Gröbner Bases of Structured Systems and Applications to Cryptology

Pierre-Jean Spaenlehauer

INRIA/CNRS/Univ. Lorraine, Caramel Project

Journées C2, March 26, 2014

General framework

- Modeling of a **cryptosystem** by an algebraic **polynomial system**;
- Coefficients in a finite field;
- Solving → retrieving secret information;
- Complexity → security;
- \blacksquare Gröbner bases algorithms \leadsto well-suited when $\mathbb K$ is a **finite field**.

General framework

- Modeling of a **cryptosystem** by an algebraic **polynomial system**;
- Coefficients in a finite field;
- Solving → retrieving secret information;
- Complexity → security;
- Gröbner bases algorithms \rightsquigarrow well-suited when \mathbb{K} is a **finite field**.

$$\begin{array}{llll} f_1,\dots,f_m\in\mathbb{K}[x_1,\dots,x_n],\\ \text{ where }\mathbb{K}\text{ is a finite field} \end{array} \left\{ \begin{array}{lll} f_1(x_1,\dots,x_n) &=& 0\\ & \vdots & \Longrightarrow & \mathbb{K}^n\\ f_m(x_1,\dots,x_n) &=& 0 \end{array} \right. \\ \end{array}$$

General framework

- Modeling of a **cryptosystem** by an algebraic **polynomial system**;
- Coefficients in a finite field;
- Solving → retrieving secret information;
- Complexity → security;
- Gröbner bases algorithms \rightsquigarrow well-suited when \mathbb{K} is a **finite field**.

$$\begin{array}{llll} f_1,\ldots,f_m\in\mathbb{K}[x_1,\ldots,x_n],\\ \text{where }\mathbb{K}\text{ is a finite field} \end{array} \left\{ \begin{array}{lll} f_1(x_1,\ldots,x_n) &=& 0\\ & \vdots & \Longrightarrow & \mathbb{K}^n\\ f_m(x_1,\ldots,x_n) &=& 0 \end{array} \right. \text{ list the solutions in } \\ \left\{ \begin{array}{lll} f_m(x_1,\ldots,x_n) &=& 0 \end{array} \right.$$

General framework

- Modeling of a **cryptosystem** by an algebraic **polynomial system**;
- Coefficients in a finite field;
- Solving → retrieving secret information;
- Complexity → security;
- Gröbner bases algorithms \rightsquigarrow well-suited when \mathbb{K} is a **finite field**.

$$\begin{array}{llll} f_1,\dots,f_m\in\mathbb{K}[x_1,\dots,x_n],\\ \text{where }\mathbb{K}\text{ is a finite field} \end{array} \left\{ \begin{array}{lll} f_1(x_1,\dots,x_n) &=& 0\\ & \vdots & \Longrightarrow & \mathbb{K}^n\\ f_m(x_1,\dots,x_n) &=& 0 \end{array} \right. \text{ list the solutions in } \\ \end{array}$$

But... cryptographic properties \Longrightarrow Structured algebraic systems.

General framework

- Modeling of a **cryptosystem** by an algebraic **polynomial system**;
- Coefficients in a finite field;
- Solving → retrieving secret information;
- Complexity → security;
- Gröbner bases algorithms \rightsquigarrow well-suited when \mathbb{K} is a **finite field**.

$$\begin{array}{llll} f_1,\ldots,f_m\in\mathbb{K}[x_1,\ldots,x_n],\\ \text{where }\mathbb{K}\text{ is a finite field} \end{array} \left\{ \begin{array}{lll} f_1(x_1,\ldots,x_n) &=& 0\\ & \vdots &\Longrightarrow & \mathbb{K}^n\\ f_m(x_1,\ldots,x_n) &=& 0 \end{array} \right. \text{ list the solutions in } \\ \left\{ \begin{array}{lll} f_m(x_1,\ldots,x_n) &=& 0 \end{array} \right.$$

But... **cryptographic properties** \Longrightarrow **Structured** algebraic systems.

Question: impact of structures on GB computations.

0-dimensional solving strategy with Gröbner bases

$$f_1 = \cdots = f_m = 0$$

$$\downarrow \\ \text{"grevlex" Gb} \qquad \begin{array}{ll} \text{Row Echelon forms of Macaulay} \\ \text{matrices up to degree d}_{\text{reg}} \\ \text{"lex" Gb} \qquad \begin{array}{ll} \text{Complexity} \\ \text{DEG}(I) \\ \text{vect. space of dim. DEG}(I) \\ \text{FGLM} \\ \text{Faugère, Gianni, Lazard, Mora (1993)} \\ \text{Row Echelon forms of Macaulay} \\ O\left(m\binom{n+d_{\text{reg}}}{n}^{\omega}\right) \\ O\left(mDEG(I)^3\right) \\ \text{FGLM} \\ \text{Faugère, Gianni, Lazard, Mora (1993)} \\ \text{Follows the matrices of the matrices o$$

0-dimensional solving strategy with Gröbner bases

$$f_1 = \cdots = f_m = 0 \\ \downarrow \\ \text{"grevlex" Gb} \\ \text{"grevlex" Gb} \\ \text{Row Echelon forms of Macaulay matrices up to degree dreg} \\ \text{"lex" Gb} \\ \text{Linear algebra in } \frac{\mathbb{K}[X]}{I} \text{ as a } \mathbb{K} \\ \text{vect. space of dim. DEG}(I) \\ \Rightarrow g(u) = 0, x_i = h_i(u) \\ \text{Complexity} \\ O\left(m\binom{n+d_{\text{reg}}}{n}^{\omega}\right) \\ O\left(m\binom{n+d_{\text{reg}}}{n}^{\omega}\right) \\ F_4 \text{ (Faugère 1999)} \\ F_5 \text{ (Faugère 2002)} \\ \text{FGLM} \\ \text{Faugère, Gianni, Lazard, Mora (1993)} \\ \text{FGLM}$$

Macaulay matrix in degree d

$$f_1 = \cdots = f_m = 0, \deg(f_i) = d_i$$

Rows: all products tf_i where $t \in \text{Monomials}(d - d_i)$.

