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ABSTRACT
Computing loci of rank defects of linear matrices (also called the
MinRank problem) is a fundamental NP-hard problem of linear al-
gebra which has applications in Cryptology, in Error Correcting
Codes and in Geometry. Given a square linear matrix (i.e. a matrix
whose entries arek-variate linear forms) of sizen and an integerr,
the problem is to find points such that the evaluation of the matrix
has rank less thanr +1. The aim of the paper is to obtain the most
efficient algorithm to solve this problem. To this end, we give the
theoretical and practical complexity of computing Gröbner bases
of two algebraic formulations of the MinRank problem. Both mod-
elings lead tostructured algebraic systems.

The first modeling, proposed by Kipnis and Shamir generates bi-
homogeneous equations of bi-degree(1,1). The second one is clas-
sically obtained by the vanishing of the(r +1)-minors of the given
matrix, giving rise to a determinantal ideal. In both cases, under
genericity assumptions on the entries of the considered matrix, we
give new bounds on the degree of regularity of the considered ideal
which allows us to estimate the complexity of the whole Gröbner
bases computations. For instance, theexactdegree of regularity
of the determinantal ideal formulation of a generic well-defined
MinRank problem isr(n− r) + 1. We also give optimal degree
bounds of the loci of rank defect which are reached under generic-
ity assumptions; the new bounds are much lower than the standard
multi-homogeneous Bézout bounds (or mixed volume of Newton
polytopes).

As a by-product, we prove that the generic MinRank problem
could be solved in polynomial time inn (whenn− r is fixed) as an-
nounced in a previous paper of Faugère, Levy-dit-Vehel and Perret.
Moreover, using the determinantal ideal formulation, these results
are used to break a cryptographic challenge (which was untractable
so far) and allow us to evaluate precisely the security of the cryp-
tosystem w.r.t.n, r andk. Our practical results suggest that, up to
the software state of the art, this latter formulation is more adapted
in the context of Gröbner bases computations.
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1. INTRODUCTION
Computing the locus of rank defect of a linear matrix (also called

the MinRank problem) is of first importance for a wide range of
applications. For instance, the security of many multivariate cryp-
tosystems is closely related to the difficulty of solving MinRank
problems [19, 7]. In geometry, the degeneracy locus of a projection
of an algebraic surface defined by quadratic equations is the locus
of rank defect of its jacobian matrix (which is a linear matrix) (see
for instance [1]). Also, decoding metric rank codes can be reduced
to a MinRank problem [21].

For(n,k, r)∈ N
3, we define the square MinRank problem as fol-

lows: given a square linear matrix of sizen with k variables (i.e.
a matrix whose entries arek-variate polynomials of degree 1 over
a field K), the goal is to find the locus of the points such that the
matrix has a rank less thanr + 1. This problem is difficult since
deciding whether this locus is empty or not is NP-hard whenK is a
finite field [5]. Whenk = 1 the MinRank problem can be reduced
to the EigenValue problem. Therefore, the MinRank problem can
be seen as a generalized nonlinear EigenValue problem.

The ultimate objective of this paper is to find the most efficient
method to solve this problem when the linear matrix is generic. In
particular, we focus on two algebraic representations: the Kipnis-
Shamir modeling [19] and the minors formulation.

Both representations are rather intuitive. For the Kipnis-Shamir
modeling, the algebraic system is constructed by remarking that a
matrix has a rank≤ r if and only if there exist at leastn− r inde-
pendent vectors in its kernel. Considering the coefficients of these
vectors as variables gives rise to a quadratic system. On the other
hand, the minors modeling is obtained by considering all the mi-
nors of sizer +1 of the linear matrix (which simultaneously vanish
on the solutions of the MinRank problem).



Previous work. Since the MinRank problem has many applica-
tions, it has been extensively studied during the past decades, and a
lot of different approaches have been tried (see [7] for details). So
far, the most successful method seemed to be the Kipnis-Shamir
formulation [19], which has been analyzed in [14]. Indeed, when
combined with the algorithmsF5 [12] and FGLM [13], it can solve
the challenges A and B proposed in [7]. However, the challenge C
was remaining unbroken until now.

If k= (n− r)2, then the number of solutions of a generic(n,k, r)-
MinRank instance is finite and equal to the degree of the idealI
generated by the Kipnis-Shamir equations [14]. Since the solv-
ing strategy involves the FGLM algorithm (whose complexity is
O(deg(I)3)), it is crucial to have good estimates of deg(I). The al-
gebraic system obtained by the Kipnis-Shamir formulation is multi-
homogeneous, thus upper bounds can be obtained by the multi-
homogeneous Bézout number [14] or by computing the mixed vol-
ume of the associated Newton polytope [10]. However, the bounds
provided by those techniques are not sharp.

Main results. The contributions of the paper are two-fold: theo-
retical and practical. Applying a Theorem from [15] to the Kipnis-
Shamir modeling yields a bound on the degree of regularity of this
system. From the viewpoint of the minors approach, we show that
properties of the associated ideal are closely related to properties of
determinantal ideals generated by minors of matrices whose entries
are variables. More precisely, Lemma 1 brings out the relation be-
tween the ideal generated by the minors of a generic linear matrix
and the ideal obtained by adding to a determinantal idealn2 generic
linear forms. Thus properties known about determinantal ideals can
be transferred to ideals corresponding to the minors modeling. In
particular, this permits to establish explicit formulae for the exact
degree of the ideal (Corollary 1) and for its Hilbert series (Theorem
3 and Theorem 4).

With this new information, the asymptotic complexity of solving
the generic MinRank problem by both methods can be estimated,
and it is shown (Section 4) that this complexity is polynomial inn
whenk = (n− r)2 is constant. Surprisingly, using these new com-
plexity estimates we found that the complexity bound of the minors
approach is better than the complexity bound of the Kipnis-Shamir
modeling.

