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Abstract

A fundamental problem in computer science is to find all the common zeroes of m
quadratic polynomials in n unknowns over F2. The cryptanalysis of several modern
ciphers reduces to this problem. Up to now, the best complexity bound was reached
by an exhaustive search in 4log2 n2n operations. We give an algorithm that reduces
the problem to a combination of exhaustive search and sparse linear algebra. This al-
gorithm has several variants depending on the method used for the linear algebra step.
Under precise algebraic assumptions on the input system, we show that the determinis-
tic variant of our algorithm has complexity bounded by O(20.841n) when m = n, while
a probabilistic variant of the Las Vegas type has expected complexity O(20.792n). Ex-
periments on random systems show that the algebraic assumptions are satisfied with
probability very close to 1. We also give a rough estimate for the actual threshold be-
tween our method and exhaustive search, which is as low as 200, and thus very relevant
for cryptographic applications.

Keywords: boolean quadratic system, Gröbner bases, complexity, semi-regularity,
multivariate cryptography
2010 MSC: 68W40, 13P10, 13P15, 94A60

1. Introduction

Motivation and Problem Statement. Solving multivariate quadratic polynomial
systems is a fundamental problem in Information Theory. Moreover, random instances
seem difficult to solve. Consequently, the security of several multivariate cryptosys-
tems relies on its hardness, either directly (e.g., HFE (Patarin, 1996), UOV (Kipnis
et al., 1999),. . . ) or indirectly (e.g., McEliece (Faugère et al., 2010)). In some cases,
systems of special types have to be solved, but recent proposals like the new Polly
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Cracker type cryptosystem (Albrecht et al., 2011) rely on the hardness of solving ran-
dom systems of equations. This motivates the study of the complexity of generic poly-
nomial systems. A particularly important case for applications in cryptology is the
Boolean case; in that case both the coefficients and the solutions of the system are over
F2. The main problem to be solved is the following:

The Boolean Multivariate Quadratic Polynomial Problem (Boolean
MQ)
Input: ( f1, . . . , fm) ∈ F2[x1, . . . ,xn]

m with deg( fi) = 2 for i = 1, . . . ,m.
Question: Find – if any – all z ∈ Fn

2 such that f1(z) = · · ·= fm(z) = 0.

Another related problem stems from the fact that in many cryptographic applications,
it is sufficient to find at least one solution of the corresponding polynomial system (in
that case a solution is the original clear message or is related to the secret key). For
instance, the stream cipher QUAD (Berbain et al., 2006, 2009) relies on the iteration of
a set of multivariate quadratic polynomials over F2 so that the security of the keystream
generation is related to the difficulty of finding at least one solution of the Boolean MQ
problem. Thus, we also consider the following variant of the Boolean MQ problem:

The Boolean Multivariate Quadratic Polynomial Satisfiability Prob-
lem (Boolean MQ SAT)
Input: ( f1, . . . , fm) ∈ F2[x1, . . . ,xn]

m with deg( fi) = 2 for i = 1, . . . ,m.
Question: Find – if any – one z ∈ Fn

2 such that f1(z) = · · ·= fm(z) = 0.

Testing for the existence of a solution is an NP-complete problem (it is plainly in NP
and 3-SAT can be reduced to it (Fraenkel and Yesha, 1979)). Clearly, the Boolean MQ
problem is at least as hard as Boolean MQ SAT, while an exponential complexity is
achieved by exhaustive search.

Throughout this paper, random means distributed according to the uniform distri-
bution (given m and n, a random quadratic polynomial is uniformly distributed if all
its coefficients are independently and uniformly distributed over F2). The relation be-
tween the difficulties of Boolean MQ and Boolean MQ SAT depends on the relative
values of m and n. When m > n, the number of solutions of the algebraic system is 0
or 1 with large probability and thus finding one or all solutions is very similar, while
when m= n, the probability that a random system has at least one solution over F2 tends
to 1− 1

e ≈ 0.63 for large n (Fusco and Bach, 2007). Hence if we have to find a least
one solution of a system with m < n equations in n variables it is enough to specialize
n−m variables randomly in F2; the resulting system has at least one solution with limit
probability 0.63 and is easier to solve (since the number of equations and variables is
only m). Consequently, in the remainder of this article we restrict ourselves to the case
m≥ n.

To the best of our knowledge, in the worst case, the best complexity bound to solve
the Boolean MQ problem is obtained by a modified exhaustive search in 4log2(n)2

n

operations (Bouillaguet et al., 2010). Being able to decrease significantly this com-
plexity is a long-standing open problem and is the main goal of this article. It is crucial
for practical applications to have sharp estimates of the asymptotic complexity: it is
especially important in the cryptographic context where this value may have a strong
impact on the sizes of the keys needed to reach a given level of security.
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Main results. We describe a new algorithm BooleanSolve that solves Boolean MQ
for determined or overdetermined systems (m = αn with α ≥ 1). We show how to
adapt it to solve the Boolean MQ SAT problem. This algorithm has deterministic and
Las Vegas variants, depending on the choice of some linear algebra subroutines. Our
main result is:

Theorem 1. The Boolean MQ Problem is solved by Algorithm BooleanSolve. If m =
n and the system fulfills algebraic assumptions detailed in Theorem 2, then this algo-
rithm uses a number of arithmetic operations in F2 that is:

• O(20.841n) using the deterministic variant;

• of expectation O(20.792n) using the Las Vegas probabilistic variant.

Recall that for a probabilistic algorithm of the Las Vegas type, the result is always
correct, but the complexity is a random variable. Here its expectation is controlled
well.
Outline. Our algorithm is a variant of the hybrid approach by Bettale et al. (2009,
2012): we specialize the last k variables to all possible values, and check the con-
sistency of the specialized overdetermined systems ( f̃1, . . . , f̃m) in the remaining vari-
ables x1, . . . ,x`.

This consistency check is done by searching for polynomials h1, . . . ,hm+` in x1, . . . ,x`
such that

h1 f̃1 + · · ·+hm f̃m +hm+1x1(1− x1)+ · · ·+hm+`x`(1− x`) = 1. (1)

If such polynomials exist then obviously the system is not consistent. Given a bound d
on the degrees of the polynomials hi f̃i and hm+ixi(1−xi), the existence of the hi can be
checked by linear algebra. The corresponding matrix is known as the Macaulay matrix
in degree d. It is a matrix whose rows contain the coefficients of the polynomials
f̃i and xi(1− xi) multiplied by all monomials of degree at most d− 2, each column
corresponding to a monomial of degree at most d. Taking into account the special
shape of the polynomials xi(1− xi) leads to a more compact variant that we call the
boolean Macaulay matrix (see Section 2).

When linear algebra on the Macaulay matrix in degree d produces a solution of (1),
the corresponding hi’s give a certificate of inconsistency. Otherwise, our algorithm pro-
ceeds with an exhaustive search in the remaining variables. In summary, our algorithm
is a partial exhaustive search where the Macaulay matrices permit to prune branches of
the search tree. The correctness of the algorithm is clear.

The key point making the algorithm efficient is the choice of k and d. If d is large,
then the cost of the linear algebra stage becomes high. If d is small, the matrices are
small, but many branches with no solutions are not pruned and require an exhaustive
search. This is where we use the relation between the Macaulay matrix and Gröbner
bases. We define a witness degree dwit, which has the property that any polynomial in a
minimal Gröbner basis of the system is obtained as a linear combination of the rows of
the Macaulay matrix in degree dwit. Hilbert’s Nullstellensatz states that the system has
no solution if and only if 1 belongs to the ideal generated by the polynomials, which
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implies that 1 is a linear combination of the rows of the Macaulay matrix in degree dwit,
making dwit an upper bound for the choice of d in (1).

