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ABSTRACT Keywords

Computing loci of rank defects of linear matrices (also called the Polynomial systems solving, Grobner bases, Degree of regular-
MinRank problem) is a fundamental NP-hard problem of linear al- ity, Multi-homogeneous ideals, Determinantal ideals, Multivariate
gebra which has applications in Cryptology, in Error Correcting Cryptography, Generalized nonlinear Eigenvalue problem.
Codes and in Geometry. Given a square linear matrix (i.e. a matrix
whose entries arke-variate linear forms) of siza and an integer, : : .
the problem is to find points such that the evaluation of the matrix Categones and SUbJeCt Descrlptors
has rank less than+ 1. The aim of the paper is to obtain the most 1.1.2 [Computing Methodologieg: Symbolic and Algebraic Ma-
efficient algorithm to solve this problem. To this end, we give the nipulation—Algorithms: Algebraic algorithmsF.2.2 [Theory of
theoretical and practical complexity of computing Grébner bases Computation]: Analysis of algorithms and problem complexity—
of two algebraic formulations of the MinRank problem. Both mod- Non numerical algorithms and problems: Geometrical problems
elings lead testructured algebraic systems and computationD.4.6 [Software]: Operating Systems-Security

The first modeling, proposed by Kipnis and Shamir generates bi- and Protection: Cryptographic controls
homogeneous equations of bi-degf&gl). The second one is clas-
sically obtained by the vanishing of tife+ 1)-minors of the given
matrix, giving rise to a determinantal ideal. In both cases, under 1 INT_RODUCTION i ]
genericity assumptions on the entries of the considered matrix, we  Computing the locus of rank defect of a linear matrix (also called
give new bounds on the degree of regularity of the considered ideal the MinRank problem) is of first importance for a wide range of
which allows us to estimate the complexity of the whole Grébner @pplications. For instance, the security of many multivariate cryp-
bases computations. For instance, éxactdegree of regularity tosystems is closely related to the difficulty of solving MlnRan.k
of the determinantal ideal formulation of a generic well-defined Problems([19, 7]. In geometry, the degeneracy locus of a projection
MinRank problem isr(n—r)+1. We also give optimal degree  ©Of an algebraic surface defined by quadratic equations is the locus
bounds of the loci of rank defect which are reached under generic- of rank defect of its jacobian matrix (which is a linear matrix) (see
ity assumptions; the new bounds are much lower than the standardfor instance [1]). Also, decoding metric rank codes can be reduced
multi-homogeneous Bézout bounds (or mixed volume of Newton t0 @ MinRank problem [21].

polytopes). For (n,k,r) € N3, we define the square MinRank problem as fol-
As a by-product, we prove that the generic MinRank problem lOWs: given a square linear matrix of sine/v_ith k variables (i.e.
could be solved in polynomial time im(whenn —r is fixed) as an- a matrix whose entries akevariate polynomials of degree 1 over

nounced in a previous paper of Faugére, Levy-dit-Vehel andPerre 2 fieldKK), the goal is to find the locus of the points such that the
Moreover, using the determinantal ideal formulation, these results Matrix has a rank less thant 1. This problem is difficult since
are used to break a cryptographic challenge (which was untractabledeciding whether this locus is empty or not is NP-hard wiee a

so far) and allow us to evaluate precisely the security of the cryp- finite field [5]. Whenk = 1 the MinRank problem can be reduced
tosystem w.r.tn, r andk. Our practical results suggest that, up to {0 the EigenValue problem. Therefore, the MinRank problem can

the software state of the art, this latter formulation is more adapted P€ Seen as a generalized nonlinear EigenValue problem.
in the context of Grébner bases computations. The ultimate objective of this paper is to find the most efficient

method to solve this problem when the linear matrix is generic. In
particular, we focus on two algebraic representations: the Kipnis-
Shamir modeling [19] and the minors formulation.

Both representations are rather intuitive. For the Kipnis-Shamir

Permission to make digital or hard copies of all or part of thirknfor modeling, the algebraic system is constructed by remarking that a
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Previous work. Since the MinRank problem has many applica-

(0)

tegers, withr < nand leta= (a;3,... K

Jahh) € K™K+ Consider

tions, it has been extensively studied during the past decades, and a ¢ M (K[xq, ..., %) then x n linear matrix

lot of different approaches have been tried (see [7] for details). So

far, the most successful method seemed to be the Kipnis-Shamir

formulation [19], which has been analyzed in [14]. Indeed, when
combined with the algorithmiss [12] and FGLM [13], it can solve

the challenges A and B proposed in [7]. However, the challenge C
was remaining unbroken until now.

If k= (n—r)2, then the number of solutions of a gendrick, r)-
MinRank instance is finite and equal to the degree of the iteal
generated by the Kipnis-Shamir equations [14]. Since the solv-
ing strategy involves the FGLM algorithm (whose complexity is
O(deg(1)3)), it is crucial to have good estimates of deg The al-
gebraic system obtained by the Kipnis-Shamir formulation is multi-

We called(n,k,r)-MinRank the problem of findingx, ..., %)

in K¢ (whereK denotes the algebraic closurel§j such that the
rank of .Z (x1,...,%) is less tham + 1.