Experiments were carried out with a view to checking the accu-
racy of the previous theoretical estimates. We apply those results
to solve a cryptographic challenge based on MinRank which was
untractable so far: experiments show that it is now possible to ef-
fectively break the challenge C from [7] by using the minors for-
mulation and theF5 algorithm in only 249 arithmetic operations in
GF(65521).

Organization of the paper. After this short introduction, nota-
tions are introduced and the two modelings are formally defined.
Some useful results are also recalled. Section 3 contains the main
theoretical results and their proofs. Then, we derive complexity
estimates of the cost of solving MinRank by using Gröbner bases
algorithms. Finally, we present in Section 5 experimental results.

Acknowledgements. We wish to thank Ioannis Z. Emiris and
Tomohiko Mizutani who provided bounds obtained by computing
the mixed volume of the Newton polytope of the Kipnis-Shamir
formulation. We are also grateful to Ludovic Perret for his helpful
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BLAN-0371-01) and the National Science Foundation of China.

2. PRELIMINARIES
General notations.Let K be a field. Letk, n andr be three in-

tegers, withr < n and leta = (a(0)
1,1, . . . ,a

(k)
n,n) ∈ K

n2(k+1). Consider
M ∈ Mn(K[x1, . . . ,xk]) then×n linear matrix

Mi, j (x1, . . . ,xk) = a(0)
i, j +

k

∑
ℓ=1

a(ℓ)
i, j xℓ.

We called(n,k, r)-MinRank the problem of finding(x1, . . . ,xk)

in K
k

(whereK denotes the algebraic closure ofK) such that the
rank ofM (x1, . . . ,xk) is less thanr +1.

In this paper, we focus on the generic case, i.e. whena is chosen
“at random”. If k = (n− r)2 (resp. k < (n− r)2), the problem
admits a finite number of solutions (see [14]) and is calledwell-
defined(resp. over-defined). Note that if the problem is under-
defined (k > (n− r)2), it can be reduced to the well-defined case by
specializingk− (n− r)2 variables to random values [14].

An interesting subclass of problems is the homogeneous Min-

Rank problem, obtained whena(0)
i, j = 0 for all (i, j).

The Kipnis-Shamir formulation. (x1, . . . ,xk) is solution of the
(n,k, r)-MinRank problem if and only if there are at leastn−r inde-
pendent vectors in the kernel ofM (x1, . . . ,xk). Since we assumed
thata is chosen generically, we can suppose that a basis of the ker-
nel can be written in systematic form [14]. Consider the following
n× (n− r) matrix:

K =




1 0 . . . 0
0 1 . . . 0
...

...
...

...
0 0 . . . 1

y(1)
1 y(2)

1 . . . y(n−r)
1

...
...

.. .
...

y(1)
r y(2)

r . . . y(n−r)
r




.

The Kipnis-Shamir modeling is constructed by considering the al-

gebraic systemM ·K = 0. Indeed, if(x1, . . . ,xk,y
(1)
1 , . . . ,y(n−r)

r )
is a solution of the algebraic system, then(x1, . . . ,xk) is solution of
the corresponding MinRank problem.

On the one hand, the system can be seen as a multi-homogeneous
system with the following partition of variables:

{x1, . . . ,xk}∪{y(1)
1 , . . . ,y(1)

r }∪ . . .∪{y(n−r)
1 , . . . ,y(n−r)

r }.

On the other hand, it can also be considered as a bilinear system
with the partition of variablesX∪Y.

The minors formulation. (x1, . . . ,xk) is solution of a(n,k, r)-
MinRank problem if and only if all minors of sizer + 1 of M

simultaneously vanish on this point. Thus the minors modeling is
obtained by considering the algebraic system of all minors of size
r +1.

Solving strategy.For the well-defined problem, we use the fol-
lowing strategy (for both modelings): first compute a grevlex Gröb-
ner basis of the ideal generated by the equations with theF5 algo-
rithm [12], then compute a Gröbner basis for the lex ordering by
using FGLM [13]. For applications in Cryptology,K is a finite
field and it is often known that a solution of the problem lies in
K

k. Then it is possible to combine this approach with an exhaus-
tive search oversvariables. For every possible values ofsvariables,
we solve the resulting over-determined(n,(n− r)2−s, r)-MinRank
problem.

Previous works.The strategy for solving well-defined MinRank
problems involves the FGLM algorithm. Its complexity is well
known: O(deg(I)3) arithmetic operations, where deg(I) is the de-
gree of the ideal generated by the equations (this degree is the same



for both modelings). Therefore, sharp bounds on deg(I) are re-
quired to estimate the complexity of this step. So far, bounds on this
degree are obtained by considering the multi-homogeneous struc-
ture of the Kipnis-Shamir formulation. A bound can be obtained
with the multi-homogeneous Bézout number: deg(I)≤

(n
r

)n−r (see
[14] for details). Newton polytope techniques [10] permit to achie-
ve slightly sharper bounds, but require heavier computations. How-
ever, the gap between known bounds and the real degree is big. For
instance, for the(6,9,3) problem, the degree of the ideal gener-
ated by either of the two modelings is 980, whereas the associated
Bézout number is 8000 [14], and the mixed volume bound of the
associated Newton polytope is 73401.

To estimate the complexity of the computation of the grevlex
Gröbner basis, upper bounds on the so-calleddegree of regularity
of the ideal generated by the equations are required. This value
is the highest degree encountered during a Gröbner basis calcula-
tion with respect to a graded monomial ordering. The complex-
ity of the whole Gröbner basis computation can be estimated by
O(M(dreg)

ω ) [3, 2], whereM(dreg) denotes the number of mono-
mials of degree less than or equal todreg, andω is the linear algebra
constant (2≤ ω ≤ 3). Recently, we showed in [15] a sharp bound
on the degree of regularity of generic affine bilinear systems:

THEOREM 1. [15, Theorem 6.1] For the grevlex ordering, the
degree of regularity of a generic affine bilinear0-dimensional sys-
tem overK[X,Y] is upper bounded bymin(card(X),card(Y))+1.

