tribution was the development of partial cylindrical algebraic decomposition by
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Collins and Hong in [9]. In the case of virtual substitution, many improvements
focus on the simplification of the quantifier free formula after every substitution
step. Most notably, this includes the work of Sturm and Dolzmann in [15,17].

While some of the improvements do not have an effect on the computation of
conflict sets as presented in Section 3.1, others will reduce the amount of avail-
able information for the evaluation matrix. There are basically two scenarios for
information loss, which we describe with the help of two showcase improvements
for CAD and VS.

In the partial CAD method, the following rule is used to avoid unnecessary
cell construction. Note that we do not state it in full generality but adapt the
rule to our framework.

Let φ be of the form (2) with polynomials in R[x1, . . . , xn]. If p ∈
R[x1, . . . , xk] appears in φ with k < n and there is a cell C in the CAD
of Rk induced by the polynomials in φ in which one of the constraints
depending only on p evaluates to false, then the cells above C do not
have to be constructed.

Assume (a1, . . . , ak) ∈ Rk lies in such a cell with a constraint containing pi
evaluating to false and further assume we compute the CAD without the afore-
mentioned rule. This means that in the evaluation matrix we get ` rows corre-
sponding to test points (a1, . . . , ak, ∗, . . . , ∗) with ` ≥ 1 and all entries of the ith
column are equal to 1 at the positions of these rows. On the other hand, if we
compute the partial CAD, these rows will be missing in the evaluation matrix.
However, we can add one row that corresponds to the test point (a1, . . . .ak) and
we know that it will contain at least one non-zero entry at position i. At positions
that correspond to polynomial constraints in more than the first k variables we
insert the value 0. With this strategy, we can compensate for missing rows in
the evaluation matrix. It is important to note that in this setting, we do not
necessarily get a minimal conflict set even if we look for an optimal solution
in (3).

A second reason for missing information can be found in the simplification
strategies used in virtual substitution. If these strategies can determine at some
point in the computation that the current quantifier-free formula (obtained for
instance after some substitution steps) is a tautology or a contradiction, the
remaining variables will not be substituted in the current substitution branch.
An example for such a situation is a formula of the form

xk ≥ 0 ∧ · · · ∧ xk < 0 ∧ . . .

which is obviously a contradiction and instead of continuing the substitution
process, one can return false for this substitution branch. This scenario is
similar to the one before in that an unknown number of rows in the evaluation
matrix is missing. In contrast to the partial CAD improvement however, the
truth value of the substitution branch is derived not from a single constraint but
from a subset of the constraints in the formula.

11



In order to preserve compatibility with the conflict set computation, we there-
fore require that the simplification mechanism itself is able to determine a local
conflict set, i.e. a conflict set of the quantifier-free formula on which the simpli-
fication mechanism acts. We then can extend this to a global conflict set. The
global conflict set should contain the union of all the local conflict sets and the
corresponding columns can be removed from the evaluation matrix, together
with all rows where these columns have non-zero entries.

4 Finding Conflict Sets via Redlog

We implemented our method in the package Redlog, part of the open source
computer algebra system Reduce [18]. We have adapted the available CAD and
VS implementations as well as parts of the simplification facilities for quantifier-
free formulas to explicitly provide the test point evaluations and local conflict
sets. Our method is such that it requires only little changes to the highly opti-
mized Redlog code. In other methods, see e.g. [10], the implementations of CAD
and VS are built from the ground up for use in SMT solving.

To provide a reasonably large and meaningful test set, we used the quantifier-
free real arithmetic (QF NRA) benchmarks from the SMT-LIB library. Our
method expects a set of literals as input, so we use the veriT SMT-solver to
generate, for each SMT-LIB benchmark, one complete assignment of atoms in
the formula. This assignment is satisfiable in the theory of real linear arithmetic
considering multiplication as an uninterpreted predicate. This set is further sim-
plified using a preprocessor (which would eventually also have to be considered
in the conflict clause production). This preprocessor only does trivial rewriting.
Since Redlog is a generic tool and is not tuned for SMT-LIB like formulas, it
greatly benefits from this simple cleaning phase. Finally, among the obtained
formulas, some are satisfiable, and are not considered here. The test set thus
obtained contains 6076 formulas that are proved unsatisfiable by Redlog. Fig-
ure 4 provides an idea of the size of formulas: a point (x, y) on the curve means
that there are x formulas with a size smaller than y. The benchmarks as well
as a distribution of Redlog featuring conflict set computation can be obtained
on http://www.loria.fr/~pdobal/.5 All our experiments use a 600 seconds
timeout on a computer with an Intel i7-4600U CPU at 2.10GHz and 16 GB of
RAM running Linux.