In this paper, we focus on the generic case, i.e. wdisrchosen
“at random”. Ifk = (n—r)? (resp. k < (n—r)>?), the problem
admits a finite number of solutions (see [14]) and is calledl-
defined(resp. over-definell Note that if the problem is under-
defined k> (n— r)z), it can be reduced to the well-defined case by

homogeneous, thus upper bounds can be obtained by the multi-specializingk — (n—r)2 variables to random values [14].

homogeneous Bézout number [14] or by computing the mixed vol-
ume of the associated Newton polytope [10]. However, the bounds
provided by those techniques are not sharp.

Main results. The contributions of the paper are two-fold: theo-
retical and practical. Applying a Theorem from [15] to the Kipnis-
Shamir modeling yields a bound on the degree of regularity of this
system. From the viewpoint of the minors approach, we show that
properties of the associated ideal are closely related to properties o

determinantal ideals generated by minors of matrices whose entries”

are variables. More precisely, Lemma 1 brings out the relation be-
tween the ideal generated by the minors of a generic linear matrix
and the ideal obtained by adding to a determinantal ifegeneric
linear forms. Thus properties known about determinantal ideals can
be transferred to ideals corresponding to the minors modeling. In
particular, this permits to establish explicit formulae for the exact
degree of the ideal (Corollary 1) and for its Hilbert series (Theorem
3 and Theorem 4).

With this new information, the asymptotic complexity of solving
the generic MinRank problem by both methods can be estimated,
and it is shown (Section 4) that this complexity is polynomiahin
whenk = (n—r)? is constant. Surprisingly, using these new com-
plexity estimates we found that the complexity bound of the minors
approach is better than the complexity bound of the Kipnis-Shamir
modeling.

Experiments were carried out with a view to checking the accu-
racy of the previous theoretical estimates. We apply those results
to solve a cryptographic challenge based on MinRank which was
untractable so far: experiments show that it is now possible to ef-
fectively break the challenge C from [7] by using the minors for-
mulation and thés algorithm in only 2° arithmetic operations in
GF(65521).

Organization of the paper. After this short introduction, nota-
tions are introduced and the two modelings are formally defined.
Some useful results are also recalled. Section 3 contains the mai
theoretical results and their proofs. Then, we derive complexity
estimates of the cost of solving MinRank by using Grébner bases
algorithms. Finally, we present in Section 5 experimental results.
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the mixed volume of the Newton polytope of the Kipnis-Shamir
formulation. We are also grateful to Ludovic Perret for his helpful
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ACTA grant of the French National Research Agency (ANR-09-
BLAN-0371-01) and the National Science Foundation of China.

2. PRELIMINARIES

General notations. Let K be a field. Lek, n andr be three in-

n

An interesting subclass of problems is the homogeneous Min-
Rank problem, obtained thﬁ? =0 forall (i, ).

The Kipnis-Shamir formulation. (X, ...,Xx) is solution of the
(n,k,r)-MinRank problem if and only if there are at least r inde-
pendent vectors in the kernel o (g, . ..,Xk). Since we assumed
thata is chosen generically, we can suppose that a basis of the ker-

1nel can be written in systematic form [14]. Consider the following

x (N—r) matrix:

1 0 0
0 1 0
w—=| 0 0 1
y(11) y(lz) y(1n7r)
oy )
The Kipnis-Shamir modeling is constructed by considering the al-

gebraic system# - # = 0. Indeed, if(x17...7xk,y(11) )

is a solution of the algebraic system, tHem, ..., Xx) is solution of
the corresponding MinRank problem.

On the one hand, the system can be seen as a multi-homogeneous
system with the following partition of variables:

)

On the other hand, it can also be considered as a bilinear system
with the partition of variableX UY.

The minors formulation. (xi,...,Xk) is solution of a(n,k,r)-
MinRank problem if and only if all minors of size+ 1 of .#
simultaneously vanish on this point. Thus the minors modeling is
obtained by considering the algebraic system of all minors of size

Solving strategy. For the well-defined problem, we use the fol-
lowing strategy (for both modelings): first compute a grevlex Grob-
ner basis of the ideal generated by the equations witlrsedgo-
rithm [12], then compute a Grobner basis for the lex ordering by
using FGLM [13]. For applications in CryptologK is a finite
field and it is often known that a solution of the problem lies in
KK. Then it is possible to combine this approach with an exhaus-
tive search ovesvariables. For every possible valuesefriables,
we solve the resulting over-determingd (n—r)2 —s,r)-MinRank
problem.

Previous works. The strategy for solving well-defined MinRank
problems involves the FGLM algorithm. Its complexity is well
known: O(deg1)3) arithmetic operations, where déyis the de-
gree of the ideal generated by the equations (this degree is the same



for both modelings). Therefore, sharp bounds on(Hegre re- PROPOSITION 1. [18, page 261] The degree of the determinan-
quired to estimate the complexity of this step. So far, bounds on this tal ideal Z is

degree are obtained by considering the multi-homogeneous struc- ner—1 i
ture of the Kipnis-Shamir formulation. A bound can be obtained |‘L ( |+ )! =
with the multi-homogeneous Bézout number: d¢gc (M)" " (see i=b (N=1-in—r+i)

[14] for details). Newton polytope techniques [10] permit to achie-
ve slightly sharper bounds, but require heavier computations. How- 3. THEORETICAL ANALYSIS OF THE MI-
ever, the gap between known bounds and the real degree is big. For NORS FORMULATION
instance, for thg6,9,3) problem, the degree of the ideal gener-
ated by either of the two modelings is 980, whereas the associated
Bézout number is 8000 [14], and the mixed volume bound of the
associated Newton polytope is 7340