Our complexity estimates rely on a good control of the witness degree. For a ho-
mogeneous polynomial ideal, the classical Hilbert function of the degree d is the di-
mension of the vector space obtained as the quotient of the polynomials of degree d by
the polynomials of degree d in the ideal. The witness degree is bounded by the first
degree where the Hilbert function of the ideal generated by the homogenized equations
is 0. Under the algebraic assumption of boolean semi-regularity (see Definition 7), we
obtain an explicit expression for the generating series of the Hilbert function, known
as the Hilbert series of the ideal. From there, in Proposition 7, using the saddle-point
method as in (Bardet et al., 2004, 2005; Bardet, 2004), we show that when m = αn and
n→ ∞, the witness degree behaves like dwit ≤ cα n for a constant cα that we determine
explicitly. Informally, boolean semi-regularity amounts to demanding a “sufficient”
independence of the equations. In the case of infinite fields, a classical conjecture by
Fröberg (1985) states that generic systems are semi-regular. In our context where the
field is F2, we give strong experimental evidence (Section 4.1) that for n sufficiently
large, boolean semi-regularity holds with probability very close to 1 for random sys-
tems. Thus, our complexity estimates for boolean semi-regular systems apply to a large
class of systems in practice.

Once the witness degree is controlled, the size of the Macaulay matrix depends
only on the choice of k and the optimal choice depends on the complexity of the linear
algebra stage. In the Las Vegas version of Algorithm BooleanSolve, we exploit the
sparsity of this matrix by using a variant of Wiedemann’s algorithm (Giesbrecht et al.,
1998) (following Wiedemann (1986); Kaltofen and Saunders (1991); Villard (1997))
for solving singular linear systems. In the deterministic version, we do not know of
efficient ways to take advantage of the sparsity of the matrix, whence a slightly higher
complexity bound. We can then draw conclusions and obtain a complexity estimate
of the algorithm depending on k/n and n (Proposition 8). The optimal value for k is
' 0.45n in the Las Vegas setting and ' 0.59n in the deterministic variant, completing
the proof of our main theorem.

The complexity analysis is especially important for practical applications in multi-
variate Cryptology based on the Boolean MQ problem, since it shows that in order to
reach a security of 2s (with s large), one has to construct systems of boolean quadratic
equations with at least s/0.7911' 1.264s variables.

Related works. Due to its practical importance, many algorithms have been designed
to solve the MQ problem in a wide range of contexts. First, generic techniques for solv-
ing polynomial systems can be used. In particular, Gröbner basis algorithms (such as
Buchberger’s algorithm (Buchberger, 1965), F4 (Faugère, 1999), F5 (Faugère, 2002),
and FGLM (Faugère et al., 1993)) are well suited for this task. For instance, the F5
algorithm has broken several challenges of the HFE public-key cryptosystem (Faugère
and Joux, 2003). In the cryptanalysis context, the XL algorithm (Kipnis and Shamir,
1999) (which can be seen as a variant of Gröbner basis algorithms (Ars et al., 2004))
has given rise to a large family of variants. All these techniques are closely related
to the Macaulay matrix, introduced by Macaulay (1902) as a tool for elimination. In
order to reduce the cost of linear algebra for the efficient computation of the resul-
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tant of multivariate polynomial systems, the idea of using Wiedemann’s algorithm on
the Macaulay matrix has been proposed by Canny et al. (1989); however since the
specificities of the Boolean case are not taken into account, the complexity of applying
(Canny et al., 1989) to quadratic equations is O(24n).

Yang and Chen (2004) propose a heuristic analysis of the FXL algorithm leading
them to an upper bound O(20.875n) for the complexity of solving the MQ problem over
F2. In particular, they give an explicit formula for the Hilbert series of the ideal gen-
erated by the polynomials. However, the exact assumptions that have to be verified
by the input systems are unclear. Also, similar results have been announced in (Yang
et al., 2004, Section 2.2), but the analysis there relies on algorithmic assumptions (e.g.,
row echelon form of sparse matrices in quadratic complexity) that are not known to
hold currently. Under these assumptions, the authors show that the best trade-off be-
tween exhaustive search and row echelon form computations in the FXL algorithm is
obtained by specializing 0.45n variables. This is the same value we obtain and prove
with our algorithm. Also, a limiting behavior of the cost of the hybrid approach is
obtained in Bettale et al. (2012) when the size of the finite field is big enough; these
results are not applicable over F2.

Other algorithms have been proposed when the system has additional structural
properties. In particular, the Boolean MQ problem also arises in satisfiability problems,
since boolean quadratic polynomials can be used for representing constraints. In these
contexts, the systems are sparse and for such systems of higher degree the 2n barrier has
been broken (Semaev, 2008, 2009); similar results also exist for the k-SAT problem.
Our algorithm does not exploit the extra structure induced by this type of sparsity and
thus does not improve upon those results.

Organization of the article. The main algorithm and the algebraic tools that are used
throughout the article are described in Section 2. Then a complexity analysis is per-
formed in Section 3 by studying the asymptotic behaviour of the witness degree and the
sizes of the Macaulay matrices involved, under algebraic assumptions. In Section 4,
we provide a conjecture and strong experimental evidence that these algebraic assump-
tions are verified with probability close to 1 for n sufficiently large. Finally, in Section
5 we propose an extension of the main algorithm that improves the quality of the linear
filtering when n is small. We also show how the complexity results from Section 3
can be applied to the cryptosystem QUAD, leading to an evaluation of the sizes of the
parameters needed to reach a given level of security.

2. Algorithm

Notations. Let m and n be two positive integers and let R be the ring F2[x1, . . . ,xn].
In the following, the notation Monomials(d) stands for the set of monomials in R of
degree at most d.

Since we are looking for solutions of the system in F2 (and not in its algebraic
closure), we have to take into account the relations x2

i − xi = 0. Therefore, we con-
sider the application ϕ mapping a monomial to its square-free part (ϕ(∏n

i=1 xai
i ) =

∏
n
i=1 xmin(ai,1)

i ) and extended to R by linearity.
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If ( f1, . . . , fm) ∈ F2[x1, . . . ,xn]
m is a system of polynomials, its homogenization is

denoted by ( f (h)1 , . . . , f (h)m ) ∈ F2[x1, . . . ,xn,h] and is defined by

f (h)i (x1, . . . ,xn,h) = hdeg( fi) fi

(x1

h
, . . . ,

xn

h

)
.

In the sequel, we consider the classical grevlex monomial ordering (graded reverse
lexicographical), as defined for instance in (Cox et al., 1997, §2.2, Defn. 6). Also, if
f is a polynomial, LM( f ) denotes its leading monomial for that order. If I is an ideal,
then LM(I) denotes the ideal generated by the leading monomials of all polynomials
in I.

2.1. Macaulay matrix
Definition 1. Let ( f1, . . . , fm) be polynomials in R. The boolean Macaulay matrix in
degree d (denoted by Macaulay(d)) is the matrix whose rows contain the coefficients of
the polynomials {ϕ(t f j)} where 1≤ j≤m, t is a squarefree monomial, and deg(t f j) =
d. The columns correspond to the squarefree monomials in R of degree at most d and
are ordered in descending order with respect to the grevlex ordering. The element in
the row corresponding to ϕ(t f j) and the column corresponding to the monomial m is
the coefficient of m in the polynomial ϕ(t f j).

Note that the boolean Macaulay matrix can be obtained as a submatrix of the clas-
sical Macaulay matrix of the system 〈 f1, . . . , fm,x2

1 − x1, . . . ,x2
n − xn〉 after Gaussian

reduction by the rows corresponding to the polynomials (x2
1− x1, . . . ,x2

n− xn).

Lemma 1. Let M be the rMac×cMac boolean Macaulay matrix of the system ( f1, . . . , fm)
in degree d. Let r denote the 1× cMac vector r = (0, . . . ,0,1). If the linear system
u ·M= r has a solution, then the system f1 = · · ·= fm = 0 has no solution in Fn

2.

Proof. If the system u ·M= r has a solution, then there exists a linear combination of
the rows of the Macaulay matrix which yields the constant polynomial 1. Therefore,
1 ∈ 〈 f1, . . . , fm,x2

1− x1, . . . ,x2
n− xn〉.

2.2. Witness degree
We consider an indicator of the complexity of affine polynomial systems: the wit-

ness degree. It has the property that a Gröbner basis of the ideal generated by the
polynomials can be obtained by performing linear algebra on the Macaulay matrix in
this degree. In particular, if the system has no solution, then the witness degree is
closely related to the classical effective Nullstellensatz (see e.g., Jelonek (2005)).

Definition 2. Let F = ( f1, . . . , fm,x2
1− x1, . . . ,x2

n− xn) be a sequence of polynomials
and I = 〈F〉 the ideal it generates. Denote by I≤d and by J≤d the F2-vector spaces
defined by

I≤d = {p | p ∈ I,deg(p)≤ d},
J≤d = {p | ∃h1, . . . ,hm+n,∀i ∈ {1, . . . ,m+n},deg(hi)≤ d−2,

p = ∑
m
i=1 hi fi +∑

n
j=1 hm+ j(x2

j − x j)}.

