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ABSTRACT

We consider the problem of computing critical points of the restric-
tion of a polynomial map to an algebraic variety. This is of first
importance since the global minimum of such a map is reached at
a critical point. Thus, these points appear naturally in non-convex
polynomial optimization which occurs in a wide range of scientific
applications (control theory, chemistry, economics,...).

Critical points also play a central role in recent algorithms of
effective real algebraic geometry. Experimentally, it has been ob-
served that Grobner basis algorithms are efficient to compute such
points. Therefore, recent software based on the so-called Critical
Point Method are built on Grobner bases engines.

Let f1,..., fp be polynomials in Q[z1,...,zx] of degree D,
V' C C" be their complex variety and 71 be the projection map
(z1,...,Tn) — z1. The critical points of the restriction of 71 to
V' are defined by the vanishing of fi,..., f, and some maximal
minors of the Jacobian matrix associated to fi,..., fp. Such a
system is algebraically structured: the ideal it generates is the sum
of a determinantal ideal and the ideal generated by f1,..., fp.

We provide the first complexity estimates on the computation of
Grobner bases of such systems defining critical points. We prove
that under genericity assumptions on f1, ..., fp, the complexity is
polynomial in the generic number of critical points, i.e. D?(D —
1)n-P (;:i) More particularly, in the quadratic case D = 2, the
complexity of such a Grobner basis computation is polynomial in
the number of variables n and exponential in p. We also give ex-
perimental evidence supporting these theoretical results.

Categories and Subject Descriptors

1.1.2 [Computing Methodologies]: Symbolic and Algebraic Ma-
nipulation; F.2.2 [Theory of Computation]: Analysis of Algo-
rithms and Problem Complexity
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1. INTRODUCTION

Motivations and problem statement. The local extrema of
the restriction of a polynomial map to a real algebraic variety are
reached at the critical points of the map under consideration. Hence,
computing these critical points is of first importance for polynomial
optimization which arises in a wide range of applications in engi-
neering sciences (control theory, chemistry, economics, etc.).

Computing critical points is also the cornerstone of algorithms
for asymptotically optimal algorithms for polynomial system solv-
ing over the reals (singly exponential in the number of variables).
Indeed, for computing sample points in each connected component
of a semi-algebraic set, the algorithms based on the so-called criti-
cal point method rely on a reduction of the initial problem to poly-
nomial optimization problems. In [10, 11] (see also [27, 28, 29]),
the best complexity bounds are obtained using infinitesimal defor-
mation techniques of semi-algebraic geometry, nevertheless obtain-
ing efficient implementations of these algorithms remains an issue.

Tremendous efforts have been made to obtain fast implementa-
tions relying on the critical point method (see [16, 17, 32, 33, 35,
36, 37]). This is achieved with techniques based on algebraic elim-
ination and complex algebraic geometry. For instance, when the in-
put polynomial system (F) : fi =+ = f, = 0in Q[z1, ..., xx]
satisfies genericity assumptions, one is led to compute the set of
critical points of the restriction of the projection on the first coordi-
nate w1 : (Z1,...,Zn) > 1 to the algebraic variety V(F) C C"
defined by F; this set is denoted by crit(m, V (F)).

The set crit(m1, V(F)) is defined by F and the vanishing of the
maximal minors of the truncated Jacobian matrix of F' obtained by
removing the partial derivatives with respect to ;. This system is
highly-structured: algebraically, we are considering the sum of a
determinantal ideal with the ideal (f1,..., fp).

In practice, we compute a rational parametrization of this set
through Grobner bases computations which are fast in practice.
‘We have observed that the behavior of Grobner bases on these sys-
tems does not coincide with the generic one. In the particular case
of quadratic equations, it seems to be polynomial in n and expo-
nential in p which meets the best complexity known bound for the
quadratic minimization problem [9, 26]. Understanding the com-
plexity of these computations is a first step towards the design of
dedicated Grobner bases algorithms, so we focus on the following

important open problems:
(A) Can we provide complexity estimates for the computation of

Grobner bases of ideals defined by such structured algebraic
systems?

(B) Is this computation polynomial in the generic number of cri-
tical points?

(C) In the quadratic case, is this computation polynomial in the
number of variables (and exponential in the codimension)?



Under genericity assumptions, we actually provide affirmative an-
swers to all these questions.

Computational methodology and related complexity issues.
Grobner bases are computed using multi-modular arithmetics and
we will focus only on arithmetic complexity results; so we may
consider systems defining critical points with coefficients not only
in Q but also in a prime field.

Let K be a field, K be its algebraic closure and F = (f1, ..., fp)
be a family of polynomials in K[z, . . ., z,] of degree D and V (F)
be their set of common zeroes in K .

We denote the Jacobian matrix

of ... o4
oz Oxp
ofp .. Ofp
dxq Oxp

by jac(F) and the submatrix obtained by removing the first i co-
lumns by jac(F, 7). The set of maximal minors of a given rectan-
gular matrix M will be denoted by MaxMinors(M).

Finally, let I(F, 1) be the ideal (F') + (MaxMinors(jac(F, 1))).
When F is a reduced regular sequence and V' (F) is smooth, the
algebraic variety associated to I(F, 1) is exactly crit(m1, V(F)).

So, to compute a rational parametrization of crit(mi, V (F)), we
use the classical solving strategy which proceeds in two steps:

(i) compute a Grobner basis for a grevlex ordering of I(F, 1)

using the F5 algorithm (see [18]);

(ii) use the FGLM algorithm [19, 20] to obtain a Grobner ba-
sis of I(F, 1) for the lexicographical ordering or a rational
parametrization of \/I(F, 1).

Algorithm F5 (Step (i)) computes Grobner bases by row-echelon
form reductions of submatrices of the Macaulay matrix up to a
given degree. This latter degree is called degree of regularity. When
the input satisfies regularity properties, this complexity of this step
can be analyzed by estimating the degree of regularity.

FGLM algorithm [19] (Step (ii)) and its recent efficient variant
[20] are based on computations of characteristic polynomials of
linear endomorphisms in K[z1, ..., z,]/I(F,1). This is done by
performing linear algebra operations of size the degree of I(F, 1)
(which is the number of solutions counted with multiplicities).

Thus, we are faced to the following problems:

(1) estimate the degree of regularity of the ideal generated by
the homogeneous components of highest degree of the set of
generators F', MaxMinors(jac(F, 1));

(2) show that the above estimation allows to bound the complex-
ity of computing a greviex Grébner basis of I(F, 1);

(3) provide sharp bounds on the degree of the ideal I(F, 1).