To estimate the complexity of the computation of the grevlex . ; X
Grobner basis, upper bounds on the so-callegree of regularity theoretlt_:al viewpoint. . .
of the ideal generated by the equations are required. This value Notatlons Thr?(ughout this papen denotes the selt o Vi”'
is the highest degree encountered during a Grébner basis calculaﬁb|es{ﬂ1 )o-.,ah0}, b is the set okr? variables{b(lyi, L b
_tlon with respect to__a graded_ monomial prderlng The _complex andc is the set of® variables{c(ll‘il), cglnnn }. We consider the
ity of the whole Grébner basis computation can be estimated by

Applications require efficient methods to solve the affine Min-
Rank problem. However, we start by studying the homogeneous
case. Indeed, the structure of the homogeneous problem is closely
related to that of the affine case, and is easier to describe from a

O(M(dreg)?) [3, 2], whereM(d,eg) denotes the number of mono- generic matrix# € Mn(K(a)[x1, ... ]) defined by
mials of degree less than or equatitg,, andw s the linear algebra ®
constant (X w < 3). Recently, we showed in [15] a sharp bound My = /z aj § X
on the degree of regularity of generic affine bilinear systems: =1

THEOREM 1. [15, Theorem 6.1] For the grevlex ordering, the In the following, .# denotes the ideal generated by all minors
degree of regularity of a generic affine biline@mdimensional sys-  of sizer +1 of .Z. X (resp. V) denotes the set of variables
tem overK[X, Y] is upper bounded bgnin(card(X), card(Y)) + 1. {x1,.... %} (resp{vi1,...,Van}).

We would like to p0|nt out that the results of this section can be

The Kipnis-Shamir algebraic modeling is a bilinear system, thus extended to the case whe# is a non-square matrix.

this bound can be applied;e; < min(k, (n—r)r)+ 1. In the case

of well-defined instances = (n—r)? and thusdreg < min((n— 3.1 The under-defined homogeneous case

N2,(n —1)r)+1. In comparison, the classical Macaulay bound | this part of the paper, we suppose that (n—r)2. When

would yield an upper bound affn—r) +1[20]. k < (n—r)?, the system is O-dimensional and this case is discussed
In [15, Section 6.1], we also proposed a variant of Hgeal- in Section 3.2.

gorithm dedicated to multi-homogeneous systems. This variant
could speed-up the computation of the Grobner basis of the Kipnis-  peginiTion 1.
Shamir system. However, there is so far no efficient implementa-

tion of this algorithm. e We denote by the ideal ofK(a)[X,V] defined by
Determinantal ideals. Properties of the minors modeling are
strongly related to properties determinantal idealgenerated by ~ K (0)
minors of matrices whose entries are variables. In this paper, S =T+ (Vi _/zlai.,j .
= <i,j<n

denotes the ideal d&[vy 1, ...,Vnn] generated by all minors of size
r + 1 of the followingn x n matrix:
v v e Fora= (aﬁ, aﬁkr),) € K™, the specialization morphism
L1 e TLn is denoted by[)a

Vo1 ... Vo K@ - K
n, e n,n K %

_ ), ol — f@Y,...,a%
Many results are known about the structure of the ideal ' ’

THEOREM 2. [6, page 679] The dimension & is (2n—r)r, e 7 denotes the ideal d€(b, c)[X,V] defined by:
and its Hilbert series is

HS(t) = ___OetAD) 9 =2+ (g >1§i¢j§n’
t) (@ —t)@-nr 0 (12
_ ) _ where g 724 15 [ Xkt 2 1<, 6<n C,] V¢, ¢, Are generic
where At) is the rx r matrix defined by linear forms.
n—max(i, : :
Ajt) = [Z) (n - ') (n— J)tﬁ_ o For (b,c) € K"k x K, U ¢ denotes the specialization mor-
’ = ¢ ¢ phism:
The following Proposition is a consequence of the Thom-Porteous K(b,c) — K
formula. This question has been discussed by Giambelli, Harris-Tu f(b,c) +— f(b,c)
and Baker. A short proof of this formula can be found in [18, page
261]. The following Lemma is one of the main tools of this Section: it

IThis value was provided to us by loannis Z. Emiris and Tomohiko Shows how to transfer properties @fto the ideal# generated by
Mizutani. the minors.



LEMMA 1. Let £ be a property which holds on some ideals This shows the incIusio@wb,c(é) :(b,c) €O} C {¢a(#£) :a€
of K[X,V]. Suppose that there exists a nonempty Zariski open setO”}. Conversely, leta be inO”. By constructiona,id) is in O

Op C K™K K™ such thatv(b, c) € Op, # is verified onp, c(Z).
Then there exist nonempty Zariski open setse ™k x K" and
0" c K™k such that

{#a(#) 1a€ O} = {ghc(2) : (b,c) €O}
and the property? holds for every ideal in this set.

PROOF LetF denote the complement G in KK K”4, and
let] C K[b,c] denote the ideal of polynomials vanishinglenThe

property & holds on ideals and is independent on the set of gen-
erators. We want to encode this fact in our polynomial modeling.