We call witness degree (dwit) of F the smallest integer d0 such that I≤d0 = J≤d0 and
〈{LM( f ) | f ∈ I≤d0}〉= LM(I).
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Consider a row echelon form of the boolean Macaulay matrix in degree d of the
system ( f1, . . . , fm) of polynomials. Then the first nonzero element of each row cor-
responds to a leading monomial of an element of I, belonging to LM(I). For large
enough d, Dickson’s lemma (Cox et al., 1997, §2.4, Thm. 5) implies that the collection
of those monomials up to degree d generates LM(I) and thus the polynomials corre-
sponding to those rows together with {x2

1− x1, . . . ,x2
n− xn} form a Gröbner basis of I

with respect to the grevlex ordering. Another interpretation of the witness degree is
that it is precisely the smallest such d.

2.3. Algorithm

Algorithm 1 BooleanSolve
Input: m,n,k ∈ N such that m ≥ n > k and f1, . . . , fm quadratic polynomials in

F2[x1, . . . ,xn].
Output: The set of boolean solutions of the system f1 = · · ·= fm = 0.

1: S := /0.
2: d0 := index of the first nonpositive coefficient in the series expansion at 0 of the

rational function (1+t)n−k

(1−t)(1+t2)m .

3: for all (an−k+1, . . . ,an) ∈ Fk
2 do

4: for i from 1 to m do
5: f̃i(x1, . . . ,xn−k) := fi(x1, . . . ,xn−k,an−k+1, . . . ,an) ∈ F2[x1, . . . ,xn−k].
6: end for
7: M := boolean Macaulay matrix of ( f̃1, . . . , f̃m) in degree d0.
8: if the system u ·M= r is inconsistent then . r as defined in Lemma 1
9: T := solutions of the system ( f̃1 = · · ·= f̃m = 0) (exhaustive search).

10: for all (t1, . . . , tn−k) ∈ T do
11: S := S∪{(t1, . . . , tn−k,an−k+1, . . . ,an)}.
12: end for
13: end if
14: end for
15: return S.

Our algorithm is given in Algorithm 1. The general principle is to perform an
exhaustive search in two steps, using a test of consistency of the Macaulay matrix to
prune most of the branches of the second step of the search.

When the system u ·M= r is consistent, the corresponding branch of the searching
tree is not explored. In that case, by Lemma 1, any solution of the linear system u ·M=
r can be used as a certificate that there exists no solution of the polynomial system
f1 = · · ·= fm = 0 in this branch.

Proposition 1. Algorithm BooleanSolve is correct and solves the Boolean MQ prob-
lem.

Proof. By Lemma 1, if the test in line 8 finds the linear system to be consistent, then
there can be no solution with the given values of (an−k+1, . . . ,an). Otherwise, the

7



exhaustive search proceeds and cannot miss a solution. It is important to note that
the choice of the actual value d0 does not have any impact on the correctness of the
algorithm.

Algorithm BooleanSolve is easily be adapted to solve the Boolean MQ SAT prob-
lem by replacing lines 9-12 of the previous algorithm by:

9: T := at least one solution of the system ( f̃1 = · · · = f̃m = 0) (modified exhaustive
search).

10: if T 6= /0 then
11: return {(t1, . . . , tn−k,an−k+1, . . . ,an) | (t1, . . . , tn−k) ∈ T}
12: end if

2.4. Testing Consistency of Sparse Linear Systems
The choice of the algorithm to test whether the sparse linear system u ·M = r is

consistent or not is crucial for the efficiency of Algorithm BooleanSolve. A simple
deterministic algorithm consists in computing a row echelon form of the matrix: the
linear system is consistent if and only if the last nonzero row of the row echelon form
is equal to the vector r. We show in Section 3 that this is sufficient to pass below the
2n complexity barrier. We recall for future use the complexity of this method.

Proposition 2 (Storjohann (2000), Proposition 2.11). The row echelon form of an N×
M matrix over a field k can be computed in O(NMrθ−2) arithmetic operations in k,
where r is the rank of the matrix and θ ≤ 3 is such that any two n×n matrices over k
can be multiplied in O(nθ ) arithmetic operations in k.

Here, θ = 3 is the cost of classical matrix multiplication and in this case a simple
Gaussian reduction to row echelon form is sufficient. The best known value for θ has
been 2.376 for a long time, by a result of Coppersmith and Winograd (1990). Recent
improvements of that method by Stothers (2010); Vassilevska Williams (2011) have
decreased it to 2.3727, but this does not have a significant impact on our analysis.

This result does not exploit the sparsity of Macaulay matrices. We do not know
of an efficient deterministic algorithm for row reduction that exploits this sparsity. In-
stead, we use an efficient Las Vegas variant of Wiedemann’s algorithm due to Gies-
brecht et al. (1998), whose specification is summarized in Algorithm TestConsis-
tency. In this algorithm, the matrix A is given by two black boxes performing the
operations x 7→ Ax and u 7→ Atu. The complexity is expressed in terms of the number
of evaluations of these black boxes, which in our context will each have a cost bounded
by the number of nonzero coefficients of Macaulay matrices. The algorithm is pre-
sented in (Giesbrecht et al., 1998) for matrices with entries in an arbitrary field. We
specialize it here in the case where the field is F2. The key ideas are a preconditioning
of the matrix by multiplying it by random Toeplitz matrices and working in a suitable
field extension to get access to sufficiently many points for picking random elements.

Proposition 3 (Giesbrecht et al. (1998)). Algorithm 2 determines the consistency of an
N×N matrix with expected complexity O(N logN) evaluations of the black boxes and
O(N2 log2 N log logN) additional operations in F2.
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Algorithm 2 TestConsistency (Giesbrecht et al., 1998)

Input: • A black box for x 7→ A ·x, where A ∈KN×N .

• A black box for u 7→ At ·u.

• b ∈KN×1.
Output: • (“consistent”,x) with A ·x = b if the system has a solution

• (“inconsistent”,u) if the system does not have a solution, with ut ·A= 0 and
ut ·b 6= 0, certifying the inconsistency.

Macaulay matrices are rectangular. We therefore first make them square by padding
with zeroes. The complexity estimate is then used with N the maximum of the row and
column dimensions of the matrices.

3. Complexity Analysis

Algorithm BooleanSolve deals with a large number of Macaulay matrices in de-
gree d0. We first obtain bounds on the row and column dimensions of Macaulay matri-
ces, as well as their number of nonzero entries, in terms of the degree. We then bound
the witness degree by d0. The complexity analysis is concluded by optimizing the value
of the ratio k/n that governs the number of variables evaluated in the first exhaustive
search.

3.1. Sizes of Macaulay Matrices

Proposition 4. Let ( f1, . . . , fm) be quadratic polynomials in F2[x1, . . . ,xn]. Denote by
rMac (resp. cMac, sMac) the number of rows (resp. columns, number of nonzero entries)
of the associated boolean Macaulay matrix in degree d. If 1≤ d < n/2, then

cMac <
1− x

1−2x

(
n
d

)
, rMac < m

x2

(1−2x)(1− x)

(
n
d

)
, sMac < mn2 x2

(1−2x)(1− x)

(
n
d

)
,

(2)
where x = d/n.

Proof. The number of columns of the boolean Macaulay matrix is simply the number
of squarefree monomials of degree at most d in n variables. The number of rows
is that same number of monomials for degree d− 2, multiplied by the number m of
polynomials. Finally, each row corresponding to a polynomial fi has a number of
nonzero entries bounded by the number of squarefree monomials of degree at most 2
in n variables. Standard combinatorial counting thus gives

cMac =
d

∑
i=0

(
n
i

)
, rMac = m

d−2

∑
i=0

(
n
i

)
, sMac ≤

(
1+n+

(
n
2

))
rMac ≤ n2rMac,

(3)
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where in the last inequality we use the fact that n ≥ 2. Now, the bounds come from a
well-known inequality on binomial coefficients: for 0≤ d < n/2,

d

∑
i=0

(
n
i

)
<

1
1−d/(n−d)

(
n
d

)
.