As far as we know, no results are known for problems (/) and (2).
Problem (3) has already been investigated in the literature: see [34]
where some bounds are given on the cardinality of crit(wy, V(F)).
We give here a new algebraic proof of these bounds.

Main results. Let K[z1, ..., 2] p denote { f € K[z1,...,Zx] |
deg(f) = D} and note that it is a finite-dimensional vector space.
In the following, we solve the three aforementioned problems under
a genericity assumption on F: we actually prove that there exists a
non-empty Zariski open set & C K[z1, ..., 2xs]%, such that for all
Feo:

(1) the degree of regularity of the ideal generated by the ho-
mogeneous components of largest degree of F, MaxMinors
(jac(F,1))isdreg = D(p—1)+ (D —2)n+2 (see Theorem
by

(2) with the Fy algorithm, the highest degree reached during the
computation is bounded by d,cg (see Theorem 2);

(3) the degree of I(F, 1) is < § = D?(D — 1)" 7 ("7 }).

The degree of regularity given in (/) is obtained thanks to an ex-
plicit formula for the Hilbert series of the homogeneous ideal un-
der consideration (see Proposition 1). This is obtained by taking
into account the determinantal structure of some of the generators
of the ideal we consider. The above estimates are the key results
which enable us to provide positive answers to questions A, B and
C under genericity assumptions.

Before stating complexity results on the computation of critical
points with Grobner bases, we need to introduce a standard nota-
tion. Let w be a real number such that a row echelon form of a
n X n-matrix with entries in K is computed within O(n*) arith-
metic operations in K.

We prove that there exists a non-empty Zariski open set & C
Kz, ... ,zn)?, such that forall F € 0 N Kz, . .., zn]":

(A) computing a grevlex Grobner basis of I(F, 1) can be done

within O ((”Jrifeg)w) arithmetic operations in K (see The-

orem 3);

(B) computing a rational parametrization of crit(w1, V(F)) us-
ing Grobner bases can be done within O (6***) arithmetic
operations in K (see Corollary 5);

(C) when D = 2 (quadratic case), a rational parametrization of
crit(m1, V(F')) using Grobner bases can be computed with-
in 0 (("52) +n2% (2~}
this is polynomial in n and exponential in p (see Corollary 3).

We also provide more accurate complexity results. The uniform
complexity bound given for answering question (B) is rather pes-
simistic. The exponent 4.03w being obtained after majorations
which are not sharp; numerical experiments are given to support
this (see Section 6). Moreover, under the above genericity assump-
tion, we prove that, when p and D are fixed, computing a ratio-
nal parametrization of crit(m1, V (F)) using Grobner bases is done
within O(D3-*") arithmetic operations in K (see Corollary 4).

We also give timings for computing grevlex and lex Grobner
bases of I(F, 1) with the MAGMA computational algebra system
and with the FGb library when K = GF(65521). These experi-
ments show that the theoretical bounds on the degree of regularity
and on the degree of I(F, 1) (Theorem 2) are sharp. They also pro-
vide some indication on the size of problems that can be tackled in
practice: e.g. when D = 2andp = 3 (resp. D = 3andp = 1),
random dense systems with n < 21 (resp. n < 14) can be tackled
(see Section 6).

3\ . ) .
) ) arithmetic operations in K,

Related works. As far as we know, dedicated complexity analy-
sis of Grobner bases on ideals defining critical points has not been
investigated before. However, as we already mentioned, the deter-
minantal structure of the system defining crit(m1, V(F)) plays a
central role in this paper.

In [21], we provided complexity estimates for the computation
of Grobner bases of ideals generated by minors of a linear matrix.
This is generalized in [22] for matrices with entries of degree D.
Nevertheless, the analysis which is done here differs significantly
from these previous works. Indeed, in [21, 22] a genericity assump-
tion is done on the entries of the considered matrix. We cannot fol-
low the same reasonings since MaxMinors(jac(F, 1)) depends on
F'. Nevertheless, it is worthwhile to note that, as in [21, 22], we use
properties of determinantal ideals given in [13].

Bounds on the number of critical points (under genericity as-
sumptions) are given in [34] using the Giambelli-Thom-Porteous
degree bounds on determinantal varieties (see [23, Ex. 14.4.14]).

In [9], the first polynomial time algorithms in n for deciding
emptiness of a quadratic system of equations over the reals is given.
Further complexity results in the quadratic case for effective real al-



gebraic geometry have been given in [26]. In the general case, algo-
rithms based on the so-called critical point method are given in [10,
11, 27, 28, 29]. Critical points defined by systems F, MaxMinors
(jac(F, 1)) are computed in algorithms givenin [1, 2, 3,4, 5,6, 17,
36]. The RAGIib maple package implements the algorithms given
in [17, 36] using Grobner bases.

The systems F', MaxMinors(jac(F, 1)) define polar varieties: in-
deed, this notion coincides with critical points in the regular case.
In[2,3,4,5, 6], rational parametrizations are obtained using the ge-
ometric resolution algorithm [24] and a local description of these
polar varieties. This leads to algorithms computing critical points
running in probabilistic time polynomial in D?(p(D — 1))"7P.
Note that this bound for D = 2 and p = n/2 is not satisfactory. In
this paper, we also provide complexity estimations for computing
critical points but using Grobner bases, which is the engine we use
in practice. Our results provide an explanation to the good practical
behavior we have observed.

We would like to mention that other dedicated algebraic tech-
niques exist for elimination in determinantal varieties. In particu-
lar, the determinantal resultant introduced and studied in [12] can
be used for this task. It is implemented in the Macaulay2 package
Resultants'.

Organization of the paper. Section 2 recalls well-known prop-
erties of generic polynomial systems. Problems (/) and (2) men-
tioned above are respectively tackled in Sections 3 and 4. Problem
(3) is solved at the end of Section 4. Complexity results are derived
in Section 5. Experimental results supporting the theoretical results
are given in Section 6.

Conclusions and Perspectives. We give new bounds on the de-
gree of regularity and an explicit formula for the Hilbert series of
the ideal vanishing on the critical points under genericity assump-
tions. This leads to new complexity bounds for computing Grébner
bases of these ideals.

However, we only considered the unmixed case: all polynomials
f1, ..., fp share the same degree D. The mixed case (When the de-
grees of the polynomials f1, . .., f, are different) cannot be treated
similarly since the difference of the degrees induce a combinato-
rial structure which has to be investigated. We intend to investigate
this question in future works using the Eagon-Northcott complex,
which yields a free resolution of the ideal generated by the maxi-
mal minors of a polynomial matrix under genericity assumptions.
From this, we also expect to obtain a variant of the F5 algorithm
dedicated to these ideals.