Consider the following? x (n?+ k) matrix:

11 , 1 K

RTINS Wi e RO 1

11 1 K
b

N nn

1 - G100 by by1

C&Lﬁl) ces Cwﬁm br(11r)1 e bnlfn

Each line of this matrix represents one generatgrof the ideal

2. If we replace this set of linear forms by an invertible linear

and ¢a() = Yaid(2). Thus{ga(#):ac 0"} C {the(2):
(b,c)c0}. O

In order to prove results ofiz(.#) (for generica), we use the
following strategy: N

o deduce properties afi, c(2) by adding toZ generic linear

forms; _

o with Lemma 1, transfer those propertiesftg.¥ );

o finally, prove properties op(.#) by eliminating the va-

riablesV.

From now on, we suppose that> 1 and< denotes the strict
lexicographical ordering oN?: (i1, j1) < (i2, j2) if and only if

i1 <ipor
i1 =lipandj; < jo.

We recall thag; j is a generic linear form (see Definition 1).

PROPOSITION 2.
Denote byZ_; ;) the ideal? + <gyl7(2>(51752)<(i1£) C K[i(,V]. There
exists a nonempty Zariski open subset ™K x K" such that,
if (b,c) € O, then for all(i,j) € {1,...,n}?, Wb c(gi,j) does not
divideOin K[XV]/LIIbC(.@_«LJ))

PROOEF lItis proved in [4, Theorem 2.10 and Remark 2.12], that
2 is a prime ideal. Moreover di(w) > 2 (Theorem 2), thus there

combination of they; j's, then the ideal generated is the same, but exists a nonempty Zariski open sub&t; such that if(b,c) €
the coefficients of the new generators do not necessarily belong tog, ;  then y, <(g11) does not divide 0 irK[X,V]/2. Further-

Op. Thus we want to find a larger Zariski open set (narf®dd the
sequel) such that if the coefficients of thg’s lie in Op, then the
coefficients of any invertible linear combination of thg’s lie in
o.

For M € GL2(K), let Iy C K[X,V] denote the ideal obtained
by performing the linear change of variablgé = M - ¢ and let
Fu denote the variety dfy. SinceK[X,V] is Noetherian, the set
MMeaL (k) Fm is a Zariski closed subset. L@tbe its complement.
ThenOis a nonempty Zariski open subset af(, ¢) € O, Wi o(2)
verifies the property?.

Leth € K[b, ] be the determinant of th& x n® matrix of then?
first columns of#. The inequatiom(b, ¢) # O defines a nonempty
Zariski open subsédqe; of K™k K" LetO' be equal td©NOgyer.
Then consider the vectad = (idi(ﬁ-l’@) defined by

() _ {1 i (1,5) = (01, £2)
]

i 0 otherwise.

Then let0” ¢ K™ denote the sefa: (a,id) € O'}. ThenO” is a

nonempty Zariski open subset KK,
Let (b,c) be inO'. Consequently, the? x n? matrix of then?
first columns ofyy, ¢(%) is invertible, and thus, by performing a

linear combination of the generators, there exéts K" such
that

01,0 ¢
<21§(;‘1,[2§n Ci(Jl 2)Vg1,,1{2 * ZIZ:I bi(.j)Xk>
Y4
= <W}1,[2 - Z'z?:l ai(-j)xk>

Then note that

~ k
Yool P) = 7+ <V£1,é2 -2 %‘?Xk>
=1

1<i,j<n

1<i,j<n’

$a(-7).

1<i,j<n

more, sinceZ is prime, Spec(K[X,V]/2) is a reduced and irre-
ducible scheme. According to [16, Corollary 3.4.14], cutting a re-
duced and irreducible scheme of dimensiof by a generic hyper-
plane yields an irreducible and reduced scheme (it is a consequence
of Bertini’s First Theorem). Therefore, there exists a nonempty
Zariski open subse®d] , such that if(b,c) € O] 4, thenyy (2 +

g1,1) is also radical and irreducible, thus prime. By induction,
there exist nonempty Zariski open s@sj andOj ; such that, if

(b,c) € Oy, thenyh ¢(gi,j) does not divide 0 iIfK[X,V]/Z_ ),

and if (b,c) € O j, thenh c(Z(i j) +9i,j) is prime. Finally,

i
O= ﬂ Oij

is the wanted nonempty Zariski open subséfl

REMARK. We would like to point out that the conditidn>
(n— r)2 is crucial for the proof of Proposition 2: this proof relies
on Bertini’s Theorem [16, Theorem 3.4.10], which is only valid if
the projective dimension is 2 (i.e. the Krull dimension i& 3). A
consequence of this theorem is that if a prime homogeneous ideal
has dimension > 3, then addingl — 2 generic linear forms yields
a prime ideal of dimension 2 [16, Corollary 3.4.14]. Consequently,
the maximum number of generic linear forms we can add such
that each form does not divide zero in the previous quotient ring is
dim(2)+k—1=(2n—r)r+k— 1. We need to add? linear forms
to define the generic MinRank problem affth—r)r + k—1 > n?
if and only ifk > (n—r)2,

COROLLARY 1. There exists a nonempty Zariski open subset
O, of K™K such that ifa € Oy, then the dimension afa(#) is
k— (n—r)? and its degree is

nr-1 i'(n+1i)!

iD) (n—=1—)(n—r+i)"