The Kipnis-Shamir algebraic modeling is a bilinear system, thus
this bound can be applied:dreg ≤ min(k,(n− r)r)+1. In the case
of well-defined instances,k = (n− r)2 and thusdreg ≤ min((n−
r)2,(n− r)r) + 1. In comparison, the classical Macaulay bound
would yield an upper bound ofn(n− r)+1 [20].

In [15, Section 6.1], we also proposed a variant of theF5 al-
gorithm dedicated to multi-homogeneous systems. This variant
could speed-up the computation of the Gröbner basis of the Kipnis-
Shamir system. However, there is so far no efficient implementa-
tion of this algorithm.

Determinantal ideals. Properties of the minors modeling are
strongly related to properties ofdeterminantal idealsgenerated by
minors of matrices whose entries are variables. In this paper,D

denotes the ideal ofK[v1,1, . . . ,vn,n] generated by all minors of size
r +1 of the followingn×n matrix:




v1,1 . . . v1,n
...

. . .
...

vn,1 . . . vn,n


 .

Many results are known about the structure of the idealD .

THEOREM 2. [6, page 679] The dimension ofD is (2n− r)r,
and its Hilbert series is

HS(t) =
detA(t)

t(
r
2)(1− t)(2n−r)r

,

where A(t) is the r× r matrix defined by

Ai, j (t) =
n−max(i, j)

∑
ℓ=0

(
n− i

ℓ

)(
n− j

ℓ

)
tℓ.

The following Proposition is a consequence of the Thom-Porteous
formula. This question has been discussed by Giambelli, Harris-Tu
and Baker. A short proof of this formula can be found in [18, page
261].
1This value was provided to us by Ioannis Z. Emiris and Tomohiko
Mizutani.

PROPOSITION 1. [18, page 261] The degree of the determinan-
tal idealD is

n−r−1

∏
i=0

i!(n+ i)!
(n−1− i)!(n− r + i)!

3. THEORETICAL ANALYSIS OF THE MI-
NORS FORMULATION

Applications require efficient methods to solve the affine Min-
Rank problem. However, we start by studying the homogeneous
case. Indeed, the structure of the homogeneous problem is closely
related to that of the affine case, and is easier to describe from a
theoretical viewpoint.

Notations Throughout this paper,a denotes the set ofkn2 vari-

ables{a(1)
1,1, . . . ,a

(k)
n,n}, b is the set ofkn2 variables{b(1)

1,1, . . . ,b
(k)
n,n}

andc is the set ofn4 variables{c(1,1)
1,1 , . . . ,c

(n,n)
n,n }. We consider the

generic matrixM ∈ Mn(K(a)[x1, . . . ,xk]) defined by

Mi, j =
k

∑
ℓ=1

a
(ℓ)
i, j xℓ.

In the following, I denotes the ideal generated by all minors
of size r + 1 of M . X (resp. V) denotes the set of variables
{x1, . . . ,xk} (resp.{v1,1, . . . ,vn,n}).

We would like to point out that the results of this section can be
extended to the case whereM is a non-square matrix.

3.1 The under-defined homogeneous case
In this part of the paper, we suppose thatk > (n− r)2. When

k≤ (n− r)2, the system is 0-dimensional and this case is discussed
in Section 3.2.

DEFINITION 1.

• We denote byĨ the ideal ofK(a)[X,V] defined by

Ĩ = I +

〈
vi, j −

k

∑
ℓ=1

a
(ℓ)
i, j xℓ

〉

1≤i, j≤n

.

• For a = (a(1)
1,1, . . . ,a

(k)
n,n) ∈ K

n2k, the specialization morphism
is denoted byϕa:

K(a) → K

f (a(1)
1,1, . . . ,a

(k)
n,n) 7→ f (a(1)

1,1, . . . ,a
(k)
n,n)

• D̃ denotes the ideal ofK(b,c)[X,V] defined by:

D̃ = D +
〈
gi, j

〉
1≤i, j≤n ,

where gi, j = ∑k
ℓ=1b

(ℓ)
i, j xk+∑1≤ℓ1,ℓ2≤n c

(ℓ1,ℓ2)
i, j vℓ1,ℓ2 are generic

linear forms.

• For (b,c)∈K
n2k×K

n4
, ψb,c denotes the specialization mor-

phism:

K(b,c) → K

f (b,c) 7→ f (b,c)

The following Lemma is one of the main tools of this Section: it
shows how to transfer properties ofD to the idealĨ generated by
the minors.



LEMMA 1. Let P be a property which holds on some ideals
of K[X,V]. Suppose that there exists a nonempty Zariski open set

OP ⊂K
n2k×K

n4
such that∀(b,c)∈OP, P is verified onψb,c(D̃).

Then there exist nonempty Zariski open sets O′ ⊂ K
n2k ×K

n4
and

O′′ ⊂ K
n2k such that

{ϕa(Ĩ ) : a∈ O′′} = {ψb,c(D̃) : (b,c) ∈ O′}

and the propertyP holds for every ideal in this set.

PROOF. Let F denote the complement ofOP in K
n2k×K

n4
, and

let I ⊂ K[b,c] denote the ideal of polynomials vanishing onF . The
propertyP holds on ideals and is independent on the set of gen-
erators. We want to encode this fact in our polynomial modeling.
Consider the followingn2× (n2 +k) matrix:

C =




c
(1,1)
1,1 . . . c

(n,n)
1,1 b

(1)
1,1 . . . b

(k)
1,1

...
...

...
...

c
(1,1)
1,n . . . c

(n,n)
1,n b

(1)
1,n . . . b

(k)
1,n

c
(1,1)
2,1 . . . c

(n,n)
2,1 b

(1)
2,1 . . . b

(k)
2,1

...
...

...
...

c
(1,1)
n,n . . . c

(n,n)
n,n b

(1)
n,n . . . b

(k)
n,n




.

