
ACM Communications in Computer Algebra, Vol 47, No. 3, Issue 185, September 2013 ISSAC poster abstracts

Newton-like Iteration for Determinantal Systems

and Structured Low Rank Approximation

Éric Schost and Pierre-Jean Spaenlehauer
Western University, Department of Computer Science

London, Ontario, Canada
eschost@uwo.ca, pierre-jean.spaenlehauer@m4x.org

Problem statement. Let Mp,q(R) be the space of p × q matrices with real entries, r ∈ N be an
integer, Vr ⊂ Mp,q(R) be the determinantal variety of matrices of rank at most r and E be a linear (or
affine) subspace of Mp,q(R) (e.g. Toeplitz, Hankel, Sylvester matrices). Given a matrix M ∈ E, the
goal is to compute a close matrix in E ∩ Vr. More precisely, we want a numerical algorithm computing a
function ϕ : E −→ E such that, if M is close enough to E ∩ Vr, then the sequence defined by M0 = M ,
Mi+1 = ϕ(Mi) converges quadratically towards a matrix M∞ ∈ E∩Vr. As shown in [5], this problem which
is also known as Structured Low-Rank Approximation (SLRA) is central in data fitting or in numerical
analysis. It is also underlying classical symbolic-numeric problems.

Main results. We propose a Newton-like algorithm (NewtonSLRA) which answers the above specifi-
cation and appears to converge quadratically. The main principle of this algorithm is close to Cadzow’s
algorithm [1] which proceeds by a sequence of Singular Value Decompositions (SVD) and orthogonal pro-
jections on E. However, we choose a direction of projection which is tangent to the determinantal variety
in order to ensure quadratic convergence. Each iteration of the algorithm NewtonSLRA computes a function
ϕ(M) in three main steps: (1) compute a rank r approximation M̃ of M ; (2) from the left and right

kernels of M̃ , compute a set of generators of the tangent space T
M̃
Vr; (3) compute the point in E ∩ T

M̃
Vr

which minimizes the distance to M̃ (this is achieved by solving a linear least squares problem). Com-
puting the best rank r approximation with respect to the Frobenius norm is achieved by the SVD. It
also provides an orthonormal basis (for the scalar product 〈M1,M2〉 = tr(M1 · TM2)) of the normal space

N
M̃
Vr = KerL(M̃)⊗KerR(M̃) which is used for computing the projection on E. The most expensive step

is the SVD which is achieved in O(pqmin(p, q)) operations in fixed precision. The main theoretical result
lies in the following theorem which ensures the local quadratic convergence towards a matrix M∞ ∈ Vr ∩E
near the optimal solution, under conditions on the dimensions of dim(E) and dim(Vr). To the best of our
knowledge, this is the first proof of quadratic convergence of an iterative method for the SLRA problem:

Theorem 1. If dim(E) = dim(Vr) and dim(E)+dim(Vr) > pq, then the algorithm NewtonSLRA computes a
function ϕ : E → E verifying the following property: for all µ > 1 and for all M̂ ∈ Vr ∩E such that Vr and
E verify mild transversality conditions at M̂ , there exists ε > 0 such that for all M0 with ‖M0 − M̂‖ < ε,
the sequence Mi+1 = ϕ(Mi) converges towards a matrix M∞ ∈ Vr ∩ E and

‖Mi −M∞‖ ≤
(

1

2

)2i−1
‖M0 −M∞‖ and ‖M0 −M∞‖ ≤ µ‖M0 − M̂‖.

The proof relies on tools from Smale’s α-theory, slightly modified to take into account the properties
of this Newton-like iteration.