PrRoOOF. ConsiderZ as an ideal oK[X,V]. From Proposition 1,
its degree i) 1 % From Theorem 2, the dimen-
sion of this ideal i§2n—r)r + k. According to Proposition 2, there
exists a nonempty Zariski open sub&eof K"k x K" such that,
L[Jb’c(.@) has the same degree @sand its dimension i& — (n—r)?

if (b,c) € O (since adding to an ideal a linear form which is not a

Then, applying Lemma 1, the result can be transferref to”)
(for ain a nonempty Zariski open séb). Let G be a Grébner basis
of ¢a(.#). Then

k
GU{vi,j— /Z afﬁ)xé}lgi,jgn
(=1

divisor of zero in the quotient ring does not change the degree andis a Grébner basis ofa(.#) for a grevlex ordering with/ > X

decreases the dimension by 1).
Next, Lemma 1 shows that there exists a nonempty Zariski open

subseD; c K"K such that ifa € Oy, then

N n—r—1

cegon(7) =[] it(n+i)!

(n—=1-)(n—r+i)"

Finally note that inpa(.#), the variable¥ are linear combinations
of the variables<. Thus

deg¢a(-s))

deq $a(.#) NK[X])
ded¢a(#)). -

The Hilbert series is a useful tool to describe homogeneous ide-
als of K[X]. If I c K[X], it is defined as follows:

HS(t) = dszim(Kqu/ld)td,

whereK[X]q is the vector space of homogeneous polynomials of
degreed andly denotes the vector spate K[X]q.
Many information can be read off from this series. For instance,

the dimension, the degree and the degree of regularity can be com-

puted once this series is known. More preciselffS$ft) € Z][[t]] is
the Hilbert series of an idedlc K[X], then

o the smallestl such that(1—t)9HS(t) is a polynomial is the
dimension ofl;

o if the dimension ofl is 0, then the evaluatioHS(1) gives
the degree of the ideal and détH(t)) + 1 is the degree of
regularity ofl.

The next theorem provides an explicit formula for the Hilbert

series of the ideal generated by the minors of a generic linear matrix

in the homogeneous under-defined case:

THEOREM 3. There exists a nonempty Zariski open subsgt O
of K™k such that ifa € Oy, then the Hilbert series afa(7) is
HSy, ()= —~F—""— deth(t) :
@ t(z)(lft)k*(n*f)z
where At) is the rx r matrix defined in Theorem 2.
PROOF In [6, Corollary 1], it is shown that the Hilbert series of
2 CK[V]is
detA(t)
tG) (1 —ty@-nr
Thus the Hilbert series a? as an ideal oK[X,V] is
detA(t) detA(t)
t(;) (1 _ t)(2n—r)r+card(X) t(;) (1 _ t)(2n—r)r+k '

HS4(t) =

Let O be the Zariski open set defined in Proposition 2. Adding to
an ideal a linear form which is not a divisor of zero in the quotient
ring multiplies the Hilbert series byl —t). Thus, if (b,c) € O,
then the Hilbert series af, ¢(2) is

__detAl)
t() (1 t)k-(n-n?’

(i.e. a grevlex ordering such thx;g&éjl"”2> > x, forall i, j,2,01,¢5).
ConsequentlyK[X]/¢a(.#) is isomorphic (ag-vector spaces) to
K[X,V]/¢a(.#), thus the Hilbert series @f,(.#) is the same as the
Hilbert series ofpa (7).

3.2 Well-defined and over-determined cases

In this partk < (n—r)2, and we still consider the homogeneous
MinRank problem. First, we propose a variant of the Froberg Con-
jecture [17], which describes the structure of the ideal obtained by
adding to2 more than diniZ) — 1 generic linear formg; j (as
defined in Definition 1).

CONJECTURE 1. We use the same notations as Proposition 2.
LetZ_ i.j).d denote the vector space of homogeneous polynomials
of degree d inZ_; ;). Then there exists a nonempty Zariski open
subset @ of K™k x K" such that, if(b,c) € O3, thenV(i, j) €
{1,...,n}2,vd € N, the linear map

KX V]a/Wbc(Z<ij)a) — KXViara/Woc(Z< ) de1)
f — f-oel(gi))

is of maximal rank.

From now on, we use the following notation: for a serges
Z[[t]], [§ denotes the series obtained by truncatigt the first
null or negative coefficient.

COROLLARY 2. If Conjecture 1is true, and ifb,c) € O3, then
the Hilbert series ofyb7c(@<(i7j) +9j)is

|:(17t)HSWb.c(@<(i.j))(t):| )

PrROOF In order to simplify the notationd, denotes the ideal
Wo.c(Z<i,j)) andlg denotes the set of polynomials bdbf degree
d. Let xii c(gi,j) denote the multiplication by, ¢(gi,j) and let
ann(pc(gi,j)) be the ideal f € K[X,V]: fypc(gij) €1}. Con-
sider the following exact sequence:

%o c(Gij)
0—ann(Poc(9i,j))a — KX, V]g/la ——— K[X,V]as1/ld+1 —

— KX V]a+1/(1 + b,c(8ij))d+1 — 0.
According to Conjecture 1, the dimensiona@fn(y ¢(dij))d iS
equal to mat0, dim(K[X,V]q/lg) — dim(K[X,V]gs1/ld+1))- Itis
well known that the alternate sum of the dimensions of an exact
sequence of vector spaces is 0. Therefore,

dim(K[X,V]gr1/(1 + Wb.c(9i j))dr1)
= max(dim(K[X,V]g;1/lgs1) — dim(K[X,V]q/lq),0).