Each line of this matrix represents one generatorgi, j of the ideal

D̃ . If we replace this set of linear forms by an invertible linear
combination of thegi, j ’s, then the ideal generated is the same, but
the coefficients of the new generators do not necessarily belong to
OP. Thus we want to find a larger Zariski open set (namedÔ in the
sequel) such that if the coefficients of thegi, j ’s lie in OP, then the
coefficients of any invertible linear combination of thegi, j ’s lie in

Ô.
For M ∈ GLn2(K), let IM ⊂ K[X,V] denote the ideal obtained

by performing the linear change of variablesC ′ = M ·C and let
FM denote the variety ofIM . SinceK[X,V] is Noetherian, the set⋂

M∈GLn2(K) FM is a Zariski closed subset. Let̂O be its complement.

ThenÔ is a nonempty Zariski open subset and∀(b,c)∈ Ô, ψb,c(D̃)
verifies the propertyP.

Let h∈ K[b,c] be the determinant of then2×n2 matrix of then2

first columns ofC . The inequationh(b,c) 6= 0 defines a nonempty
Zariski open subsetOdet of K

n2k×K
n4

. LetO′ be equal tôO∩Odet.

Then consider the vectorid = (id
(ℓ1,ℓ2)
i, j ) defined by

id
(ℓ1,ℓ2)
i, j =

{
1 if (i, j) = (ℓ1, ℓ2)

0 otherwise.

Then letO′′ ⊂ K
n2k denote the set{a : (a, id) ∈ O′}. ThenO′′ is a

nonempty Zariski open subset ofK
n2k.

Let (b,c) be in O′. Consequently, then2×n2 matrix of then2

first columns ofψb,c(C ) is invertible, and thus, by performing a

linear combination of the generators, there existsa ∈ K
n2k such

that
〈

∑1≤ℓ1,ℓ2≤nc(ℓ1,ℓ2)
i, j vℓ1,ℓ2 +∑k

ℓ=1b(ℓ)
i, j xk

〉
1≤i, j≤n

=
〈

vℓ1,ℓ2 −∑k
ℓ=1a(ℓ)

i, j xk

〉
1≤i, j≤n

.

Then note that

ψb,c(D̃) = D +

〈
vℓ1,ℓ2 −

k

∑
ℓ=1

a(ℓ)
i, j xk

〉

1≤i, j≤n

= ϕa(Ĩ ).

This shows the inclusion{ψb,c(D̃) : (b,c) ∈ O′} ⊂ {ϕa(Ĩ ) : a ∈
O′′}. Conversely, leta be in O′′. By construction,(a, id) is in O′

and ϕa(Ĩ ) = ψa,id(D̃). Thus {ϕa(Ĩ ) : a ∈ O′′} ⊂ {ψb,c(D̃) :
(b,c) ∈ O′}.

In order to prove results onϕa(I ) (for generica), we use the
following strategy:

◦ deduce properties ofψb,c(D̃) by adding toD generic linear
forms;
◦ with Lemma 1, transfer those properties toϕa(Ĩ );
◦ finally, prove properties ofϕa(I ) by eliminating the va-
riablesV.

From now on, we suppose thatn > 1 and≺ denotes the strict
lexicographical ordering onN2: (i1, j1) ≺ (i2, j2) if and only if

{
i1 < i2 or

i1 = i2 and j1 < j2.

We recall thatgi, j is a generic linear form (see Definition 1).

PROPOSITION 2.
Denote byD≺(i, j) the idealD +〈gℓ1,ℓ2〉(ℓ1,ℓ2)≺(i, j) ⊂K[X,V]. There

exists a nonempty Zariski open subset O⊂ K
n2k ×K

n4
such that,

if (b,c) ∈ O, then for all (i, j) ∈ {1, . . . ,n}2, ψb,c(gi, j ) does not
divide0 in K[X,V]/ψb,c(D≺(i, j)).

PROOF. It is proved in [4, Theorem 2.10 and Remark 2.12], that
D is a prime ideal. Moreover dim(D) ≥ 2 (Theorem 2), thus there
exists a nonempty Zariski open subsetO1,1 such that if(b,c) ∈
O1,1, then ψb,c(g1,1) does not divide 0 inK[X,V]/D . Further-
more, sinceD is prime,Spec(K[X,V]/D) is a reduced and irre-
ducible scheme. According to [16, Corollary 3.4.14], cutting a re-
duced and irreducible scheme of dimension≥ 2 by a generic hyper-
plane yields an irreducible and reduced scheme (it is a consequence
of Bertini’s First Theorem). Therefore, there exists a nonempty
Zariski open subsetO′

1,1 such that if(b,c) ∈ O′
1,1, thenψb,c(D +

g1,1) is also radical and irreducible, thus prime. By induction,
there exist nonempty Zariski open setsOi, j andO′

i, j such that, if
(b,c) ∈ Oi, j , thenψb,c(gi, j ) does not divide 0 inK[X,V]/D≺(i, j),
and if (b,c) ∈ O′

i, j , thenψb,c(D≺(i, j) +gi, j ) is prime. Finally,

O =
⋂

(i, j)∈{1,...,n}2

Oi, j

is the wanted nonempty Zariski open subset.

REMARK . We would like to point out that the conditionk >
(n− r)2 is crucial for the proof of Proposition 2: this proof relies
on Bertini’s Theorem [16, Theorem 3.4.10], which is only valid if
the projective dimension is≥ 2 (i.e. the Krull dimension is≥ 3). A
consequence of this theorem is that if a prime homogeneous ideal
has dimensiond ≥ 3, then addingd−2 generic linear forms yields
a prime ideal of dimension 2 [16, Corollary 3.4.14]. Consequently,
the maximum number of generic linear forms we can add such
that each form does not divide zero in the previous quotient ring is
dim(D)+k−1= (2n− r)r +k−1. We need to addn2 linear forms
to define the generic MinRank problem and(2n− r)r +k−1≥ n2

if and only if k > (n− r)2.