Application to univariate approximate GCD. Approximate GCD computation is a symbolic-
numeric example of SLRA problem: a degree condition on the GCD of univariate polynomials amounts to

1



ISSAC poster abstracts

a rank condition on their Sylvester matrix. In this setting, the algorithm takes as input two floating-point
polynomials f , g of degrees m and n, and an integer d ∈ N; it outputs three floating-point polynomials
a, b, h of respective degrees m − d, n − d, d such that ‖f − ah‖2 + ‖g − bh‖2 is small. Here, E is
the linear space of truncated Sylvester matrices (see e.g. [6]) and Vr is the variety of rank deficient
matrices of sizes (m+ n− d+ 1)× (m+ n− 2d+ 2). We compare in Table 1 our Maple implementation of
NewtonSLRA with the Maple implementation of GPGCD [6], which is a state-of-the art algorithm dedicated to
the computation of approximate GCDs. Instances are constructed by generating two random polynomials
f̃ , g̃ such that deg(GCD(f̃ , g̃)) = d and by adding a random error polynomial fε, gε such that the relative

noise
√
‖fε‖2 + ‖gε‖2/

√
‖f̃‖2 + ‖g̃‖2 is equal to a fixed parameter ε. The column “perturbation” gives the

relative distance between the output and the input of the algorithms. Notice that NewtonSLRA performs
almost as well as GPGCD, which relies on optimization techniques to minimize the function ‖f −ah‖2 +‖g−
bh‖2. In comparison, NewtonSLRA does not converge to the minimum of this function, but we see in Table 1
that the distance to the optimum is small. Also, experimental results indicate that NewtonSLRA converges
quadratically (although dim(E) and dim(Vr) do not verify the assumptions of theorem 1), whereas GPGCD

converges linearly (see the right part of table 1 for an example). We also tried to use directly the QRGCD

routine from the package SNAP in Maple [3] but it failed to find an approximate GCD in our examples
because of the high level of noise in the coefficients of the input polynomials.

NewtonSLRA GPGCD

(m,n, d, ε) time perturbation time perturbation

(100, 100, 50, 0.001) 0.803s 4.838e-4 0.806s 4.742e-4

(500, 500, 250, 0.001) 37.5s 5.127e-4 45.4s 4.923e-4

(1000, 1000, 500, 0.001) 282s 5.781e-4 317s 5.155e-4

(2000, 2000, 1000, 0.0001) 1567s 5.104e-5 1161s 5.088e-5

sizes of iteration steps

iteration NewtonSLRA GPGCD

1 0.9e-1 0.9e-1
2 0.5e-3 0.5e-3
3 0.6e-8 0.2e-5
4 0.1e-17 0.8e-8
5 0.1e-36 0.4e-10

Table 1: Comparison between GPGCD [6] and NewtonSLRA for computing approximate GCDs

Other applications of SLRA in symbolic-numeric computations and future work. Several
other algebraic problems are characterized by rank conditions on structured matrices, for which these
techniques could lead to symbolic-numeric algorithms, e.g. solving bilinear systems, computing the minimal
polynomial of algebraic power series or computing low degree Pade approximants. Moreover, there is still
room for improvement: the most computationally-intensive step of this algorithm is the computation of the
SVD, but the algorithm converges quadratically even when less precise rank-approximation techniques are
used. Also, we plan to compare our method and implementation with other algorithms for SLRA (see e.g.
[2] and references therein) and for computing approximate GCDs (see e.g [4], which relies on the Structured
Total Least Norm approach). The main challenge is to extend theorem 1 by relaxing the restrictions on
dim(E) and dim(Vr).

References
[1] J. A. Cadzow. Signal enhancement-a composite property mapping algorithm. Acoustics, Speech and Signal Processing,

IEEE Transactions on, 36(1):49–62, 1988.

[2] M. T. Chu, R. E. Funderlic, and R. J. Plemmons. Structured Low Rank Approximation. Linear algebra and its applications,
366:157–172, 2003.

[3] R. M. Corless, S. M. Watt, and L. Zhi. QR factoring to compute the gcd of univariate approximate polynomials. Signal
Processing, IEEE Transactions on, 52(12):3394–3402, 2004.

[4] E. Kaltofen, Z. Yang, and L. Zhi. Structured low rank approximation of a Sylvester matrix. In Symbolic-numeric
computation, pages 69–83. Springer, 2007.

[5] I. Markovsky. Structured low-rank approximation and its applications. Automatica, 44(4):891–909, 2008.

[6] A. Terui. An iterative method for calculating approximate gcd of univariate polynomials. In ISSAC 2009, pp. 351–358.

2