Multiplying this equation byt%+1 and summing oved € N yields
the claimed relation between the Hilbert seriegl

THEOREM 4. If Conjecture 1 is true, then there exists a non-
empty Zariski open subset;@f K"k such that for eacta Oy,
the Hilbert series ofpa(.#) is

2_g detA(t)
) |’

where At) is the rx r matrix defined in Theorem 2.

HS g, (1) = [(1-1)("")



PROOF. ConsiderZ the determinantal ideal on which we add
only (2n—r)r +k— 1 generic linear forms:
51,42>
(i,j)es

9_9+<; b+ o B2y,
=1 1<(3,02<n
(2n—r)r+k—1. Now take

whereSc {1,...,n}? andcard(S) =
(b,c) in the nonempty Zariski open s€&n O3, (O is defined in
Proposition 2, anmg is defined in Conjecture 1). Thus the Hilbert

series ofify (7 )ls HS he(F )( )=% Thus, adding the? —

(2n—r)r —k+ 1 remaining linear forms, and applying Corollary 2
for each linear form, it is proved that the Hilbert serieggf(2) is

[(1—t) [(1—t) {...(1—t) {W‘S(‘?—%HH _Itis easy to prove that
if Se Z[[t]] is a series such th&(0) > 1 (which is the case when
Sis an Hilbert series of an homogeneous ideal), thigr-t) [S] =

[(1—t)Y. Thus the Hilbert series apy, (2 7) can be rewritten as
{(1—0( N kde—"ﬁ)} .
] t(2) ) )
Finally, by the same argument as in the proof of Theorem 3 (i.e.
by using Lemma 1 and then eliminating the variabf@sthere ex-

ists a nonempty Zariski open sy C K"K such that, ifa € Oy,
then the Hilbert series afa(.#) is the same. []

The degree of regularitys a sharp indicator of the complexity
of Grdbner basis algorithms. It is the highest degree of the poly-
nomials occurring during the Grobner basis computation.idfa
0-dimensional homogeneous idedl is precisely the lowest in-
teger such that all monomials of degrég, are inl and can be
read off from the Hilbert series (which is a polynomial):

dreg = 1+ degHS(t)).

Most bounds of the complexity of Grébner basis algorithms (for
instancer, [11] or F5 [12]) are exponential in the degree of regu-
larity. Therefore it is crucial to obtain sharp estimatesigj.

COROLLARY 3. Under the same conditions as Theorem 4, the
degree of regularity opa(.#) is
,kdetA(t)D Y

deg( [(1—t)<””>2 0

PROOF The degree of regularity of a 0-dimensional homoge-

neous system is equal to the degree of the Hilbert series (given by

Theorem 4) of the associated ideal plus L]

COROLLARY 4. The degree of regularity of the ideal generated
by the minors formulation of a generic well-defined MinRank prob-

lem (i.e. k= (n—r)?) is bounded bylreg <r(n—r)+1.
detA(t) detA(t)
e = e | © J) 2= ces( 00)

On each row of the matriA(t), a polynomial with the highest de-
gree is on the diagonal. Moreover, @@g;(t)) = n—i. Thus

PrROOF According to Corollary 3,

r(r+1)
)< - .
degdetA(t) Zx =nr >
Finally HS(t) = de{*@ and
dreg = degHS(t))+1
S nr_@_@_’_l
= r(n—r)+1 O

This bound is sharp in practice: if the MinRank instance is gene-
ric, then the degree of regularity of the ideal generated by the mi-
nors is exactly (n—r) + 1.

The affine well-defined and over-determined MinRank prob-
lem. In most applications, the MinRank problems occurring are
affine. The analysis performed for the homogeneous MinRank
problem permits to estimate the complexity of solving MinRank
by the minors approach in the 0-dimensional affine case. Indeed,
the maximal degree reached during the Grébner basis computation
is upper bounded by the degree of regularity of the ideal generated
by the homogeneous parts of highest degree of the minors.

Therefore, the degree of regularity of the minors formulation of
a generic affinén, r,k)-MinRank problem is less or equal than the
degree of regularity of the minors formulation of a generic homo-
geneougn, r,k)-MinRank (given by Corollary 3). In practice, this
bound is sharp: when the MinRank instance is generic, it is an
equality.

4. COMPLEXITY ANALYSIS

In this section, we estimate the costs of the Grébner basis com-
putations and of the FGLM algorithm for generic well-definke:(
(n—r)?) affine MinRank problems.

4.1 The Kipnis-Shamir formulation

The arithmetic complexity of thEs algorithm [12] for comput-
ing a grevlex Grobner basis can be estimate®bW(de¢)%) [2,

3], whereM(d,¢g) denotes the number of monomials of degree less
than or equal tel,e; andw is the linear algebra constant.

We make the assumption that the Kipnis-Shamir modeling ap-
plied to a MinRank problem where the matrices are chosen gener-
ically leads to a generic enough bilinear system such that Theorem
1 holds. This assumption is verified experimentally.