Acknowledgments. This work was supported in part by the
GeoLMI grant (ANR 2011 BS03 011 06) and by the EXACTA
grant (ANR-09-BLAN-0371-01) of the French National Research
Agency. We wish to thank anonymous referees for useful com-
ments and suggestions.

2. PRELIMINARIES

NOTATIONS 1. The set of variables {x1, ... ,:cn} is denoted
by X. For d € N, Monomials(d) denotes the set of monomials
of degree d in the polynomial ring K[X] (where K is a field, its
algebraic closure being denoted by K). We let a denote the finite set
of parameters {af,f) 11 <i <p,m € Uy<y<p Monomials(d)}.

We also introduce the following generic systems:

S = (f1»---»p) € K(a)[X]P is the generic polynomial sys-
tem of degree D:

m monomial
deg(m)<D

!written by L. Busé, N. Botbol and M. Dubinsky

o 3" =(f1,....1%) € K(a)[X]? is the generic homogeneous
polynomial system of degree D:

fi = Z aﬁf)m

m monomial
deg(m)=

We let V(F) C K" denote the variety of F = (f1, ..., fp). The
projective variety of a homogeneous family of polynomials F" is
denoted by W(Fh) The projection on the first coordinate is de-
noted by 1, and the critical points of the restriction of w1 to V (F)
are denoted by crit(m1, V(F)) C V(F). Also, I(F, 1) denotes the
ideal generated by F and by the maximal minors of the truncated
Jacobian matrix jac(F, 1).

Throughout the paper, if R is a ring and I C R is an ideal, we
call dimension of I the Krull dimension of the quotient ring R/ I.

The goal of this section is to prove that the ideal I(3",1) is 0-
dimensional. This will be done in Lemma 2 below; to do that we
will use geometric statements of Sard’s Theorem which require K
to have characteristic 0. This latter assumption can be weakened
using algebraic equivalents of Sard’s Theorem (see [15, Corollary
16.23]).

LEMMA 1. Let I(F,0) be the ideal generated by § and by the
maximal minors of its Jacobian matrix. Its variety V (1(F,0)) C

K(a)" is empty and hence V (g) is smooth.

PROOF. To simplify notations hereafter, we denote by h1, ..., hp
the polynomials obtained from f1, . . ., f, by removing their respec-

tive constant terms a( ) (p ). We will also denote by </ the
remaining parameters in hl, .. h . Let ¢ denote the mapping

w;nw)”ﬂ K(e)"
¢  — (hi(c),..., hp(c))

Suppose first that 1)(K(«7) ") is not dense (for the Zariski topol-
ogy) in K(«7)". Since the image ¢ (K (/)" ) is a constructible set,
it is contained in a proper Zariski closed subset # C Wp
Since there is no algebraic relation between a( ) (p ) and the

parameters in 7, this implies that the variety deﬁned by h1 +
1)
a;’ =

= hp + a(p ) = 0is empty and consequently smooth.
Since h; + aé ) = fi, our statement follows.

Suppose now that ¢ (K (/) ") is dense in K(«/)". Let Ko C
K(«/)" be the set of critical values of 1. By Sard’s Theorem [38,
Chap. 2, Sec. 6.2, Thm 2], Ky is contained in a proper closed
subset of K(.o )p. Again, there is no algebraic relation between
agl), R (p ) and the parameters in .«7. Consequently, the variety
associated to the ideal generated by the system fi,...,f, and by
the maximal minors of jac(F) is empty. [

COROLLARY 1. Let I(§",0) be the ideal generated by F* and
by the maximal minors of its Jacobian matrix. Then the associated
projective variety W (I(F*,0)) C P""*K(a) is empty.

PROOF. For 1 < i < n, we denote by O; the set

{(cr:...:¢n) | ci # 0} C P"'K(a)
and we consider the canonical open covering of P" 'K (a):
P 'K(a) = |J O
1<i<n
Therefore W (I(3",0)) = U,<;<,(W(I(F",0)) N O;). Denote

by §; the system obtamed by substituting the variable x; by 1 in
&". According to Lemma 1 applied to §;, the variety V (I(F;,0))
is empty. Therefore, the set W (I(F",0)) N O; is also empty. Con-
sequently, W(I(3*,0) =0. O

We can now deduce the following result.



LEMMA 2. The projective variety W (I(§",1)) € P" 'K(a)
is empty, and hence dim(I(",1)) = 0.

PROOF. We let g and ¢ denote the two following morphisms:

vo: K(a)[z1,...,zn] — K(a)ze,...,zn]
g1, ... zn) = g(0,22,...,25)
o1 Ka)[z1,...,zn] — K(a)ze,...,z5]
g1, ... zn) — g(1,22,...,25)

Then W (I(F",1)) can be identified with the disjoint union of the
—n—1

variety V(1 (13", 1)) € K(a)
W(po(I(3",1))) C P""?K(a).

e Notice that ¢1(I(F",1)) = I(p1(3"),0). Therefore, the
ideal 1 (I(§", 1)) C K(a)[zz, . . ., x,] is spanned by @1 (F")
(which is a generic system of degree D in n — 1 variables)
and by the maximal minors of its Jacobian matrix. According
to Lemma 1, the variety V (1 (I(3",1))) is empty.

e Similarly, oo (I(F",1)) = I(po(5"),0) C K(a)[z2, ..., 2n]
is generated by the homogeneous polynomials cpo(ﬁh) and
by the maximal minors of the Jacobian matrix jac(wo(g")).
Thus, according to Corollary 1, the variety W (o (I(F",1)))
is also empty.

and the projective variety

O

3. THE HOMOGENEOUS CASE

In this section, our goal is to estimate the degree of regularity of
the ideal I(F",1) C K(a)[X] which is a homogeneous ideal gen-
erated by §" and MaxMinors(§", 1) (see Notations 1). Recall that
the degree of regularity dyeg (/) of a O-dimensional homogeneous
ideal I is the smallest positive integer such that all monomials of
degree dyeg (1) are in I. Notice that dyeg () is an upper bound on
the degrees of the polynomials in a minimal Grobner basis of
with respect to the grevlex ordering.