COROLLARY 1. There exists a nonempty Zariski open subset
O1 of K

n2k such that ifa ∈ O1, then the dimension ofϕa(I ) is
k− (n− r)2 and its degree is

n−r−1

∏
i=0

i!(n+ i)!
(n−1− i)!(n− r + i)!

.



PROOF. ConsiderD as an ideal ofK[X,V]. From Proposition 1,

its degree is∏n−r−1
i=0

i!(n+i)!
(n−1−i)!(n−r+i)! . From Theorem 2, the dimen-

sion of this ideal is(2n− r)r +k. According to Proposition 2, there
exists a nonempty Zariski open subsetO of K

n2k ×K
n4

such that,
ψb,c(D̃) has the same degree asD and its dimension isk− (n− r)2

if (b,c) ∈ O (since adding to an ideal a linear form which is not a
divisor of zero in the quotient ring does not change the degree and
decreases the dimension by 1).

Next, Lemma 1 shows that there exists a nonempty Zariski open
subsetO1 ⊂ K

n2k, such that ifa∈ O1, then

deg(ϕa(Ĩ )) =
n−r−1

∏
i=0

i!(n+ i)!
(n−1− i)!(n− r + i)!

.

Finally note that inϕa(Ĩ ), the variablesV are linear combinations
of the variablesX. Thus

deg(ϕa(Ĩ )) = deg(ϕa(Ĩ )∩K[X])
= deg(ϕa(I )). �

The Hilbert series is a useful tool to describe homogeneous ide-
als ofK[X]. If I ⊂ K[X], it is defined as follows:

HS(t) = ∑
d∈N

dim(K[X]d/Id)td,

whereK[X]d is the vector space of homogeneous polynomials of
degreed andId denotes the vector spaceI ∩K[X]d.

Many information can be read off from this series. For instance,
the dimension, the degree and the degree of regularity can be com-
puted once this series is known. More precisely, ifHS(t) ∈ Z[[t]] is
the Hilbert series of an idealI ⊂ K[X], then

• the smallestd such that(1− t)dHS(t) is a polynomial is the
dimension ofI ;

• if the dimension ofI is 0, then the evaluationHS(1) gives
the degree of the ideal and deg(HS(t))+ 1 is the degree of
regularity ofI .

The next theorem provides an explicit formula for the Hilbert
series of the ideal generated by the minors of a generic linear matrix
in the homogeneous under-defined case:

THEOREM 3. There exists a nonempty Zariski open subset O2

of K
n2k such that ifa∈ O2, then the Hilbert series ofϕa(I ) is

HSϕa(I )(t) =
detA(t)

t(
r
2)(1− t)k−(n−r)2

,

where A(t) is the r× r matrix defined in Theorem 2.

PROOF. In [6, Corollary 1], it is shown that the Hilbert series of
D ⊂ K[V] is

HSD (t) =
detA(t)

t(
r
2)(1− t)(2n−r)r

.

Thus the Hilbert series ofD as an ideal ofK[X,V] is

detA(t)

t(
r
2)(1− t)(2n−r)r+card(X)

=
detA(t)

t(
r
2)(1− t)(2n−r)r+k

.

Let O be the Zariski open set defined in Proposition 2. Adding to
an ideal a linear form which is not a divisor of zero in the quotient
ring multiplies the Hilbert series by(1− t). Thus, if (b,c) ∈ O,
then the Hilbert series ofψb,c(D̃) is

detA(t)

t(
r
2)(1− t)k−(n−r)2

.

Then, applying Lemma 1, the result can be transferred toϕa(Ĩ )
(for a in a nonempty Zariski open setO2). LetG be a Gröbner basis
of ϕa(I ). Then

G∪{vi, j −
k

∑
ℓ=1

a
(ℓ)
i, j xℓ}1≤i, j≤n

is a Gröbner basis ofϕa(Ĩ ) for a grevlex ordering withV > X

(i.e. a grevlex ordering such thatv(ℓ1,ℓ2)
i, j > xℓ for all i, j, ℓ, ℓ1, ℓ2).

Consequently,K[X]/ϕa(I ) is isomorphic (asK-vector spaces) to
K[X,V]/ϕa(Ĩ ), thus the Hilbert series ofϕa(Ĩ ) is the same as the
Hilbert series ofϕa(I ).

3.2 Well-defined and over-determined cases
In this part,k≤ (n− r)2, and we still consider the homogeneous

MinRank problem. First, we propose a variant of the Fröberg Con-
jecture [17], which describes the structure of the ideal obtained by
adding toD more than dim(D)− 1 generic linear formsgi, j (as
defined in Definition 1).

CONJECTURE 1. We use the same notations as Proposition 2.
Let D≺(i, j),d denote the vector space of homogeneous polynomials
of degree d inD≺(i, j). Then there exists a nonempty Zariski open

subset O3 of K
n2k ×K

n4
such that, if(b,c) ∈ O3, then∀(i, j) ∈

{1, . . . ,n}2,∀d ∈ N, the linear map

K[X,V]d/ψb,c(D≺(i, j),d) −→ K[X,V]d+1/ψb,c(D≺(i, j),d+1)
f 7−→ f ·ψb,c(gi, j )

is of maximal rank.

From now on, we use the following notation: for a seriesS∈
Z[[t]], [S] denotes the series obtained by truncatingS at the first
null or negative coefficient.

COROLLARY 2. If Conjecture 1 is true, and if(b,c) ∈ O3, then
the Hilbert series ofψb,c(D≺(i, j) +gi, j ) is

[
(1− t)HSψb,c(D≺(i, j))

(t)
]
,

PROOF. In order to simplify the notations,I denotes the ideal
ψb,c(D≺(i, j)) andId denotes the set of polynomials ofI of degree
d. Let ×ψb,c(gi, j ) denote the multiplication byψb,c(gi, j ) and let
ann(ψb,c(gi, j )) be the ideal{ f ∈ K[X,V] : f ψb,c(gi, j ) ∈ I}. Con-
sider the following exact sequence:

0→ ann(ψb,c(gi, j ))d → K[X,V]d/Id
×ψb,c(gi, j )
−−−−−−→ K[X,V]d+1/Id+1 →

→ K[X,V]d+1/(I +ψb,c(gi, j ))d+1 → 0.