Indeed, the sequence
(n

i

)
is increasing for 0 ≤ i ≤ n/2. Factoring out

(n
d

)
leaves a

sum that is bounded by the geometric series 1+d/(n−d)+ · · · . This gives the bound
for cMac. The bound for rMac is obtained by evaluating this bound at d − 2, writ-
ing
( n

d−2

)
as a rational function times

(n
d

)
and finally bounding x(x−1/n)/((1−2x+

4/n)((1− x)+1/n)) by x2/((1−2x)(1− x)).

3.2. Bound on the Witness Degree of Inconsistent Systems

First, we prove that the witness degree can be upper bounded by the so-called de-
gree of regularity of the homogenized system. Here and subsequently, we call dimen-
sion of an ideal I ⊂ R the Krull dimension of the quotient ring R/I (see e.g., (Eisenbud,
1995, §8)).

Definition 3. The degree of regularity dreg(I) of a homogeneous ideal I of dimension 0
is defined as the smallest integer d such that all homogeneous polynomials of degree d
are in I.

Proposition 5. Let F =
(

f1, . . . , fm,x2
1− x1, . . . ,x2

n− xn
)

be a sequence of polynomials
such that the system F = 0 has no solution. Then the ideal generated by the homoge-
nized system

I(h) =
〈

f (h)1 , . . . , f (h)m ,x2
1− x1h, . . . ,x2

n− xnh
〉

has dimension 0 and dwit(F)≤ dreg(I(h)).

Proof. By Hilbert’s Nullstellensatz, the ideal I generated by F contains 1 (hence 1
is a Gröbner basis of I). Therefore, there exists α ∈ N \ {0} such that hα ∈ I(h).
Consequently, for the grevlex ordering, 〈x2

1, . . . ,x
2
n,h

α〉 ⊂ LM(I(h)) and thus the di-
mension of LM(I(h)) is 0. As a consequence (see (Cox et al., 1997, §9.3, Prop. 9)),
dim(I(h)) = dim(LM(I(h))) = 0.

Let G(h) be a minimal Gröbner basis of the homogenized ideal I(h) for the grevlex
ordering. By definition of the degree of regularity, there exist polynomials `i and `′j
such that hdreg(I(h)) = ∑1≤i≤m f (h)i `i+∑1≤ j≤n(x2

j−x jh)`′j. The ideal I(h) being homoge-

neous, it is possible to find such a combination with deg( f (h)i `i)≤ dreg(I(h)),deg((x2
j −

x jh)`′j) ≤ dreg(I(h)) for all i, j. Evaluating this identity at h = 1 shows that 1 belongs
to the vector space generated by the rows of the boolean Macaulay matrix in degree
dreg(I(h)).

Next, the degree of regularity can be obtained from the classical Hilbert series.
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Definition 4. Let R(h) be the ring F2[x1, . . . ,xn,h], and let R(h)
d be the vector space of

homogeneous polynomials of degree d. Also, for I ⊂ R(h) a homogeneous ideal, let
Id denote the vector space defined by Id = R(h)

d ∩ I. The Hilbert function HFI and the
Hilbert series HSI of I are defined by

HFI(d) = dim(R(h)
d /Id), HSI(t) =

∞

∑
i=0

HFI(d)td .

In view of the definition of the degree of regularity, if I is a zero-dimensional ideal
of R(h), then HSI(t) is a polynomial of degree dreg(I)−1.

The next step is to obtain information on the Hilbert series for a large class of
systems. To this end, we consider the so-called syzygy module, which describes the
algebraic relations between the polynomials of a system.

Definition 5. Let (g1, . . . ,g`)∈ (R(h))` be a polynomial system. A syzygy of (g1, . . . ,g`)
is a `-tuple (s1, . . . ,s`) ∈ (R(h))` such that ∑

`
i=1 sigi = 0. The set of all syzygies of

(g1, . . . ,g`) is a submodule of (R(h))`. The degree of a syzygy s = (s1, . . . ,s`) is de-
fined as deg(s) = max1≤i≤` deg(gisi).

Obviously, for any such polynomial system, commutativity induces syzygies of the
type

gig j−g jgi = 0. (4)

Moreover, for any constant a ∈ F2 we have a2 = a, thus expanding the square of a
polynomial ∑α∈Nk aα xα ∈ F2[x1, . . . ,xk] gives ∑α∈Nk aα x2α . As a consequence, for a
homogeneous quadratic polynomial f (h)i = ∑1≤ j,k≤n a j,k x jxk +∑1≤ j≤n b j x jh+ ch2 ∈
F2[x1, . . . ,xn,h], we obtain the following syzygy of the system ( f (h)i ,x2

1− x1h, . . . ,x2
n−

xnh):

( f (h)i −h2) f (h)i + ∑
1≤ j,k≤n

a j,k
(
x2

k(x
2
j − x jh)+ x jh(x2

k− xkh)
)
+ ∑

1≤ j≤n
b jh2(x2

j−x jh) = 0.

(5)

Definition 6. Let F(h) = ( f (h)1 , . . . , f (h)n ,x2
1− x1h, . . . ,x2

n− xnh) be a system of homoge-
neous quadratic polynomials over F2. We call trivial syzygies of F(h) and note Syztriv
the module generated by the syzygies of types (4) and (5).

Definition 7. A boolean homogeneous system ( f (h)1 , . . . , f (h)m ) is called

• boolean semi-regular in degree D if any syzygy whose degree is less than D be-
longs to Syztriv;

• boolean semi-regular if it is boolean semi-regular in degree dreg(〈 f (h)1 , . . . , f (h)m ,x2
1−

x1h, . . . ,x2
n− xnh〉).

(This notion is slightly different from the semi-regularity over F2 defined in (Bardet
et al., 2004, 2005).)

In the sequel we use the following notations: if S ∈ Z[[t]] is a power series, then [S]
denotes the series obtained by truncating S just before the index of its first nonpositive
coefficient. Also, [td ]S(t) denotes the coefficient of td in S.
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Proposition 6. Let ( f (h)1 , . . . , f (h)m ) be a boolean homogeneous system. Let D0 denote

the degree of regularity of the system ( f (h)1 , . . . , f (h)m ,x2
1− x1h, . . . ,x2

n− xnh). If the sys-

tems ( f (h)1 , . . . , f (h)i−1, f (h)i −h2) and ( f (h)1 , . . . , f (h)i−1, f (h)i ) are D0−2 (resp. D0)-boolean
semi-regular for each i ∈ {2, . . . ,m}, then the Hilbert series of the homogeneous ideal
〈 f (h)1 , . . . , f (h)m ,x2

1− x1h, . . . ,x2
n− xnh〉 is

HSn,m(t) :=
[

(1+ t)n

(1− t)(1+ t2)m

]
.

Proof. Let Si (resp. S′i) denote the system ( f (h)1 , . . . , f (h)i ,x2
1− x1h, . . . ,x2

n− xnh) (resp.
( f (h)1 , . . . , f (h)i − h2,x2

1 − x1h, . . . ,x2
n − xnh)). The general framework of this proof is

rather classical: we prove by induction on i and d that for all i ≤ m and d < D0,
HF〈Si〉(d) = HF〈S′i〉(d) = [td ] (1+t)n

(1−t)(1+t2)i .

First, notice that a basis of the F2-vector space R/〈x2
1− x1h, . . . ,x2

n− xnh〉 is the set
of monomials S = {xδ1

1 · · ·xδn
n h` | δ1, . . . ,δn ∈ {0,1}, ` ∈ N}. The generating function

of this set is

∑
m∈S

tdeg(m) =
(1+ t)n

(1− t)
.

Therefore, the initialization of the recurrence comes from the relations{
HF〈x2

1−x1h,...,x2
n−xnh〉(d) = [td ] (1+t)n

(1−t) for all d ∈ N;

HF〈Si〉(0) = HF〈S′i〉(0) = 1 and HF〈Si〉(1) = HF〈S′i〉(1) = n+1 for all i≤ m.

In the following, 2 ≤ d < D0 and 1 ≤ i ≤ m are two integers, and we assume by
induction that for all (`, j) ∈ N2 such that ` < d or (`= d and j < i), we have

HF〈S j〉(`) = HF〈S′j〉(`) = [t`]
(1+ t)n

(1− t)(1+ t2) j .