THEOREM 1. The degree of regularity of the ideal 1(§", 1) is

dreg (I(3",1)) = D(p — 1) + (D — 2)n + 2.
NOTATIONS 2. To prove Theorem 1, we need to introduce a few
more objects and notations.
e A set of new variables {u;; : 1 <1i < p,2 < j < n} which
is denoted by U;
o the determinantal ideal D C K[U| generated by the maximal
minors of the matrix

ui2 ... Uin
Up,2 . Up,n
h
® 01 Opn_1) Which denote the polynomials u; ; — g;ﬁ,
J
for 1<:i< p32 < ] <n and gp(n71)+1’ s 7gpn which
denote the polynomials f’f, e fg ;
o the ideals 3oy = D + (g, ...,8,) C K(a)[U, X];

if g € K[X] (resp. I C K[X]) is a polynomial and < is
a monomial ordering (see e.g. [14, Ch. 2, §2, Def. 1]),
LM< (g) (resp. LM< (I)) denotes its leading monomial (resp.
the ideal generated by the leading monomials of the polyno-
mialsin I);

e a degree ordering is a monomial ordering < such that for all
pair of monomials my,my € K[X], deg(m1) < deg(m2)
implies m1 < mao.

Obviously the polynomials g, for 1 < k < p(n — 1) will be used

ch

to mimic the process of substituting the new variables u; ; by 2;7'_ ;
J
indeed we have J,,,) NK[X] = I(3", 1).
Our strategy to prove Theorem 1 will be to deduce the degree of
regularity of I(§", 1) from an explicit form of its Hilbert series.
Recall that, if I is a homogeneous ideal of a polynomial ring R

with ground field K, its Hilbert series is the series

HS;(t) = > dimg (Ra/Ia)t",
deN

where R4 denotes the K-vector space of homogeneous polynomials
of degree d and I; denotes the K-vector space Rq N I.

PROPOSITION 1. The Hilbert series of the homogeneous ideal
I(3", 1) C K(a)[X] is
det(A(tP~1) (1 —
HD-D(F31)

tPyP(1 —¢P-yn-e
(1—1t) ’

HSI(E]‘,I) (t) =

where A(t) is the (p — 1) X (p — 1) matrix whose (i, j)-entry is
—i\ (n—1—7\ 1k
2 () ()
The proof of Proposition 1 is postponed to Section 3.3.
PROOF OF THEOREM 1. By definition, the Hilbert series of a
zero-dimensional homogeneous ideal is a polynomial of degree

dreg —1. By Lemma 2, I(S}‘7 1) has dimension 0. Thus, using
Proposition 1, we deduce that:

dreg(I(F", 1)) = 1 + deg (det(A(tDil)) (a-P)ra- tDil)nip) .

2= ("5 (1—t)n

The highest degree on each row of A(t) is reached on the diagonal.
Thus deg(det A(t)) = p(pT_l) and a direct degree computation
yields dreg (I, 1)) = D(p— 1) + (D - 2)n+2. O
From Proposition 1, one can also deduce the degree of I(&h, 1);
this provides an alternate proof of [34, Theorem 2.2].
COROLLARY 2. The degree of the ideal I(F*, 1) is
n—1
-1
PROOF. By definition of the Hilbert series, the degree of the 0-
dimensional homogeneous ideal I(F", 1) is equal to HS;(gn 1) (1)-
By Proposition 1, direct computations show that HSyzn ;)(1) =
det(A(1))D?(D — 1)""P. The determinant of the matrix A(1)
can be evaluated by using Vandermonde’s identity and a formula
by Harris-Tu (see e.g. [23, Example 14.4.14, Example A.9.4]).
We deduce that det(A(1)) = (I7}) and hence HSyzn 1)(1) =
(CZ)DP(D-1)"P. O
It remains to prove Proposition 1. This is done in the next sub-
sections following several steps:
e provide an explicit form of the Hilbert series of the ideal D;
this is actually already done in [13]; we recall the statement
of this result in Lemma 3;
e deduce from it an explicit form of Hilbert series of the ideal
J(pn) using genericity properties satisfied by the polynomials
g,. and properties of quasi-homogeneous ideals; this is done
respectively in Lemma 4 and Section 3.2;
e deduce from it the Hilbert series associated to I(F*, 1).

3.1 Auxiliary results
We start by restating a special case of [13, Cor. 1].

LEMMA 3 ([13, COROLLARY 1]). The Hilbert series of the
ideal D C K[U] is HSp(t) = %

2 )(1_z)n(p—1) '

DEG(I(3", 1)) = DP(D —1)""".



LEMMA 4. For each 2 < ¢ < np, g, does not divide 0 in
K(a)[U, X]/Te-1).

PROOF. According to [30, Thm. 2][31], the ring K(a)[U]/D is
a Cohen-Macaulay domain of Krull dimension (n —1+p — (p —
1))(p — 1) = n(p — 1). Therefore, the ring K(a)[U, X]/D is also
a Cohen-Macaulay domain, and has dimension np.

Consider now the ideal (g,, ..., 8,,) C (K(a) [U]/D)[X]. Ac-
cording to Lemma 2, the ideal 1(§", 1) = (D+{g;, . . . y On(p—1y )N
K(a)[X] is zero-dimensional. Let < denote a lexicographical mono-
mial ordering such that for all 4, 7, k, u;,; > k. Since the variables
U can be expressed as functions of X (u;,; — 0fi ¢ J(pn))s We

oz
have LM< (D + (gy, . ., 8,,,)) = (ui;) + LM< (I(3", 1)) which
is zero-dimensional. Therefore, the ideal D + (g,,...,8,,) C
K(a)[U, X] is zero-dimensional and hence so is (g;,--,8,,) C
K(a)[U, X]/D. Now suppose by contradiction that there exists £
such that g, divides 0 in K(a)[U, X]/ J(¢—1). Let £y be the small-
est integer satisfying this property. Since D is equidimensional and
for all £ < {o,g, does not divide 0 in K(a)[U, X]/J(,—1), the
ideal (g;,...,8,,_1) C K(a)[U, X]/D is equidimensional, has
codimension o — 1, and thus has no embedded components by
the unmixedness Theorem [15, Corollary 18.14]. Since g, di-
vides 0 in the ring K(a)[U, X]/(D + (g, ---,8¢,-1)), the ideal
(815 -+ 08¢,) C K(a)[U, X]/D has also codimension £o—1. There-
fore the codimension of (g, ..., g,,,) C K(a)[U, X]/D is strictly
less than np, which leads to a contradiction since we have proved
that the dimension of this ideal is 0. [

3.2 Quasi-homogeneous polynomials

The degrees in the matrix whose entries are the variables u; ;
have to be balanced with D — 1, the degree of the partial derivatives.
This is done by changing the gradation by putting a weight on the
variables u; ;, giving rise to quasi-homogeneous polynomials. This
approach has been used in [22] in the context of the Generalized
MinRank Problem. A polynomial f € K[U, X] is said to be quasi-
homogeneous if the following condition is satisfied (see e.g. [25,
Definition 2.11, page 120]):

f(AD71u1,2, ey )\Dilup,n, AZ1, ..o, ATE) =
)\df(’lu,z,.. .,:Ek).