According to Conjecture 1, the dimension ofann(ψb,c(gi, j ))d is
equal to max(0,dim(K[X,V]d/Id)−dim(K[X,V]d+1/Id+1)). It is
well known that the alternate sum of the dimensions of an exact
sequence of vector spaces is 0. Therefore,

dim(K[X,V]d+1/(I +ψb,c(gi, j ))d+1)
= max(dim(K[X,V]d+1/Id+1)−dim(K[X,V]d/Id),0).

Multiplying this equation bytd+1 and summing overd ∈ N yields
the claimed relation between the Hilbert series.

THEOREM 4. If Conjecture 1 is true, then there exists a non-
empty Zariski open subset O4 of K

n2k such that for eacha ∈ O4,
the Hilbert series ofϕa(I ) is

HSϕa(I )(t) =

[
(1− t)(n−r)2−k detA(t)

t(
r
2)

]
,

where A(t) is the r× r matrix defined in Theorem 2.



PROOF. ConsiderD̂ the determinantal ideal on which we add
only (2n− r)r +k−1 generic linear forms:

D̂ = D +

〈
k

∑
ℓ=1

b
(ℓ)
i, j xk + ∑

1≤ℓ1,ℓ2≤n

c
(ℓ1,ℓ2)
i, j vℓ1,ℓ2

〉

(i, j)∈S

whereS⊂ {1, . . . ,n}2 andcard(S) = (2n− r)r + k−1. Now take
(b,c) in the nonempty Zariski open setO∩O3, (O is defined in
Proposition 2, andO3 is defined in Conjecture 1). Thus the Hilbert

series ofψb,c(D̂) is HSψb,c(D̂)
(t) =

detA(t)

t(
r
2)(1−t)

. Thus, adding then2−

(2n− r)r −k+1 remaining linear forms, and applying Corollary 2
for each linear form, it is proved that the Hilbert series ofψb,c(D̃) is[
(1− t)

[
(1− t)

[
. . .(1− t)

[
detA(t)

t(
r
2)(1−t)

]]]]
. It is easy to prove that

if S∈ Z[[t]] is a series such thatS(0) ≥ 1 (which is the case when
S is an Hilbert series of an homogeneous ideal), then[(1− t) [S]] =

[(1− t)S]. Thus the Hilbert series ofψb,c(D̃) can be rewritten as[
(1− t)(n−r)2−k detA(t)

t(
r
2)

]
.

Finally, by the same argument as in the proof of Theorem 3 (i.e.
by using Lemma 1 and then eliminating the variablesV), there ex-
ists a nonempty Zariski open setO4 ⊂ K

n2k such that, ifa ∈ O4,
then the Hilbert series ofϕa(I ) is the same.

The degree of regularityis a sharp indicator of the complexity
of Gröbner basis algorithms. It is the highest degree of the poly-
nomials occurring during the Gröbner basis computation. IfI is a
0-dimensional homogeneous ideal,dreg is precisely the lowest in-
teger such that all monomials of degreedreg are in I and can be
read off from the Hilbert series (which is a polynomial):

dreg = 1+deg(HS(t)).

Most bounds of the complexity of Gröbner basis algorithms (for
instanceF4 [11] or F5 [12]) are exponential in the degree of regu-
larity. Therefore it is crucial to obtain sharp estimates ofdreg.

COROLLARY 3. Under the same conditions as Theorem 4, the
degree of regularity ofϕa(I ) is

deg

([
(1− t)(n−r)2−k detA(t)

t(
r
2)

])
+1.

PROOF. The degree of regularity of a 0-dimensional homoge-
neous system is equal to the degree of the Hilbert series (given by
Theorem 4) of the associated ideal plus 1.

COROLLARY 4. The degree of regularity of the ideal generated
by the minors formulation of a generic well-defined MinRank prob-
lem (i.e. k= (n− r)2) is bounded bydreg ≤ r(n− r)+1.

PROOF. According to Corollary 3,

dreg = deg

([
detA(t)

t(
r
2)

])
+1 = deg

(
detA(t)

t(
r
2)

)
+1.

On each row of the matrixA(t), a polynomial with the highest de-
gree is on the diagonal. Moreover, deg(Ai,i(t)) = n− i. Thus

deg(detA(t)) ≤
r

∑
i=1

(n− i) = nr−
r(r +1)

2
.

Finally HS(t) =
det(A(t))

t(
r
2)

, and

dreg = deg(HS(t))+1

≤ nr− r(r+1)
2 −

r(r−1)
2 +1

= r(n− r)+1. �

This bound is sharp in practice: if the MinRank instance is gene-
ric, then the degree of regularity of the ideal generated by the mi-
nors is exactlyr(n− r)+1.

The affine well-defined and over-determined MinRank prob-
lem. In most applications, the MinRank problems occurring are
affine. The analysis performed for the homogeneous MinRank
problem permits to estimate the complexity of solving MinRank
by the minors approach in the 0-dimensional affine case. Indeed,
the maximal degree reached during the Gröbner basis computation
is upper bounded by the degree of regularity of the ideal generated
by the homogeneous parts of highest degree of the minors.

Therefore, the degree of regularity of the minors formulation of
a generic affine(n, r,k)-MinRank problem is less or equal than the
degree of regularity of the minors formulation of a generic homo-
geneous(n, r,k)-MinRank (given by Corollary 3). In practice, this
bound is sharp: when the MinRank instance is generic, it is an
equality.

4. COMPLEXITY ANALYSIS
In this section, we estimate the costs of the Gröbner basis com-

putations and of the FGLM algorithm for generic well-defined (k =
(n− r)2) affine MinRank problems.