Consider the following sequences

0→ R(h)
d−2/(Si−1 + 〈 f (h)i −h2〉)d−2

× f (h)i−−−→ R(h)
d /(Si−1)d → R(h)

d /(Si)d → 0

0→ R(h)
d−2/(Si−1 + 〈 f (h)i 〉)d−2

×( f (h)i −h2)−−−−−−−→ R(h)
d /(Si−1)d → R(h)

d /(S′i)d → 0,

where the last arrow of each sequence is the canonical projection. Let g be in the kernel
of the application

R(h)
d−2/(Si−1 + 〈 f (h)i −h2〉)d−2

× f (h)i−−−→ R(h)
d /(Si−1)d .

Then g f (h)i belongs to (Si−1)d , which implies that there exist polynomials g1, . . . ,gi−1,
h1, . . . ,hn such that (g1, . . . ,gi−1,g,h1, . . . ,hn) is a syzygy of degree d of the system
Si. By the boolean semi-regularity assumption, this syzygy belongs to Syztriv, and
hence g ∈ 〈Si−1〉+〈 f (h)i −h2〉. Therefore the application× f (h)i is injective and the first
sequence is exact. One can prove similarly that the second sequence is also exact.
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These exact sequences yield relations between the Hilbert functions:

HFS′i
(d−2)−HFSi−1(d)+HFSi(d) = 0, (6)

HFSi(d−2)−HFSi−1(d)+HFS′i
(d) = 0. (7)

Moreover, we have the relation

[t`]
(1+ t)n

(1− t)(1+ t2) j = [t`]
(1+ t)n

(1− t)(1+ t2) j−1 − [t`−2]
(1+ t)n

(1− t)(1+ t2) j . (8)

Using Relations (6) and (7), and the induction hypothesis, we get the desired result.
The proof is completed by showing that D0 is equal to the index of the first non-

positive coefficient of HFSm(t). First, by definition of the degree of regularity, the
coefficients [td ]HFSm(t) are zero for d ≥ D0. Next, that the coefficient [tD0 ] (1+t)n

(1−t)(1+t2)m

is nonpositive follows from the following property (easily proved by induction on i,
0≤ i≤ m using (7–8)):

[tD0 ]
(1+ t)n

(1− t)(1+ t2)i ≤ HFSi(D0).

Putting everything together, we have obtained the following.

Corollary 1. With the same notation as in Proposition 5, if the homogenized system
verifies the conditions of Proposition 6, then the witness degree of the system

( f1, . . . , fm,x2
1− x1, . . . ,x2

n− xn)

is bounded by the degree of the polynomial HSn,m(t).

At this stage, it might seem that choosing the degree of HSn−k,m for d0 in Algo-
rithm BooleanSolve amounts to making a very strong assumption on the nature of
the systems obtained by specialization followed by homogenization. In Section 4, we
discuss experiments showing that this assumption is actually quite reasonable.

Finally, in order to compute the asymptotic behavior of our complexity estimates
in the next section, we need the following.

Proposition 7. Let α ≥ 1 be a real number. Then, as n→ ∞,

deg
(
HSn,dαne(t)

)
∼M(α)n,

with M(x) :=−x+
1
2
+

1
2

√
2x2−10x−1+2(x+2)

√
x(x+2).

Proof. We follow the approach of Bardet et al. (2004, 2005). We start from a represen-
tation of the coefficient as a Cauchy integral:

[td ]
(1+ t)n

(1− t)(1+ t2)m =
1

2πı

∮
(1+ z)n

(1− z)(1+ z2)dαne
1

zd+1 dz,
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where the contour is a circle centered in 0 whose radius is smaller than 1. We are
searching for a value of d where this integral vanishes, for large n. We first estimate the
asymptotic behaviour of the integral for fixed d. The integrand has the form exp(n f (z))
with

f (z) = log(1+ z)− dαne
n

log(1+ z2)− log(1− z)+(d +1) log(z)
n

.

As n increases, the integral concentrates in the neighborhood of one or several saddle
points, solutions to the saddle-point equation z f ′ = 0, which rewrites

d
n
=

z
1+ z

− 2 dαne
n z2

1+ z2 −
1−2z

n(1− z)
=: φ(z)+O(1/n). (9)

In Bardet et al. (2004), it is shown that for the contributions of saddle points to cancel
out, two of them must coalesce and give rise to a double saddle point, given by the
smallest positive double real root of the saddle-point equation, which is therefore such
that (z f ′)′ = 0. When n grows, the solutions of this equation tend towards the roots
of φ ′(z) = 0. Let z0 be the smallest positive real root of this equation. The saddle-
point equation (9) then gives d ∼ φ(z0)n. Finally, eliminating z0 using φ ′(z0) = 0 by a
resultant computation yields

d ∼
(
−α +

1
2
+

1
2

√
2α2−10α−1+2(α +2)

√
α(α +2)

)
n.

Figure 1: Comparison of deg(HSn,dn/.55e)/n (black) with its limit (red).

Figure 1 shows the actual values of deg(HSn,dαne)/n for α = 1/.55. Notice that
this sequence converges rather slowly. This is due to the fact that we only take into
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account the first term in the asymptotic expansion of deg(HSn,dαne). It would be possi-
ble to obtain the full asymptotic expansion using techniques similar to those in Bardet
et al. (2004, 2005). However, this would not change the asymptotic complexity of
Algorithm 1.

3.3. Complexity

We now estimate the complexity of Algorithm BooleanSolve by going through
its steps and making all necessary hypotheses explicit. We consider the case when the
number of variables n and the number of polynomials m are related by m∼αn for some
α ≥ 1 and n is large. Also we assume that the ratio k/n is controlled by a parameter
γ ∈ [0,1], i.e., k = (1− γ)n.

The first step (lines 4 to 6 in the algorithm) is to evaluate the polynomials f̃i from the
polynomials fi. With no arithmetic operations, the polynomials fi can first be written as
polynomials in (x1, . . . ,xn−k) with coefficients that are polynomials of degree at most 2
in xn−k+1, . . . ,xn and at most 1 in each variable. Each such coefficient has at most
1+ k +

(k
2

)
monomials, each of which can be evaluated with at most one arithmetic

operation. The total number of these polynomial coefficients is at most m(1+n− k+(n−k
2

)
). Thus the total cost of all the evaluations of the coefficients of the polynomials f̃i

is at most O(n52(1−γ)n). This turns out to be asymptotically negligible compared to the
next steps.

The next stage (line 8) of our algorithm consists in performing tests of inconsistency
of the Macaulay matrices.

Proposition 8. For any ε > 0, α ≥ 1 and sufficiently large m = dαne, the complex-
ity of all tests of consistency of Macaulay matrices in Algorithm BooleanSolve with
parameters (m,n,k) is

• O(2(1−γ+θFα (γ)+ε)n) in the deterministic variant;

• of expectation O(2(1−γ+2Fα (γ)+ε)n) in the probabilistic variant,

where γ = 1− k/n, Fα(γ) = −γ log2(D
D(1−D)1−D) with D = M(α/γ), the function

M as in Proposition 7 and θ the complexity of linear algebra as in Proposition 2.

A notable feature of this result is that in terms of complexity, the probabilistic vari-
ant of our algorithm behaves as the deterministic one where the linear algebra would
be performed in quadratic complexity (i.e., with θ = 2).

Proof. We first estimate the size of the Macaulay matrices. By Proposition 7, the in-
dex d0, which is 1+deg(HSn−k,m) behaves asymptotically like γDn. The function M(x)
is decreasing for x ≥ 1, so that D ≤ M(1) < 1/2. Thus, d0 < γn/2 for n sufficiently
large and Proposition 4 applies with d = d0, m = dαne equations and n− k = γn vari-
ables. For n sufficiently large, the bound for rMac is larger than that for cMac, since the
quotient of these two bounds is m/( γn

d0
−1)2, which grows linearly with n.

Next, we turn to the tests of inconsistency. The previous bounds and Proposition 2
imply that the number of operations required for the computation of the row eche-
lon form is O(n

(
γn
d0

)θ
). Similarly, by Proposition 3, the complexity of checking the
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consistency of each matrix by the probabilistic method is O(rMac log(rMac)sMac) =

O(n4
(

γn
d0

)2 log
(

γn
d0

)
) and that bound dominates the cost of the additional operations

in F2. Now, Stirling’s formula implies that for any 0< b< a, log
(an

bn

)
∼ n log(aa/(bb(a−

b)a−b)). Setting a = γ and b = γD gives the result, the extra factor being due to the
exhaustive search that performs this consistency check 2(1−γ)n times.