The scatter plot on Figure 6 gives a comparative view of the problem and
conflict set sizes, whereas Figure 5 provides the distribution of the conflict set
sizes: the method is suitable to provide small conflict sets. Even if most inputs
contain tens or hundreds of constraints, just a few conflict sets have more than
ten constraints. Semiautomatic inspection of the conflict sets exhibits that some
of these are not minimal, i.e. they contain literals that are not necessary for
unsatisfiability. For integration within SMT, it will be necessary to evaluate
whether it is more efficient to reduce the conflict set size using other techniques
or to keep these perfectible conflict sets as they are.

5 7947 formulas are provided, including the ones with a satisfiable or unknown status.
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Fig. 7. Computing time (in seconds) with and without conflict set generation.

Figure 7 provides a comparative graph of the running times of Redlog with
and without conflict set generation. Conflict set generation is not exactly the
non-conflict set producing algorithm with an additional phase: some features
of the original (non-conflict set producing) algorithm have to be turned off.
This explains most of the cost, as well as the fact that sometimes the conflict set
generating algorithm is faster (just because the search tree is different). However
the results clearly show that conflict set computation has an acceptable cost; it
fails only for 22 out of 6076 cases.

As a side note, Redlog was also evaluated against Z3 on all these benchmarks.
Redlog is definitely slower on most of them, also because there is a 0.2 seconds
cost for starting the whole Reduce infrastructure, whereas Z3 most of the time
answers in a few hundreds of a second. It also appears that Z3 is extremely
effective for satisfiable files, being able to decide the satisfiability of 24 files more
than Redlog, whereas no file was stated satisfiable by Redlog and not by Z3.
On the unsatisfiable problems, Redlog succeeded on 2 among the 9 for which Z3
failed, whereas Redlog failed on 18 problems proved unsatisfiable by Z3. This is
an indication that further work to present the SMT assignments to Redlog in a
better way could lead to good results when using Redlog as a back-end.

5 Conclusion

We introduced here a technique to adapt two commonly used real quantifier
elimination methods, that is, cylindrical algebraic decomposition and virtual
substitution, to also provide, besides the satisfiability status of a set of polyno-
mial constraints on the reals, a conflict set when the input set is unsatisfiable.
This technique is based on the simple, yet effective, observation that both meth-
ods amount to checking the values of the constraints on a finite number of test
points. Collecting the test points and the values is sufficient to compute the
conflict sets in a post-processing phase, which is basically a linear optimization
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problem, or the computation of a (prime) implicant for a set of clauses. Exper-
imental results show that this technique performs very well to produce small
conflict sets.

Quantifier elimination methods also come with their lot of heuristics, and
these are not all seamlessly compatible with our technique. Here, some of those
heuristics were turned off, and some were adapted to tag the constraints used
by the heuristics as mandatory for the conflict set. This is responsible for non-
minimality of the produced conflict sets. Although we can observe experimentally
that the produced conflict sets are small, it will certainly be beneficial to better
analyze the heuristics for finer conflict set production.

In their applications, SMT solvers are used to check large and mostly easy
computer generated formulas, whereas Redlog was mostly conceived for hard
problems of moderate size. In order to succeed the integration of Redlog as
a complete back-end for non-linear constraints within SMT, it is necessary to
improve the heuristic simplification preprocessing phase, which is currently ex-
tremely basic. Another non-trivial issue is to take into account this preprocessing
phase for the conflict computation.

Acknowledgements. We would like to thank the reviewers for their valuable
suggestions and comments on this paper. Furthermore, the expertise of Thomas
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