4.1 The Kipnis-Shamir formulation
The arithmetic complexity of theF5 algorithm [12] for comput-

ing a grevlex Gröbner basis can be estimated byO(M(dreg)
ω ) [2,

3], whereM(dreg) denotes the number of monomials of degree less
than or equal todreg andω is the linear algebra constant.

We make the assumption that the Kipnis-Shamir modeling ap-
plied to a MinRank problem where the matrices are chosen gener-
ically leads to a generic enough bilinear system such that Theorem
1 holds. This assumption is verified experimentally.

Therefore, we getdreg ≤min(k,(n− r)r)+1 and the complexity

is upper bounded byO
((k+r(n−r)+dreg

dreg

)ω)
.

In applications,r ′ = (n− r) is often constant,k = (n− r)2, and
we want to estimate the asymptotic complexity whenn grows. Ac-
cording to Theorem 1,dreg = r ′2 +1 whenn is big enough.

A straightforward computation gives

(k+(n−r ′)r ′+r ′2+1
r ′2+1

)ω
∼

n→∞

(
1

(r ′2+1)!

)ω
(k+nr′)ω(r ′2+1)

= O(nω(r ′2+1)).

This estimate of the complexity is for standard Gröbner basis
algorithmsF4 andF5 for homogeneous systems. In [15, Section
6.1], a variant ofF5 dedicated to multi-homogeneous is proposed.
The key observation is that the multi-homogeneous structure of the
system induces a structure in the matrices occurring in theF4 and
F5 algorithms. Consequently, those matrices can be decomposed
into smaller matrices, whose row echelon forms can be computed
independently. A consequence of this decomposition would be a
speed-up and a reduction of the required memory. Since the Kipnis-
Shamir modeling has a multi-homogeneous structure, this variant
of F5 could lead to practical improvements. However, so far there
is no efficient implementation of this multi-homogeneous variant,
and no precise complexity analysis.

4.2 The minors formulation
In this part, we estimate the asymptotic complexity of computing

a grevlex Gröbner basis in the well-defined case (k = (n− r)2).
In particular, we fixr ′ = (n− r), and we estimate the arithmetic
complexity whenn grows. As in Section 4.1, the complexity of the
F5 algorithm can be estimated byO(M(dreg)

ω ).



According to Corollary 4, the complexity is then upper bounded

by O
((k+r ′(n−r ′)+1

r ′(n−r ′)+1

)ω)
. An equivalent whenn grows is

(
k+ r ′(n− r ′)+1

r ′(n− r ′)+1

)ω
∼

n→∞

(
1
k!

)ω
(k+ r ′n)ωk = O(nωr ′2).

One observes that – in the well-defined case – the complexity
bound of the minors approach is slightly better than the complexity
bound of the Kipnis-Shamir modeling.

4.3 Complexity of FGLM in the well-defined
case

With both modelings, when a grevlex basis is computed in the
well-defined case (k = (n− r)2), a change of ordering is required
to obtain the lexicographical basis which gives the solutions of
the problem. Corollary 1 yields the degree of the ideal (with the
Kipnis-Shamir modeling or with the minors modeling). The com-
plexity of FGLM is O(deg(I)3), thus we need the asymptotic be-
haviour of the degree to perform a complexity analysis.

Whenr ′ = n− r is constant, applying Corollary 1, we get

deg(I) =
r ′−1

∏
i=0

(n+ i)!
(n−1− i)!

·
r ′−1

∏
i=0

i!
(r ′ + i)!

∼
n→∞

nr ′2
r ′−1

∏
i=0

i!
(r ′ + i)!

.

Therefore, the asymptotic complexity of FGLM isO(n3r ′2).

5. EXPERIMENTAL RESULTS AND APP-
LICATIONS

In this Section,K is the finite fieldGF(65521).
Workstation. Experimental results have been obtained with 24

Xeon quadricore processors 3.2 GHz, with 64 GB of RAM.

5.1 Computing the minors
The minors modeling raises questions about how to generate the

equations. It is not clear how to compute efficiently all minors of

sizer +1 of a big matrix. For an×n matrix, there are
( n

r+1

)2 such
minors, and each is a polynomial of degreer +1 in k variables. For
instance, for an affine problem withK = GF(65521), n= 11,k = 9
andr = 8, it took 14 days on one CPU (with Maple). Fortunately,
this computation can be parallelized: with 120 processes running
simultaneously on 24 CPU, the computation lasted 12 hours. The
size of the resulting algebraic system is 3466 MB.

For this computation, we used naive algorithms (each determi-
nant was computed independently) but we believe that there is room
for improvement by using more sophisticated algorithms.

5.2 The well-defined case
Here,k = (n− r)2 and the ground field isK = GF(65521). This

set of parameters is used in a MinRank-based authentification sche-
me [7].

Generation of the instances.For (n,k, r) ∈ N
3, we generate a

n×n matrix M =
(
Mi, j

)
where theMi, j are affine linear forms in

k variables: Mi, j = a(0)
i, j + ∑k

ℓ=1a(ℓ)
i, j xℓ, where thea(ℓ)

i, j are chosen
uniformly at random inGF(65521).

Interpretation of the results. Table 1 describes experimental
results, for different values of the triplet(n, r,k). In particular, we
consider sets of parameters used in Cryptology for a MinRank-
based authentification scheme [7]. The complexity of solving the
MinRank problem is then directly related to the security of this
cryptosystem. The values in italic font were not computed, but are
estimates of the complexity based on the theoretical results from
the previous section.