The integer d is called the weight degree of f and denoted by

wdeg(f).
Anideal I C K[U, X] is called quasi-homogeneous if there ex-

ists a set of quasi-homogeneous generators of 1. We let K[U, X ]fiw)
denote the K-vector space of quasi-homogeneous polynomials of
weight degree d, and I3") denote the set K[U, X]*) N I. Ide-
als generated by quasi-homogeneous polynomials are positively
graded, as shown in [22, Proposition 1] that we restate below.

PROPOSITION 2 ([22, PROPOSITION 1]). Let I C KU, X]
be an ideal. Then the following statements are equivalent:

o there exists a set of quasi-homogeneous generators of 1;
o the sets 1" are vector subspaces of K[U, X|\"), and I =
Boen 14"

If I is a quasi-homogeneous ideal, then K[U, X|/I is a graded
algebra and hence its weighted Hilbert series wHS;(¢) € Z[[t]] is
well defined: wHS () = 3,y dimx (K[U, X]$) /15 ¢.

The following lemma and its proof are similar to [22, Lemma 5].

LEMMA 5. The Hilbert series of I(F*,1) C K(a)[X] and the
weighted Hilbert series of J(pny C K(a)[X, U] are equal.

s Up,n, L1y - -

PROOF. Let < be a lex ordering on the variables of the poly-
nomial ring K(a)[X, U] such that zj <ex s ; for all k,4, j. By

[14, Sec. 6.3, Prop. 9], HSygu 1y(t) = HSLM<IEX(I(3h71))(t) and
WHS5 1y (8) = WHSLM_ | (3, (1)) (). Since LM< (ui j —
fij) = wij and Iy NK[X] = I(3", 1), we deduce that

LM< Opny) = <{uz',j}U|-M<.ex(3<p?‘) NK(a)[X]))
= <{ui7j} U LM'<|EX(I(S 71))> .
K(a)[U,X]
> M2 Bpny)
K(a)[X]
M-, (AGE"1)°
Thus, HSLM<|EX(I(3h71))(t) = WHSLMﬂEX(g(m))(t), and hence

HSyn 1) (¢) = wHS; (1), O

Therefore is isomorphic (as a graded K(a)-algebra)

to

3.3 Proof of Proposition 1

We reuse Notations 2: I(§", 1) = (D+(g,, . - - s Bpn) )NK(a)[X].
According to Lemma 3 and by putting a weight D — 1 on the vari-
ables U, the weighted Hilbert series of D C K(a)[U] is

det A(tP1)
wHS a t) = — .
k@)U (t) D03 (1 o1yt

Considering D as an ideal of K(a)[X, U], we obtain

WHS'DCK(Q)[(LX](t) = W WHSDQ]K(a)[U](t)~

If I C K(a)[U, X] is a quasi-homogeneous ideal and if g is a
quasi-homogeneous polynomial of weight degree d which does not
divide 0 in the quotient ring K(a)[U, X]/I, then the Hilbert series
of the ideal I + (g) is equal to (1 — t*) multiplied by the Hilbert
series of I (see e.g. the proof of [22, Thm 1] for more details).

Notice that the polynomials g, . . ., g,(,_1) are quasi-homoge-
neous of weight degree D — 1 (these polynomials have the form
Wij — g;i_) and the polynomials g,,,,_1y11,- -, 8p, are quasi-
homogeneous of weight degree D (these polynomials are {1, . . ., fp).
Since g, does not divide 0 in K(a)[U, X]/J(,—1) (Lemma 4), the
Hilbert series of the ideal J,,) C K(a)[X, U] is

_det A(EPY) (1 — tP)P(1 — Py

HS t) =
w ﬁ(pn)( ) t(D71>(p;1) (1 _ t)"

Finally, by Lemma 5, wHS5 , / (t) = HSy(gn 1) ().
4. THE AFFINE CASE

The degree of regularity of a polynomial system is the highest
degree reached during the computation of a Grobner basis with re-
spect to the grevlex ordering with the F5 algorithm. Therefore, it is
a crucial indicator of the complexity of the Grobner basis compu-
tation. On the other hand, the complexity of the FGLM algorithm
depends on the degree of the ideal I(F', 1) since this value is equal
to dimg (K[X]/I(F,1)).

In this section, we show that the bounds on the degree and the de-
gree of regularity of the ideal I(Sh7 1) are also valid for (not neces-
sarily homogeneous) polynomial families in K[X ] under genericity
assumptions.

__ THEOREM 2. There exists a non-empty Zariski open subset 0 C
K[X]%, such that, for any F in € N K[X]?,

dieg(I(F, 1)) < D(p—1)+(D—-2)n+2,
DEG(I(F,1)) < (IZ;)D"(D—1)""".

In the sequel, K[X]p denotes {f € K[X] | deg(f) = D}, and
K[X]p,hom denotes the homogeneous polynomials in K[X]p. In
order to prove Theorem 2 (the proof is postponed to the end of this
section), we first need two technical lemmas.



__ LEMMA 6. There exists a non-empty Zariski open subset & C
K[XT%, yom such that for all " € 6 NK[X]?, LML (I(F", 1)) =

<(I(3",1)).
PROOF. Seee.g. [22, Proof of Lemma 2] for a similar proof. [

LEMMA 7. Let G = (g1, ..., gm) be a polynomial family and
let Gh = (gl Yo ,gﬁl) denote the family of homogeneous compo-
nents of highest degree of G. If the dimension of the ideal (Gh> is
0, then DEG((G)) < DEG((G")).

PROOF. Let < be an admissible degree monomial ordering. Let
LM (h) denote the leading monomial of a polynomial h with re-
spect to <. Let m € LM<({(G")) be a monomial. Then there
exist polynomials s, ..., Sy, such that LM (ZZ’; sig?) =m.
Since < is a degree ordering, LM< (37", sigi) = m. Therefore

<((G™) C LM< ({(G)). If the ideal (G") is O-dimensional,
then so is (G) and DEG(LM< ((G))) < DEG(LM<({G))). Since
DEG(I) = DEG(LM<(I)), we obtain DEG((G)) < DEG((G™")).
0

PROOF OF THEOREM 2. Let < be a degree monomial ordering,
and F" = (ff',..., ) € K[X]} pom denote the homogeneous
system where f is the homogeneous component of highest degree
of f;. By Lemma 6, there exists a non-empty Zariski subset & C
K[X]%, such that, for any F in ¢ N K[X]?, LM< (I(F", 1)) =

<(I(§",1)). By [14, Ch.9, §3, Prop.9], the Hilbert series (and
thus the dimension, the degree, and the degree of regularity) of
a homogeneous ideal is the same as that of its leading monomial
ideal. Hence, by Lemma 2,
dim(I(F", 1)) = dim(LM< (I(F",1))) = dim(LM < (I(3", 1)))
= dim(I(3", 1)) =
Similarly, by Theorem 1,

dreg (I(F", 1)) = dies 13", 1)) =

The highest degree reached during the Fs Algorithm is upper
bounded by the degree of regularity of the ideal generated by the
homogeneous components of highest degree of the generators when
this homogeneous ideal has dimension O (see e.g. [8] and refer-
ences therein). Therefore, the highest degree reached during the
computation of a Grobner basis of I(F, 1) with the F5 Algorithm
with respect to a degree ordering is upper bounded by

dreg < D(p—1)+ (D —2)n+ 2.