Therefore, we gedreg < min(k, (n—r)r) +1 and the complexity

is upper bounded b@((k+r )+ )

reg
In applicationsy’ = (n—r) is often constants = (n—r)2, and
we want to estimate the asymptotic complexity winegrows. Ac-
cording to Theorem Id,eg = r'’2+ 1 whenn is big enough.
A straightforward computation gives
K- (n—r")r'+1241y @ 1 \® 241
( o1 ) Ko e v (k+nr)@(r?+1)

o(nw(r’2+l))_

This estimate of the complexity is for standard Grébner basis
algorithmsF4 and F5 for homogeneous systems. In [15, Section
6.1], a variant of5 dedicated to multi-homogeneous is proposed.
The key observation is that the multi-homogeneous structure of the
system induces a structure in the matrices occurring irFihend
Fs algorithms. Consequently, those matrices can be decomposed
into smaller matrices, whose row echelon forms can be computed
independently. A consequence of this decomposition would be a
speed-up and a reduction of the required memory. Since the Kipnis-
Shamir modeling has a multi-homogeneous structure, this variant
of F5 could lead to practical improvements. However, so far there
is no efficient implementation of this multi-homogeneous variant,
and no precise complexity analysis.

4.2 The minors formulation

In this part, we estimate the asymptotic complexity of computing
a grevlex Grébner basis in the well-defined calse=((n —r)?).
In particular, we fixr’ = (n—r), and we estimate the arithmetic
complexity whem grows. As in Section 4.1, the complexity of the
Fs algorithm can be estimated IQ(M(dreg)%).



According to Corollary 4, the complexity is then upper bounded [_Chall._| A B c

K () 11, © : ) (6.9.3)| (7.9.4) | (8.9.5) [(9.9,6)[(109,7)|(1L9,8)
byO(( e ) >~An equivalent whem grows is degree | 980 | 4116 | 14112 | 41580 | 108900| 259545
L " " MH Bézouf 8000 | 42875 | 175616 | 502704 1728000 4492129
k+r'(n—r)+1 e (Ket-r'm)k — O(n“’rlz) Minors
Fin—r)+1 ) nSw\K = - Fsfime | 1.1s | 37s | 935s | 181225 229094925703965

) ] ) Fs mem [488 MB|587 MB|1213 MB[5048 ME25719ME
One observes that — in the well-defined case — the complexity |F, Magma 4.6s | 142.8s| 3343.5s|

bound of the minors approach is slightly better than the complexity dreg 10 13 16 19 22 25
bound of the Kipnis-Shamir modeling. Nbop. | 215 | 25.9 29.2 32.7 35.2 40.2
. . i FGLM timg 1.7s | 97.2s 00
4.3 Complexity of FGLM in the well-defined Kipnis-Shamir
case Fstime | 30s [ 3795s[ 3282335

) . - ; Fs mem [407 MB[3113 MB58587 ME
With both modelings, when a grevlex basis is computed in the Fr Magma 3005 | 487455

well-defined casek(= (n—r)?), a change of ordering is required T 5 3 =
to obtain the lexicographical basis which gives the solutions of Nbregp. 05 371 434 | 504 | 574 | 644
the problem. Corollary 1 yields the degree of the ideal (with the |EGILMtme 35s | 2580s o
Kipnis-Shamir modeling or with the minors modeling). The com-
plexity of FGLM is O(deg(1)2), thus we need the asymptotic be-

haviour of the degree to perform a complexity analysis. Table 1: Authentification scheme parameters
Whenr’ = n—r is constant, applying Corollary 1, we get
1 (ntiy "Ll 2"l . N , ,
degl) = |‘L . l_L — ~ n’ l_!) TR The row “degree” provides the degree of the ideal (i.e. the num-
iy (n=1=0) Ly (D n—e LG (/) ber of solutions in the algebraic closure) and can be compared

with the multi-homogeneous Bézout bound (“MH Bézout”). The
row “Fg time” (resp. ‘Fs mem”) gives the time (resp. the mem-
ory) needed to compute the grevlex Grébner basis of the ideal un-
5. EXPERIMENTAL RESULTS AND APP- der consideration. The computation is done with Bgelgorithm
LICATIONS from the FGb package. We also give the time obtained for the
In this SectionK is the finite fieldGF (65529). same Grobner basis computations with the implementatiéy of

Workstation. Experimental results have been obtained with 24 Magmaz2.16, so that _experlme_nts can be re“produc?gg gives
) . the degree of regularity of the ideal. Finally “Nb op.” indicates the
Xeon quadricore processors 3.2 GHz, with 64 GB of RAM. . . . . .
logarithm (in base 2) of the exact number of arithmetic operations

51 Computing the minors performeq during the gxecgtion of tlirg algorithm, and “FGLM
The minors modeling raises questions about how to generate thetlme provides the running time of '.:GLM (frqm the FGb package).
equations. It is not clear how to compute efficiently all minors of _Note that the degree of r.egu"f"”‘y of the ideal generated by the
. . . . na2 minors matches the value given in Corollary 4. Moreover, note that
sizer + 1 of a big matrix. For @ x n matrix, there are ;)" such the degree of the ideal is equal to the value provided by Corollary 1.
minors, and each is a polynomial of degreel ink variables. For Looking at the logarithm of the number of arithmetic operations

instance, for an affine problem with = GF(6552),n=11,k=9 which is growing linearly, it seems clear that, for both formulations,
andr = 8, it took 14 days on one CPU (with Maple). Fortunately, e Grabner basis computation is polynomialriwhenn — r is

this computation can be parallelized: with 120 processes running fixed, as announced in [14] and proved in this paper (Section 4).
simultaneously on 24 CPU, the computation lasted 12 hours. The  \yg would like to emphasize that the FGLM step costs sometimes
size of the resulting algebraic system is 3466 MB. more than the grevlex Grébner basis computation. In order to avoid