Chall. A B C
(6,9,3) (7,9,4) (8,9,5) (9,9,6) (10,9,7) (11,9,8)

degree 980 4116 14112 41580 108900 259545
MH Bézout 8000 42875 175616 592704 1728000 4492125

Minors
F5 time 1.1s 37s 935s 18122s 229094s2570396s
F5 mem 488 MB 587 MB 1213 MB 5048 MB25719MB

F4 Magma 4.6s 142.8s 3343.5s ∞
dreg 10 13 16 19 22 25

Nb op. 21.5 25.9 29.2 32.7 35.2 40.2
FGLM time 1.7s 97.2s ∞

Kipnis-Shamir
F5 time 30s 3795s 328233s ∞
F5 mem 407 MB3113 MB58587 MB

F4 Magma 300s 48745s ∞
dreg 5 6 7

Nb op. 30.5 37.1 43.4 50.4 57.4 64.4
FGLM time 35s 2580s ∞

Table 1: Authentification scheme parameters

The row “degree” provides the degree of the ideal (i.e. the num-
ber of solutions in the algebraic closure) and can be compared
with the multi-homogeneous Bézout bound (“MH Bézout”). The
row “F5 time” (resp. “F5 mem”) gives the time (resp. the mem-
ory) needed to compute the grevlex Gröbner basis of the ideal un-
der consideration. The computation is done with theF5 algorithm
from the FGb package. We also give the time obtained for the
same Gröbner basis computations with the implementation ofF4 in
Magma2.16, so that experiments can be reproduced. “dreg” gives
the degree of regularity of the ideal. Finally “Nb op.” indicates the
logarithm (in base 2) of the exact number of arithmetic operations
performed during the execution of theF5 algorithm, and “FGLM
time” provides the running time of FGLM (from the FGb package).

Note that the degree of regularity of the ideal generated by the
minors matches the value given in Corollary 4. Moreover, note that
the degree of the ideal is equal to the value provided by Corollary 1.

Looking at the logarithm of the number of arithmetic operations
which is growing linearly, it seems clear that, for both formulations,
the Gröbner basis computation is polynomial inn when n− r is
fixed, as announced in [14] and proved in this paper (Section 4).

We would like to emphasize that the FGLM step costs sometimes
more than the grevlex Gröbner basis computation. In order to avoid
this cost, a possible strategy is to combine the minors approach with
an exhaustive search over some variables.

5.3 Solving the challenge C of the Courtois au-
thentification scheme

Solving the challenge C requires to find one solution of a generic
affine (11,9,8)-MinRank problem which has a particularity: it is
known that there is a solution(x1, . . . ,x9) ∈ GF(65521)9 in the
ground field. Therefore we can combine the minors formulation
with a partial exhaustive search. To this end, we specializes vari-
ables and solve the corresponding over-determined(11,9− s,8)-
MinRank problem for all specializations of thesvariables. The de-
gree of regularity of the over-determined systems can be estimated
with Corollary 3, so the complexity of the complete computation
can be approximated. For these systems, the degree of the ideal is
0 or 1. Consequently, a grevlex Gröbner basis is also a lex Gröbner
basis and the FGLM algorithm is no longer required.

Table 2 shows the experimental results for different values ofs.
The row “dreg” gives the degree of regularity obtained for each spe-
cialization of thes variables. The row “Nb op.” gives an estimate



(n = 11,k = 9−s, r = 8)
s 3 2 1 0

Minors F5 time 79s 1594s 80255s 2570396s
F5 mem<1000 MB 2400 MB 29929 MB

dreg 9 10 13 25
Nb op. 73 60 49.1 40.2

KS F5 FGb 57000s ∞
F5 mem 10539 MB

dreg 7
Nb op. 88.6

Table 2: Challenge C of the Courtois authentification scheme.

of the logarithm in base 2 of total number of operations needed
to solve the challenge C. It is equal to log2(65521sOpF5) where
OpF5 is the number of arithmetic operations used by theF5 algo-
rithm to solve one(11,9− s,8)-MinRank problem. The values in
italic font were not effectively computed but are given as estimates
based on practical and theoretical results.

First of all, we want to emphasize the fact that the degree of
regularity of the ideal generated by the minors matches the one
deduced from the generic Hilbert series (Corollary 3) in the over-
determined case.

According to Table 2, the best practical choice seems to bes= 1.
In practice, the 65521 computations of the over-determined sys-
tems can be parallelized, and the total number of required arith-
metic operations (249.1) is quite practical. We estimate to 238 days
the time needed to effectively solve this challenge on 64 quadri-
core processors. Therefore, the authentification scheme cannot be
considered secure anymore with the set of parameters(n = 11,k =
9, r = 8).

Note that it may be possible to compute directly a Gröbner basis
of the ideal generated by the minors (s= 0). By interpolating the
practical results, we give a rough estimate of the complexity of this
computation: it would take approximately 29 days (on one CPU).
However, it is not clear how much memory would be required, and
the FGLM step could be untractable since the degree of the ideal is
259545 (Corollary 1).

6. CONCLUSION
In this paper, we studied two formulations of the MinRank prob-

lem from the viewpoint of efficency and practical applications. In
particular, the analysis of the ideals generated by the minors gave
new information about the intrinsic structure of this problem.

Results from algebraic geometry about determinantal ideals per-
mit to obtain the number of solutions for a generic MinRank prob-
lem whenk = (n− r)2. This value is important for the study of the
complexity of the solving process since it has a direct impact on the
complexity of FGLM.

We provided the Hilbert series and an explicit formula for the
degree of regularity of the ideal generated by the minors. This
information leads to a complexity analysis of the whole Gröbner
basis computation. We also proposed a method to break the chal-
lengeC of the MinRank authentification scheme faster than any
other known approaches. This method is feasible in practice since
it requires only 249 arithmetic operations.

Many interesting questions have arisen from this study. First,
to be able to apply the minors approach on huge over-determined
MinRank instances, algorithms for computing efficiently all the mi-
nors of sizer +1 of a linear matrix are required. Another question is
to find how the multi-homogeneous structure of the Kipnis-Shamir

formulation can be used to speed-up the computations, and to eval-
uate precisely its cost. We derived a formula from [15] to bound
the degree of regularity of the Kipnis-Shamir modeling. Although
this bound is much sharper than any other known bounds, there is
still a small gap between it and the real degree of regularity.
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