The bound on the degree is obtained by Corollary 2 and Lemma 7,

DEG(I(F,1)) < DEG(I(F",1)) < DEG(LM<(I(§",1)))
<()DP(D 1P

D(p—1)+ (D —2)n+2.

a

S. COMPLEXITY

In the sequel, w is a real number such that there exists an algo-
rithm which computes the row echelon form of n X n matrix in
O(n*) arithmetic operations (the best known value is w = 2.376
by using the Coppersmith-Winograd algorithm, see [39]).

THEOREM 3. There exists a non-empty Zariski open subset O
C K[X]%, such that, for all F € 0 NK[X]?, the arithmetic com-
plexity of computing a lexicographical Grobner basis of 1(F, 1) is
upper bounded by

Dp—1)+ (D —1)n+2\¢ n—1\3 3, _ 3(71.713))

(-1 (p-smra) +nlp_y) Pr@-D '

PROOF. According to [7, 8], the complexity of computing a
Grobner basis with the F5 Algorithm with respect to the grevlex or-

dering of a zero-dimensional ideal is bounded by O (("*d“g)w)

dreg

where d,eg is the highest degree reached during the computation.
In order to obtain a lexicographical Grobner basis, one can use
the FGLM algorithm [19]. Its complexity is O (n DEG(I(F, 1))?)
(better complexity bounds are known in specific cases, see [20]).

According to Theorem 2, there exists a non-empty Zariski open
subset & C K[X]%, such that, for all F in & N K[X]?,

dreg(I(F,1)) < D(p—1)+ (D —2)n+2,
DEG(I(F,1)) < (I2})DP(D—1)""".

Therefore, for all F in &' NK[X]?, the total complexity of comput-
ing a lexicographical Grobner basis of I(F, 1):

Dp—1)+ (D —1)n+2\¢ n—1\3 3 3(n—
? <(D(P—1)+(D—2)n+2) "(p—1> D (D — 1) m) '

[

COROLLARY 3. If D = 2, then there exists a non-empty Zariski
open subset 0 C K[X]5, such that for all F € 0 NK[X]?, the
arithmetic complexity of computing a lexicographical Grobner ba-
sis of I(F, 1) is upper bounded by

w 3
2p p—1

Moreover, if p is constant and D = 2, the arithmetic complexity is

upper bounded by O (n2p“’
PROOF. This complexity is obtained by putting D = 2 in the

formula from Theorem 3. [
In the sequel, the binary entropy function is denoted by ha:
Vz € [0,1], ha(z) = —xlogy(z) — (1 — z) log, (1 — z).
COROLLARY 4. Let D > 2 and p € N be constant. There
exists a non-empty Zariski open subset ¢ C K[X]%, such that,
forall F € ¢ NK[X]?, the arithmetic complexity of computing a
lexicographical Grébner basis of I(F, 1) is upper bounded by

0 LQ(Dfl)hz(Dl_l)nw —0((D— 1™
n
PROOF. Let x be a real number 1n [0, 1]. Then by applying Stir-
ling’s Formula, we obtain that (I”n) =0(L 2h2(’”)”> . There-
D—1)n\ _ 1 9(D-1)h
fore, (( ) ) = 0 ﬁ2 2(D T)n )

o _ oo L(D-1)e)").

Let C denote the constant D(p — 1) + 2. Then

Goibod = (P =0 ()

= 0L mlzn).

The right summand in the complexity formula given in Theorem
3is O (n*”(D — 1)*") when p and D are constants; this is upper

bounded by O ( 1_o(D-Dh2(phy )"“’) . Let O be the non-empty

Zariski open subset defined in Theorem 3. Forall F € ¢ NK[X]",
the arithmetic complexity of computing a grevlex Grobner basis of
F is upper bounded by

0 (ﬁ2(D_1)h2(D171)nw) =0 (D~ 1)€)W>

—0((D- 1)(1+1/10g(D71))nw)
— O (( )3 57n)
since D > 3 and w < 2.376 with the Coppersmith-Winograd algo-

rithm. On the other hand the asymptotic complexity of the FGLM
part of the solving process is

o (nS(f’—”“(D - 1)3") =0 ((D-1)*"),

I

which is upper bounded by the complexity of the grevlex Grobner
basis computation. [



The following corollary shows that the arithmetic complexity is
polynomial in the number of critical points.

COROLLARY 5. For D > 3, p > 2 aﬁd n > 2, There ex-
ists a non-empty Zariski open subset 0 C K[X|},, such that, for

F € 0 NK[X]?, the arithmetic complexity of computing a lexico-
graphical Gréobner basis of I(F, 1) is upper bounded by

log(2eD)

@) (DEG (I(F, 1))max(mw*4)) <0 (DEG (I(F, 1))4A03u> )

PROOF. Let & C K[X]%, be the non-empty Zariski open subset
defined in Theorem 2, and F € ONK[X]Y, be a polynomial family.
First, notice that, since p > 2 and n > 2,

DEG(I(F.1)) = (““))(D—1)"*Dr

AV

Therefore the complexity of the FGLM algorithm is upper boun-
ded by O (n DEG (I(F,1))*) < O (DEG (I(F,1))") . The com-
plexity of computing a grevlex Grobner basis of I(F, 1) is upper
bounded by

n

GREVLEX(p,n, D) = O (D(P*1)+(D71)n+2)w)
<o(e27).

Notice that (22") < (2D)"%. By Stirling’s formula, there ex-

ists Co such that 2~ < Cope™. Hence GREVLEX(p,n,D) =

n!

O ((2De)™).
Since D > 3 and n < log(DEG(I(F,1)))/log(D — 1), we
obtain log(2¢D)

O((2De)™) < O(D Tsm "

log(2eD)
< O DEG(I(F,l))loé{(Dfl)“).