In the cases where the linear system u ·M= r is found inconsistent, then the poly-
nomial system itself may be consistent and the algorithm proceeds with an exhaustive
search (line 9) in a system with γn unknowns. Each such search has cost O(2(γ+ε)n).
As long as the number of these searches does not exceed O(2(1−2γ+2Fα (γ))n), the over-
all complexity of the algorithm is bounded by the complexity given in Proposition 8.
There can be two causes for the inconsistency of the linear system that triggers such a
search: the existence of an actual solution with xn = an, . . . ,xn−k+1 = an−k+1; a witness
degree of the specialized system larger than d0 (e.g., if the homogenized specialized
system is not boolean semi-regular). We now define a class of systems where this does
not happen too much.

Definition 8. Let S = ( f1, . . . , fm) be quadratic polynomials in F2[x1, . . . ,xn], 0≤ k =
(1− γ)n < n, α = m/n and d0 = 1+ deg(HSn−k,m). The system S is called γ-strong
semi-regular if both the set of its solutions in Fn

2 and the set{
(an−k+1, . . . ,an) ∈ Fk

2 |
dwit( f1(x1, . . . ,xn−k,an−k+1, . . . ,an), . . . , fm(x1, . . . ,xn−k,an−k+1, . . . ,an))> d0

}
have cardinality at most 2(1−2γ+2Fα (γ))n, with Fα as in Proposition 8.

Note that since 1− 2γ + 2Fα(γ) is a decreasing function of γ , a γ-strong semi-
regular system is also γ ′-strong semi-regular for any γ ′ < γ .

The first condition for a system to be γ-strong semi-regular concerns its number
of solutions. For boolean systems drawn uniformly at random, it is known that the
probability that the number of boolean solutions is s decreases more than exponen-
tially with s (Fusco and Bach, 2007), so that the first condition is fulfilled with large
probability. The second condition is related to the proportion of boolean semi-regular
systems. We discuss this condition in the next section and show that it is also of large
probability experimentally. Under this assumption of γ-strong semi-regularity, we now
state the complexity of the algorithm obtained by optimizing the choice of the number k
of variables that are specialized.

We first discuss large values of γ . The function 1− 2γ + 2Fα(γ) is decreasing
with α and negative when γ = 1. Thus, the first condition implies that a 1-strong semi-
regular system has no solution. By continuity, this behavior persists for γ close to 1
and actually holds for γ ∈ (0.824,1). It also persists for smaller values of γ and larger
α .

Corollary 2. With the same notations as in Prop. 8, when a system is γ-strong semi-
regular with α and γ such that 1−2γ +2Fα(γ)< 0, then it is inconsistent and detected
by Algorithm BooleanSolve with parameters (m,n,0) in O(2(θFα (1)+ε)n) operations.
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Figure 2: Exponent of the complexity for inconsistent systems in terms of the ratio α (see Thm. 2 and Cor. 2)

The value of the exponent θFα(1) in terms of α is plotted in Figure 2 (it corresponds
to the right part of the plots, i.e. α > 1.82 for θ = 2, α > 2.48 for θ = 2.376, α > 3.64
for θ = 3).

Proof. The hypothesis implies that the system has no solution and that its witness
degree is bounded by d0, so that its absence of solution is detected by the linear algebra
step in degree d0. In that case, no exhaustive search is needed.

For smaller values of γ , the algorithm requires exhaustive searches. The optimal
choice of k is obtained by an optimization on the complexity estimate. This leads to the
following complexity estimates. In the next section, we argue that the required strong
semi-regularities are very likely in practice, so that the only choice left to the user is
that of the linear algebra routine.

Theorem 2. Let S=( f1, . . . , fm) be a system of quadratic polynomials in F2[x1, . . . ,xn],
with m = dαne and α ≥ 1. Then Algorithm BooleanSolve finds all its roots in Fn

2 with
a number of arithmetic operations in F2 that is

• O(2(1−0.112α)n) if S is (.27α)-strong semi-regular using Gaussian elimination
for the linear algebra step;

• O(2(1−0.159α)n) if S is (.40α)-strong semi-regular using computation of the row
echelon form with Coppersmith-Winograd multiplication;

• of expectation O(2(1−0.208α)n) if S is (.55α)-strong semi-regular using the prob-
abilistic Algorithm 2.
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In all cases, the value of k passed to the algorithm is dn(1− γ)e with γ corresponding
to the strong semi-regularity.

Proof. The correctness of the algorithm has already been proved in Proposition 1. Only
the complexity remains to be proved.

By definition of strong semi-regularity, the number of exhaustive searches that
need be performed in line 9 of the Algorithm is O(2(1−2γ+2Fα (γ))n), each of them us-
ing O(2(γ+ε)n) arithmetic operations for any ε > 0. It follows that the overall cost of
these exhaustive searches is O(2(1−γ+2Fα (γ)+ε)n); it is bounded by the cost of the tests
of inconsistency. We now choose γ in such a way as to minimize this cost, in terms
of α . Direct computations lead to the following numerical results, that conclude the
proof.

Lemma 2. With the same notation as in Proposition 8, the function 1− γ +θFα(γ) is
bounded by

• 1−0.112α when θ = 3 and γ = 0.27α;

• 1−0.159α when θ = 2.376 and γ = 0.40α;

• 1−0.208α when θ = 2 and γ = 0.55α .

Proof. The function 1−γ+θFα(γ) has two parameters but its extrema can be found by
reducing it to a one parameter function. Indeed, this function is maximal for α ≥ 1 and
γ ∈ [0,1] when (−γ + θFα(γ))/α is. Setting λ = γ/α , this is exactly −λ + θF1(λ ),
with λ ∈ [0,1/α]. Direct computations lead to the optimal λ ’s: λ = min(1/α,0.27)
when θ = 3, λ = min(1/α,0.40) when θ = 2.376, λ = min(1/α,0.55) when θ =
2.

4. Numerical Experiments on Random Systems

Probabilistic model. In this section, we study experimentally the behavior of Al-
gorithm BooleanSolve of random quadratic systems where each coefficient is 0 or
1 with probability 1/2. These random boolean quadratic systems appear naturally in
Cryptology since the security of several recent cryptosystems relies directly on the dif-
ficulty of solving such systems (see e.g., Berbain et al. (2006, 2009)).

4.1. γ-strong semi-regularity
The goal of this section is to give experimental evidence that the assumption of

γ-strong semi-regularity is not a strong condition for random boolean systems. This
is related to the notoriously difficult conjecture by Fröberg (1985), which states that
in characteristic 0, almost all systems are semi-regular (with the meaning of semi-
regularity given in (Bardet et al., 2005)), see also (Moreno-Socı́as, 2003).

Consequently, we propose the following conjecture, which can be seen as a variant
of Fröberg’s conjecture for boolean systems:

Conjecture 1. For any α ≥ 1 and γ < 1 such that 1−2γ +2Fα(γ)> 0, the proportion
of γ-strong semi-regular systems of dαne quadratic polynomials in F2[x1, . . . ,xn] tends
to 1 when n→ ∞.
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The rest of this section is devoted to providing experiments supporting this conjec-
ture.

In Figure 3, we show the relation between the value of the first nonpositive coeffi-
cient of the power series expansion of HSbγnc,n and γ-strong semi-regularity for small
values of n = m (i.e. α = 1). For each n, the experiments are conducted on 1000 ran-
dom quadratic boolean systems. For each of these systems, we compute the 2d(1−γ)ne

specialized systems and we count the number of specializations for which the filtering
linear system is inconsistent.

Four curves are represented on each chart in Figure 3. The red (resp. green) one
represents the average (resp. maximal) number of specializations for which the lin-
ear system (step 8 of Algorithm BooleanSolve) is inconsistent. In contrast, the blue
curve shows the upper bound on this number of specializations required to be γ-strong
semi-regular (see Definition 8). The black curve shows the absolute value of the first
nonpositive coefficient of the corresponding power series (i.e. HSbγnc,n). The y-axis
is represented in logarithmic scale. The value γ = 0.1 is never used in the complexity
analysis (since in Theorem 2, γ ≥ .27 for any value of α ≥ 1). However, it is still inter-
esting to study the behavior of Algorithm 1 when almost all variables are specialized:
the filtering remains very efficient in this case, and the branches which are explored
during the second stage of the exhaustive search correspond to those containing solu-
tions of the system.