For this computation, we used naive algorithms (each determi- s cost, a possible strategy is to combine the minors approach with
nantwas computed independently) but we believe that there is roomg, ayhaustive search over some variables.

for improvement by using more sophisticated algorithms.
5.2 The well-defined case 5.3 Solving the challenge C of the Courtois au-

Here,k = (n—r)? and the ground field i& = GF(65523). This _thentlflcatlon SChe_me ] . )
set of parameters is used in a MinRank-based authentification sche- Solving the challenge C requires to find one solution of a generic
me [7]. affine (11,9, 8)-Min_Rank prol_olem which has a particula_rity: it is

Generation of the instances.For (n,k,r) € N3, we generate a  known that there is a solutiofxy, ..., ) € GF(65521° in the
nx nmatrix M = (M; j) where theM; ; are affine linear forms in ground field. Therefore we can combine the minors formulation

) . © <k O, () with a partial exhaustive search. To this end, we specializi-
k \{arlables. Mij = ai,_J T2 d X where theai,i are chosen ables and solve the corresponding over-determiiidd9 — s, 8)-
uniformly at random irGF(65521). MinRank problem for all specializations of tiseariables. The de-

Interpretation of the results. Table 1 describes experimental gree of regularity of the over-determined systems can be estimated
results, for different values of the triplé, r,k). In particular, we with Corollary 3, so the complexity of the complete computation
consider sets of parameters used in Cryptology for a MinRank- can be approximated. For these systems, the degree of the ideal is
based authentification scheme [7]. The complexity of solving the 0 or 1. Consequently, a grevlex Grébner basis is also a lex Grébner
MinRank problem is then directly related to the security of this basis and the FGLM algorithm is no longer required.
cryptosystem. The values in italic font were not computed, but are  Table 2 shows the experimental results for different values of
estimates of the complexity based on the theoretical results from The row ‘d.e;” gives the degree of regularity obtained for each spe-
the previous section. cialization of thes variables. The row “Nb op.” gives an estimate

Therefore, the asymptotic complexity of FGLM@n3"*).



(n=11k=9-sr=28)
[ s 3 [ 2 1T 1 T ©
[ Minors [Fstimg] ~ 79s 1594s | 80255s |2570396%
Fs men <1000 MB| 2400 MB[29929 MB
dreg 9 10 13 25
Nb op. 73 60 49.1 40.2
[ KS [RFGH 570005 |
Fs men) 10539 MB
dreg 7
Nb op. 88.6

Table 2: Challenge C of the Courtois authentification scheme.

of the logarithm in base 2 of total number of operations needed
to solve the challenge C. It is equal to §§552F0pF5) where
OpFs5 is the number of arithmetic operations used by Fhalgo-
rithm to solve ong11,9 — s,8)-MinRank problem. The values in
italic font were not effectively computed but are given as estimates
based on practical and theoretical results.

First of all, we want to emphasize the fact that the degree of
regularity of the ideal generated by the minors matches the one
deduced from the generic Hilbert series (Corollary 3) in the over-
determined case.

According to Table 2, the best practical choice seems ®-bi.

In practice, the 65521 computations of the over-determined sys-
tems can be parallelized, and the total number of required arith-
metic operations (®1) is quite practical. We estimate to 238 days

the time needed to effectively solve this challenge on 64 quadri-

core processors. Therefore, the authentification scheme cannot be

considered secure anymore with the set of paramétersll k =
9,r=38).

Note that it may be possible to compute directly a Grobner basis
of the ideal generated by the minoss= 0). By interpolating the
practical results, we give a rough estimate of the complexity of this
computation: it would take approximately 29 days (on one CPU).
However, it is not clear how much memory would be required, and
the FGLM step could be untractable since the degree of the ideal is
259545 (Corollary 1).

6. CONCLUSION

In this paper, we studied two formulations of the MinRank prob-
lem from the viewpoint of efficency and practical applications. In
particular, the analysis of the ideals generated by the minors gave
new information about the intrinsic structure of this problem.

Results from algebraic geometry about determinantal ideals per-
mit to obtain the number of solutions for a generic MinRank prob-
lem whenk = (n—r)2. This value is important for the study of the
complexity of the solving process since it has a directimpact on the
complexity of FGLM.

We provided the Hilbert series and an explicit formula for the
degree of regularity of the ideal generated by the minors. This
information leads to a complexity analysis of the whole Grébner

basis computation. We also proposed a method to break the chal-

lengeC of the MinRank authentification scheme faster than any
other known approaches. This method is feasible in practice since
it requires only 2° arithmetic operations.

Many interesting questions have arisen from this study. First,
to be able to apply the minors approach on huge over-determined
MinRank instances, algorithms for computing efficiently all the mi-
nors of size +1 of a linear matrix are required. Another question is
to find how the multi-homogeneous structure of the Kipnis-Shamir

formulation can be used to speed-up the computations, and to eval-
uate precisely its cost. We derived a formula from [15] to bound
the degree of regularity of the Kipnis-Shamir modeling. Although
this bound is much sharper than any other known bounds, there is
still a small gap between it and the real degree of regularity.
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