The function D — % is decreasing, and hence its maximum
is reached for D = 3, and lﬁi:(g? <4.03. O

Notice that in the complexity formula in Corollary 5, the expo-
nent %w tends towards w when D grows. Therefore, when
D is large, the complexity of the grevlex Grobner basis compu-
tation is close to the cost of linear algebra O (DEG(I(F,1))%).

Also, we would like to point out that the bound in Corollary 5 is
not sharp since the formula O (("*Sfeg)w) for the complexity of

the F algorithm is pessimistic, and the majorations performed in
the proof of Corollary 5 are not tight.

6. EXPERIMENTAL RESULTS

In this section, we report experimental results supporting the the-
oretical complexity results in the previous sections. Since our com-
plexity results concern the arithmetic complexity, we run experi-
ments where K is the finite field GF(65521) (Tables 1 and 2), so
that the timings represent the arithmetic complexity. In that case,
systems are chosen uniformly at random in GF(65521)[X|p.

We give experiments by using respectively the implementation
of Fy and FGLM algorithms in the MAGMA Computer Algebra
Software, and by using the F5 and FGLM implementations from
the FGb package.

Experiments were conducted on a 2.93GHz Intel Xeon E7220
with 128 GB RAM.

Interpretation of the results. Notice that the degree of regular-
ity and the degree match exactly the bounds given in Theorem 2.
In Tables 1 and 2, we can see a different behavior when D = 2 or
D = 3. In the case D = 2, since the complexity is polynomial in

n p | D | dieg DEG F, time | FGLM time
9 |41 2 8 896 3.12s 18.5s
11|41 2 8 1920 6ls 202s
13141 2 8 3520 369s 1372s
1541 2 8 5824 2280s 7027s
17 14| 2 8 8960 10905s >1d
30|12 2 4 116 3.00s 0.14s
3512 2 4 136 7.5s 0.36s
40 [ 2| 2 4 156 13.3s 0.64s
6 |41 3 17 3240 16s 400s
8 | 4| 3 19 45360 | 35593s >1d
7 2|3 12 1728 9.9s 91s
8 2| 3 13 4032 121s 1169s
9 |21 3 14 9216 736s >1d

Table 1: Experiments in MAGMA measuring the arithmetic
complexity (K = GF(65521)).

n | p | D | DEG(I(F, 1)) Fs time | FGLM time | matrix density
631 2 840 2.20s 0.03s 36.91%
18|13 2 1088 4.62s 0.12s 37.00%
20 13| 2 1368 9.54s 0.10s 37.07%
1541 2 5824 131.65 10.66s 33.53%
17 4] 2 8960 480.9s 68.9s 34.00%
941 2 13056 1600.1s 215.1s 34.35%
21 | 4| 2 18240 10371.7s 590.3s 34.62%
10 | 1 3 1536 1.5s 0.15s 20.84%
12 |1 3 6144 19.6s 2.46s 19.32%
14 |1 3 24576 1759s 587s 18.08%
71213 1728 1.4s 0.14s 20.73%
9 (21 3 9216 105s 37s 19.47%
10213 20736 909s 504s 19.08%
71313 6480 31.3s 3.81s 17.39%
8 | 4| 3 45360 5126.9s 3833.9s 15.15%
8 [ 2| 4 81648 21362.6s 19349.4s 13.26%
7 3] 4 77760 13856.8s 16003s 11.83%

Table 2: Timings using the FGb library and K = GF(65521).

n (Corollary 3), the computations can be performed even when n
is large (close to 20). Moreover, notice that for D = 2 or D = 3,
there is a strong correlation between the degree of the ideal and the
timings, showing that, in accordance with Corollary 5, this degree
is a good indicator of the complexity.

Also, in Table 2, we give the proportion of non-zero entries in
the multiplication matrices. This proportion plays an important role
in the complexity of FGLM, since recent versions of FGLM take
advantage of this sparsity [20]. We can notice that the sparsity of
the multiplication matrices increases as [D grows.

Numerical estimates of the complexity. Corollary 5 states that
the complexity of the grevlex Grobner basis computation is upper
bounded by O (DEG(I(F, 1))*%**) when D > 3,p > 2,n > 2.
However, the value 4.03 is not sharp. In Table 3, we report numer-
ical values of the ratio log ("*%r¢) /log (DEG(I(F,1))) which
show the difference between 4.03 and experimental values.

Notice that all ratios are smaller than 4.03, as predicted by Corol-
lary 5. Experimentally, the ratio decreases and tends towards 1

n p D log ("+i"eg)/ log(DEG)
5 4 3 1.53
10 4 3 1.36
100 4 3 1.73
10000 4 3 1.99
10000 9999 3 2.28
30000 | 29999 3 2.28
1000 500 3 1.32
20000 2 3 2.00
500 250 1000 1.09
500 2 10000 1.11

Table 3: Numerical values: log ("%"%) / log (DEG(I(F, 1))).



when D grows, in accordance with the complexity formula
log(2eD)
(0] (DEG (I(F,1))med-1) )

for the grevlex Grobner basis computation. Also, when D > 3, the
worst ratio seems to be reached when p = n — 1, D = 3 and n
grows, and experiments in Table 3 tend to show that it is bounded
from above by 2.28.

Systems with rational coefficients. In applications, the critical
points appearing are most often with rational coefficients. How-
ever, by using a multi-modular approach, the bit complexity of the
lexicographical Grobner basis computation will be quasi-linear in
the heights of these coefficients. Therefore, the whole bit com-
plexity will still be polynomial in the bit size of the output (the lex
Grobner basis). For instance, with the FGb library, the lex Grobner
basis of a critical point system withp = 1, D = 4andn = 7
and integer coefficients between —99 and 99 was computed in 45
minutes.

Nevertheless, it is still an interesting question to obtain good the-
oretical bounds on the heights of the polynomials in the lex Grob-
ner basis of critical point system — in particular in order to know if
the bit complexity is still polynomial in the number variables in the
case D = 2. We plan to investigate these issues in future works.

References

[1] P. Aubry, F. Rouillier, and M. Safey El Din. Real solving for positive dimensional
systems. Journal of Symbolic Computation, 34(6):543-560, 2002.

[2] B. Bank, M. Giusti, J. Heintz, and G.-M. Mbakop. Polar varieties and efficient
real equation solving: the hypersurface case. Journal of Complexity, 13(1):5-27,
1997.

[3

B. Bank, M. Giusti, J. Heintz, and G.-M. Mbakop. Polar varieties and efficient
real elimination. Mathematische Zeitschrift, 238(1):115-144, 2001.

[4

B. Bank, M. Giusti, J. Heintz, and L.-M. Pardo. Generalized polar varieties and
efficient real elimination procedure. Kybernetika, 40(5):519-550, 2004.