Interpretation of Figure 3. First, notice that for γ ≤ 0.55 the green curve is always
below the blue one (except for the case γ = .55,n = 23), meaning that during our ex-
periments, all randomly generated systems with those parameters were γ-strong semi-
regular.

Next, in most curves (except γ = 0.27), the average (resp. maximal) number of
points where the specialization leads to an inconsistent linear system is close to 1 (resp.
5). This can be explained by a simple Poisson model. Indeed, the number of solutions
of a random boolean system with as many equations as unknowns follows a Poisson
law with parameter 1 (see Fusco and Bach (2007)). Therefore, the expectation of the
number of solutions is 1. The expectation of the maximum of the number of solutions
of 1000 random systems is then given as the maximum of 1000 iid random variables
P1, . . . ,P1000 following a Poisson law of parameter 1:

E(max(P1, . . . ,P1000)) = ∑
k≥1

k

(
(e−1

k

∑
i=0

1
i!
)1000− (e−1

k−1

∑
i=0

1
i!
)1000

)
' 5.51,

which explains very well the observed behaviour.
This means that during Algorithm 1 with these parameters, almost all specializa-

tions giving rise to an inconsistent system correspond to a branch of the exhaustive
search which contains an actual solution of the system. Therefore, the filtering is very
efficient for those parameters.

Few specializations. In the case γ = 0.9, the blue curve has a negative slope. This
is due to the fact that the quantity 1− 2γ + 2Fα(γ) (see Definition 8) is negative for
α = 1 and γ > 0.82308. Therefore, we cannot expect that a large proportion of boolean
systems are γ-strong semi-regular in this setting. A limit case is investigated in the chart
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Figure 3: Relation between the quality of the filtering, the value of the first nonpositive coefficient of
HSbγnc,n, and γ-strong semi-regularity. In red (resp. green), the average (resp. maximum) number of spe-
cializations for which the linear system is inconsistent. In blue, the bound for γ-strong regularity. Dashed
line: absolute value of the first non positive coefficient of HSbγnc,n.
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Figure 4: Evolution of the logarithm of the absolute value of the first nonpositive coefficient of HSbγnc,n.

corresponding to γ = 0.81. There, 1−2γ +2Fα(γ)≈ 0.0102 is positive but very close
to zero. Experiments show that random boolean systems with these parameters and
10≤ n≤ 24 are γ-strong semi-regular with probability approximately equal to 0.75.

Absolute value of the first nonpositive coefficient of HSbγnc,n and γ-strong semi-
regularity. Another interesting setting is γ = .55,n = 23. Here, no generated systems
were γ-strong semi-regular (although all generated systems for n 6= 23 were γ-strong
semi-regular). As explained in Section 5.1, this is due to the fact that the first nonposi-
tive coefficient of the power series expansion of HSbγnc,n is equal to zero. In Section 5.2,
we show that this phenomenon can be avoided by a simple variant of the algorithm.

A similar phenomenon happens for γ = .27: the first nonpositive coefficient of
the power series has small absolute value. It is an accident due to the fact that this
coefficient is close to zero for n≤ 25 (see Figure 4). On this chart, we can see clearly
the relation between the absolute value of the first nonpositive coefficient of HSbγnc,n
and the number of specializations for which the consistency test fails.

Indeed, experiments on 1000 random systems with γ = .27 and n = 26 were con-
ducted and in this case the average number of specializations for which the linear sys-
tem is inconsistent is 1.

These experiments justify the fact that the complexity analysis conducted in Sec-
tion 3 is relevant for a large class of boolean systems. Also, it shows that the random
systems for which the filtering may not be efficient can be detected a priori by looking
at the absolute value of the first nonpositive coefficient in the power series. If this value
is small, we show in Section 5.2 that the quality of the filtering can be improved at low
cost by adding redundancy.

Figure 4 shows the evolution of the logarithm of the absolute value of the first
nonpositive coefficient of HSbγnc,n. This absolute value seems to grow exponentially
with n for any given γ . Since the quality of the filtering is related to this absolute value,
these experiments suggest that the proportion of γ-strong semi-regular systems tends
towards 1 when n grows, as formulated in Conjecture 1.
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Figure 5: Left: optimal values of γ for the probabilistic variant (red), the deterministic variant with Gaus-
sian elimination (black) and Coppersmith-Winograd matrix multiplication (blue), and their limits. Right:
corresponding values of log2 N/n, with N given by (10). The green line corresponds to an exhaustive search.

4.2. Numerical estimates of the complexity

When n = m and in the most favorable algorithmic case, our complexity estimate
uses γ = .55. For this value, we display in Figure 1 (page 14) a comparison of the
behaviour of deg(HSn,d n

γ
e)/n and its limit. This picture shows a relatively slow con-

vergence. Thus, for a given number n of variables it is more interesting to optimize γ

using the exact value of deg(HSbγnc,n) rather than a first order asymptotic estimate. In
the same spirit, one can also use the actual values given by Eq. (2) for the Macaulay
matrix. Thus we seek to find γ that minimizes the following bounds on the number of
operations:

2(1−γ)nrMaccMac min(rMac,cMac)
θ−2,

resp. 2(1−γ)n max(rMac,cMac) logmax(rMac,cMac)sMac
(10)

in the deterministic (resp. probabilistic) variants, using Eq. (3) with n equations, bγnc
variables and d = deg(HSbγnc,n). The corresponding values of γ are given in Figure 5,
together with the corresponding values of the quantities in Eq. (10). Although these val-
ues do not take into account the constants hidden in the O() estimates of the complexity,
they suggest the relevance of these algorithms in the cryptographic sizes: the threshold
between exhaustive search and our algorithm with Gaussian elimination is n ' 280,
while the asymptotically faster Las Vegas variant starts being faster than exhaustive
search for n larger than 200 and beats deterministic Gaussian elimination for n larger
than 160.

5. Extensions and Applications

5.1. Adding Redundancy to Avoid Rank Defects

We showed in Section 4.1 that when the first nonpositive coefficient of HSn−k,n is
close to zero, then the linear filtering may not be as efficient as expected (for instance
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Figure 6: Proportion of specialized quadratic systems for which the linear system (line
9 of Algorithm 1) is consistent. Parameters: k =

⌈
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⌉
. In red, δ = 0

(corresponding to Algorithm 1); in green, δ = 1 (see Algorithm 3 of Section 5.2).

in the case γ = .55, n = 23 in Figure 3). Another case is shown in Figure 6. The curve
δ = 0 shows the behavior of Algorithm 1 on random square systems (m = n) where k
is chosen as small as possible such that the witness degree is dwit = 2: this is obtained
by choosing k =

⌈
1/2+n−

√
−7+8n

2

⌉
(that is d0 = 2).

First, we observe that specializing a uniformly distributed random quadratic poly-
nomial P∈ F2[x1, . . . ,xn] at a uniformly distributed random point in Fk

2 yields a random
polynomial that is also uniformly distributed in F2[x1, . . . ,xn−k]. We assume here that
P is reduced modulo the field equations 〈x2

1− x1, . . . ,x2
n− xn〉. Let us assume first that

k = 1. Then P can be rewritten as

P(x1, . . . ,xn) = xnP1(x1, . . . ,xn−1)+P2(x1, . . . ,xn−1),

where P1 (resp. P2) is a random polynomial following a uniform distribution on the
set of reduced boolean polynomials of degree 1 (resp. of degree 2) in F2[x1, . . . ,xn−1].
Therefore, if a ∈ F2 is a random variable, P(x1, . . . ,xn−1,a) ∈ F2[x1, . . . ,xn−1] is either
P1 or P1 +P2 and thus follows a uniform distribution on the set of reduced quadratic
boolean polynomials. The extension to arbitrary k < n follows by induction.

Consequently, in the special case d0 = 2 of Figure 6 the boolean Macaulay matrix
of a specialized system will be uniformly distributed among the boolean matrices with
the same dimensions. Also, due to the choice of k, it will be roughly square. However,
in F2, the probability that a random square matrix has full rank is not close to 1. An
estimate of this probability can be obtained as follows.