[5

B. Bank, M. Giusti, J. Heintz, and L.-M. Pardo. Generalized polar varieties:
Geometry and algorithms. Journal of complexity, 21(4):377-412, 2005.

[6

B. Bank, M. Giusti, J. Heintz, M. Safey El Din, and E. Schost. On the Geome-
try of Polar Varieties. Applicable Algebra in Engineering, Communication and
Computing, 21(1):33-83, 2010.

[7

M. Bardet, J.-C. Faugere, and B. Salvy. On the complexity of Grobner basis
computation of semi-regular overdetermined algebraic equations. In Proceed-
ings of the International Conference on Polynomial System Solving (ISCPP),
pages 71-74, 2004.

[8

M. Bardet, J.-C. Faugere, B. Salvy, and B.-Y. Yang. Asymptotic expansion of the
degree of regularity for semi-regular systems of equations. In Effective Methods
in Algebraic Geometry (MEGA ), pages 71-74, 2004.

[9] A.Barvinok. Feasibility testing for systems of real quadratic equations. Discrete
& Computational Geometry, 10(1):1-13, 1993.

[10] S. Basu, R. Pollack, and M.-F. Roy. On the combinatorial and algebraic com-
plexity of quantifier elimination. Journal of ACM, 43(6):1002-1045, 1996.

[11] S.Basu, R. Pollack, and M.-F. Roy. A new algorithm to find a point in every cell
defined by a family of polynomials. In Quantifier elimination and cylindrical
algebraic decomposition. Springer-Verlag, 1998.

[12] L. Busé. Resultants of determinantal varieties. Journal of Pure and Applied
Algebra, 193(1-3):71-97, 2004.

[13] A. Conca and J. Herzog. On the Hilbert function of determinantal rings and
their canonical module. Proceedings of the American Mathematical Society,
122(3):677-681, 1994.

[14] D.Cox,J. Little, and D. O’Shea. Ideals, Varieties and Algorithms. Springer, 3rd
edition, 1997.

[15] D. Eisenbud. Commutative Algebra with a View Toward Algebraic Geometry.
Springer, 1995.

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(311

[32]

[33]

[34]

[35]

[36]

[37]

[38]

(391

H. Everett, D. Lazard, S. Lazard, and M. Safey El Din. The voronoi diagram of
three lines. Discrete & Computational Geometry, 42(1):94-130, 2009.

J. Faugere, G. Moroz, F. Rouillier, and M. Safey El Din. Classification of the
perspective-three-point problem, discriminant variety and real solving polyno-
mial systems of inequalities. In Proceedings of the twenty-first international
symposium on Symbolic and algebraic computation, pages 79-86. ACM, 2008.

J.-C. Faugere. A New Efficient Algorithm for Computing Grobner bases with-
out reductions to zero (F5). In T. Mora, editor, Proceedings of the 2002 Inter-
national Symposium on Symbolic and Algebraic Computation (ISSAC), pages
75-83. ACM Press, 2002.

J.-C. Faugere, P. Gianni, D. Lazard, and T. Mora. Efficient Computation of
Zero-Dimensional Grobner bases by Change of Ordering. Journal of Symbolic
Computation, 16(4):329-344, 1993.

J.-C. Faugere and C. Mou. Fast Algorithm for Change of Ordering of Zero-
dimensional Grobner Bases with Sparse Multiplication Matrices. In Proceedings
of the 36th international symposium on Symbolic and algebraic computation,
ISSAC ’11, pages 115-122, New York, NY, USA, 2011. ACM.

J.-C. Faugere, M. Safey El Din, and P.-J. Spaenlehauer. Computing Loci of Rank
Defects of Linear Matrices using Grobner Bases and Applications to Cryptology.
In S. M. Watt, editor, Proceedings of the 2010 International Symposium on Sym-
bolic and Algebraic Computation (ISSAC 2010), pages 257-264, 2010.

J.-C. Faugere, M. Safey El Din, and P.-J. Spaenlehauer. On the complexity of
the Generalized Minrank Problem. arXiv:1112.4411, 2011.

W. Fulton. Intersection Theory. Springer, 2nd edition, 1997.

M. Giusti, G. Lecerf, and B. Salvy. A Grobner free alternative for polynomial
system solving. Journal of Complexity, 17(1):154-211, 2001.

G. Greuel, C. Lossen, and E. Shustin. Introduction to singularities and deforma-
tions. Springer, 2007.

D. Grigoriev and D. V. Pasechnik. Polynomial-time computing over quadratic
maps i: sampling in real algebraic sets. Computational Complexity, 14(1):20-52,
Apr. 2005.

D. Grigoriev and N. Vorobjov. Solving systems of polynomials inequalities in
subexponential time. Journal of Symbolic Computation, 5:37-64, 1988.

J. Heintz, M.-F. Roy, and P. Solerno. On the complexity of semi-algebraic sets.
In Proceedings IFIP’89 San Francisco, North-Holland, 1989.

J. Heintz, M.-F. Roy, and P. Solerno. On the theoretical and practical complexity
of the existential theory of the reals. The Computer Journal, 36(5):427-431,
1993.

M. Hochster and J. A. Eagon. A class of perfect determinantal ideals. Bulletin
of the American Mathematical Society, 76(5):1026-1029, 1970.

M. Hochster and J. A. Eagon. Cohen-Macaulay rings, invariant theory, and
the generic perfection of determinantal loci. American Journal of Mathemat-
ics, 93(4):1020-1058, 1971.

H. Hong and M. Safey El Din. Variant real quantifier elimination: algorithm and
application. In Proceedings of the 2009 International Symposium on Symbolic
and Algebraic Computation, pages 183—190. ACM, 2009.

H. Hong and M. Safey El Din. Variant quantifier elimination. Journal of Sym-
bolic Computation, 2011.

J. Nie and K. Ranestad. Algebraic Degree of Polynomial Optimization. SIAM
Journal on Optimization, 20(1):485-502, 2009.

M. Safey El Din. Testing sign conditions on a multivariate polynomial and ap-
plications. Mathematics in Computer Science, 1(1):177-207, 2007.

M. Safey El Din and E. Schost. Polar varieties and computation of one point in
each connected component of a smooth real algebraic set. In J. Sendra, editor,
Proceedings of ISSAC 2003, pages 224-231. ACM Press, aug 2003.

M. Safey El Din and E. Schost. Properness defects of projections and computa-
tion of one point in each connected component of a real algebraic set. Discrete
and Computational Geometry, 32(3):417-430, 2004.

1. Shafarevich. Basic Algebraic Geometry 1. Springer, second, re edition, 1988.

A. Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, University
of Waterloo, 2000.