The probability that a random p× q boolean matrix has rank r is (see Fisher and
Alexander (1966); Stitzinger (1987))

P(p,q,r) = 2−pq ∏
r−1
j=0(2

p−2 j)∏
r−1
j=0(2

q−2 j)

∏
r−1
j=0(2r−2 j)

.
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Therefore, given a nonzero vector v ∈ Fp
2 and a random boolean p× q matrix M,

the probability that the linear system u ·M= v is consistent is

Q(p,q) =
p

∑
i=1

P(p,q, i)
(

2i−1
2q−1

)
.

Direct numerical computations show that for square matrices, Q(p, p) ≈ 0.61 as
soon as p ≥ 4. This probability corresponds to the valleys of the curve δ = 0 in Fig-
ure 6. Also, it can be noticed that Q(p,q) grows quickly with p− q. For instance,
Q(p+6, p)≈ 0.99 when p≥ 1.

Consequently, it is interesting to specialize more variables than k in some cases
(especially when the first nonpositive coefficient of (1+ t)n−k/((1− t)(1+ t2)m) has
small absolute value): doing so increases the difference between the dimensions of
the Macaulay matrices. This does not change the correctness of the algorithm (nor its
asymptotic complexity), but increases the effectiveness of the filtering performed by
linear algebra.

5.2. Improving the quality of the filtering for small values of n
In this section, we propose an extension of Algorithm BooleanSolve which takes

an extra argument δ , in order to avoid the behavior of the algorithm shown in Sec-
tion 5.1. The main idea is to specialize k + δ variables, but to take only k into ac-
count for the computation of d0. Consequently, the difference between the number of
columns and the rank of the Macaulay matrix is not too small, and hence the linear
filtering performs better. The resulting algorithm is given in Algorithm 3.

In Figure 6, we show the role of the parameter δ when k is chosen minimal such that
d0 = 2: adding redundancy by choosing a nonzero δ can greatly improve the quality of
the filtering (in practice, choosing δ = 1 is sufficient).
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Figure 7: Quality of the filtering with δ = 1.

Figure 7 shows further experimental evidence that adding redundancy by choosing
δ = 1 permits to avoid problems occurring when the first nonpositive coefficient of

24



Algorithm 3 improved BooleanSolve.
Input: m,n,k,δ ∈ N such that k+δ < n≤ m and f1, . . . , fm quadratic polynomials in

F2[x1, . . . ,xn].
Output: The set of boolean solutions of the system f1 = · · ·= fm = 0.

1: S := /0.
2: d0 := index of the first nonpositive coefficient in the series expansion of the rational

function (1+t)n−k

(1−t)(1+t2)m .

3: for all (an−k−δ+1, . . . ,an) ∈ Fk+δ

2 do
4: for i from 1 to m do
5: f̃i(x1, . . . ,xn−k−δ ) := fi(x1, . . . ,xn−k−δ ,an−k−δ+1, . . . ,an).
6: end for
7: M := boolean Macaulay matrix of ( f̃1, . . . , f̃m) in degree d0.
8: if the system u ·M= r is inconsistent then . r as defined in Lemma 1
9: T := solutions of the system ( f̃1 = · · ·= f̃m = 0) (exhaustive search).

10: for all (t1, . . . , tn−k−δ ) ∈ T do
11: S := S∪{(t1, . . . , tn−k−δ ,an−k−δ+1, . . . ,an)}.
12: end for
13: end if
14: end for
15: return S.

HSn−k,m is close to zero. For instance, the peak at γ = .55, n = 23 that appeared in
Figure 3 disappears when δ = 1.

5.3. Cases with Low Degree of Regularity
In some cases, when the boolean system is not random, the choice of d0 proposed

in Algorithm BooleanSolve may be too large. This happens for instance for systems
that have inner structure, which has an impact on the algebraic structure of the ideal
generated by the polynomials. Examples of such structure can be found in Cryptology,
for instance with boolean systems coming for the HFE cryptosystem (Patarin, 1996),
as shown in (Faugère and Joux, 2003).

For these systems, the choice of d0 as the index of the first non-positive coefficient
of HSn,m would be very pessimistic, since the Macaulay matrices in degree d0 would
be larger than necessary. However, if estimates of the witness degree are known (this is
the case for HFE), then d0 can be chosen accordingly as a parameter of the Algorithm
BooleanSolve.

5.4. Application in Cryptology
Careful implementation of the algorithm will be necessary to estimate accurately

the efficiency of the BooleanSolve algorithm. For instance a crucial operation is the
Wiedemann (or block Wiedemann) algorithm; in practice, it is probably useless to work
in a field extension F2k as requested by Proposition 3. Working directly over F2 and
packing several elements (bits) into words may have a dramatic effect on the constant
hidden in Theorem 2. In the following we estimate the impact of the new algorithm
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from the point of view of a user in Cryptology. In other words, if the security of a
cryptosystem relies on the hardness of solving a polynomial system, by how much
must the parameters be increased to keep the same level of security?

The stream cipher QUAD (Berbain et al., 2006, 2009) enjoys a provable secu-
rity argument to support its conjectured strength. It relies on the iteration of a set
of overdetermined multivariate quadratic polynomials over F2 so that the security of
the keystream generation is related, in the concrete security model, to the difficulty of
solving the Boolean MQ SAT problem. A theoretical bound is used in (Berbain et al.,
2009) to obtain secure parameters for a given security bound T and a given maximal
length L of the keystream sequence that can be generated with a pair (key, IV): for in-
stance (see Berbain et al. (2009) p. 1711), for T = 280,L = 240,k = 2 and an advantage
of more than ε = 1/100, the bound gives n ≥ 331. We report in the following table
various values of n depending on L, T and ε:

T L ε n
280 240 1/100 331
280 222 1/100 253
2160 280 1/100 613
2160 240 1/100 445
2160 240 1/1000 448
2160 240 1/10000 467
2256 240 1/100 584
2256 280 1/100 758

Security parameters for the stream cipher QUAD (Berbain et al., 2009)

Now, the question is to achieve a security bound for T = 2256; what are the mini-
mal values of m and n ensuring that solving the Boolean MQ SAT requires at least T
bit-operations? Using the complexity analysis of the BooleanSolve algorithm we can
derive useful lower bounds for n when m= n or m= 2n (m= 2n corresponds to the rec-
ommended parameters for QUAD). In the following table we report the corresponding
values:

Security Bound T 2128 2256 2512 21024

Minimal value of n when m = n 128 270 576 1202
Minimal value of n when m = 2n 145 335 738 1580

Comparing with exhaustive search we can see from this table that:

• our algorithm does not improve upon exhaustive search when n is small (for
instance when m = n and T = 2128 that are the recommended parameters);

• by contrast, our algorithm can take advantage of the overdeterminedness of the
algebraic systems: this explains why the values we recommend are larger than
expected when n is large and/or m/n > 1.

26



Acknowledgments

We wish to thank D. Bernstein, C. Diem, E. Kaltofen and L. Perret for valuable
comments and pointers to important references. This work was supported in part by
the Microsoft Research-INRIA Joint Centre and by the CAC grant (ANR-09-JCJCJ-
0064-01) and the HPAC grant of the French National Research Agency.

References

Albrecht, M., Faugère, J.-C., Farshim, P., Perret, L., 2011. Polly cracker, revisited. In:
Advances in Cryptology – Asiacrypt 2011. Vol. 7073 of Lecture Notes in Computer
Science. Springer-Verlag, pp. 1–14.

Ars, G., Faugère, J.-C., Imai, H., Kawazoe, M., Sugita, M., 2004. Comparison between
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(HFE) cryptosystems using Gröbner bases. In: Advances in Cryptology – Crypto
2003. Vol. 2729 of Lecture Notes in Computer Science. Springer, pp. 44–60.

Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P., 2010. Algebraic cryptanalysis of
McEliece variants with compact keys. In: Advances in Cryptology – Eurocrypt 2010.
Vol. 6110 of Lecture Notes in Computer Science. Springer Verlag, pp. 279–298.

Fisher, S. D., Alexander, M. N., 1966. Matrices over a finite field. The American Math-
ematical Monthly 73 (6), 639–641.

Fraenkel, A. S., Yesha, Y., 1979. Complexity of problems in games, graphs and alge-
braic equations. Discrete Applied Mathematics 1 (1-2), 15–30.
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