Columns: monomials of degree d.

0-dimensional solving strategy with Gröbner bases

$$f_1 = \cdots = f_m = 0$$
 \downarrow

"grevlex" Gb

Row Echelon forms of Macaulay matrices up to degree d_{reg}

Complexity

 $O\left(m\binom{n+d_{reg}}{n}^{\omega}\right)$

Buchberger (1965)

 F_4 (Faugère 1999)

 F_5 (Faugère 2002)

FGLM

Faugère, Gianni,

 $O\left(nDEG(I)^3\right)$

FGLM

Faugère, Gianni,

Lazard, Mora (1993)

Macaulay matrix in degree d

$$f_1 = \cdots = f_m = 0, \deg(f_i) = d_i$$

Rows: all products tf_i where $t \in Monomials(d - d_i)$.

Columns: monomials of degree d.

Degree of regularity

maximal degree reached

Hilbert series:

generating series of the rank defects

$$\mathsf{HS}(t) = \sum_{d \in \mathbb{N}} \mathsf{dim}(\mathbb{K}[X]_d/I_d) t^d$$

$$\mathsf{d}_{\mathsf{reg}} = \mathsf{deg}(\mathsf{HS}) + 1$$

Δ

MinRank

$$r \in \mathbb{N}$$
. M_0, \ldots, M_n : $n+1$ matrices of size $p \times q$.

MinRank Problem

Find $\lambda_1, \ldots, \lambda_n$ such that

$$\operatorname{Rank}\left(\frac{M_0-\sum_{i=1}^n\lambda_i\,M_i}{}\right)\leqslant r$$

$$r \in \mathbb{N}$$
. M_0, \ldots, M_n : $n+1$ matrices of size $p \times q$.

MinRank Problem

Find $\lambda_1, \ldots, \lambda_n$ such that

$$\operatorname{Rank}\left(\frac{M_0-\sum_{i=1}^n\lambda_i\,M_i}{}\right)\leqslant r$$

- Multivariate generalization of the EigenValue problem.
- Applications in cryptology, coding theory, geometry, ...
 Kipnis/Shamir Crypto'99 Faugère/Levy-dit-Vehel/Perret, Crypto '08
 Courtois Crypto'01 Gaborit/Ruatta/Schrek'13
- Fundamental NP-hard problem of linear algebra.
 Buss/Frandsen/Shallit, 1999.

Determinantal systems

Let r < q < p be integers and M be the $p \times q$ matrix

$$M(X) = \begin{bmatrix} f_{1,1}(X) & \cdots & \cdots & f_{1,q}(X) \\ \vdots & \cdots & \ddots & \vdots \\ f_{p,1}(X) & \cdots & \cdots & f_{p,q}(X) \end{bmatrix}$$

with $f_{i,j} \in \mathbb{K}[x_1,\ldots,x_n]$ of degree D.

Determinantal systems

Let r < q < p be integers and M be the $p \times q$ matrix

$$M(X) = \begin{bmatrix} f_{1,1}(X) & \cdots & \cdots & f_{1,q}(X) \\ \vdots & \cdots & \ddots & \vdots \\ f_{p,1}(X) & \cdots & \cdots & f_{p,q}(X) \end{bmatrix}$$

with $f_{i,j} \in \mathbb{K}[x_1,\ldots,x_n]$ of degree D.

Generalized MinRank Problem

Compute the set of points $x \in \overline{\mathbb{K}}^n$ such that $\operatorname{rank}(M(x)) \leq r$.

 \rightarrow polynomial system solving problem: Minors_{r+1}(M(X)) = 0

 $p \times q$ matrix. n variables. Entries of degree D. Zero-dimensional case (n=(p-r)(q-r)).

		System	→	grevlex GB → lex GB.
	Complexity	0 (($\binom{p}{r+1}\binom{q}{r+1}\binom{n+d_{reg}}{d_{reg}}^{\omega}$	$O\left(\mathbf{n}\cdotDEG^3\right)$

 $p \times q$ matrix. n variables. Entries of degree D. Zero-dimensional case (n = (p - r)(q - r)).

	System	→	
Complexity	0 ((r	$\begin{array}{c} p \\ + 1 \end{array} \! \! \binom{q}{r+1} \! \binom{n+d_{reg}}{d_{reg}}^{\omega}$	$O\left(n\cdotDEG^3\right)$

Degree and regularity (under genericity assumptions on the coefficients)

$$d_{reg} = Dr(q - r) + (D - 1)(p - r)(q - r) + 1$$

 $p \times q$ matrix. n variables. Entries of degree D. **Zero-dimensional** case (n = (p - r)(q - r)).

	System	→	grevlex GB → lex GB. Change of ordering
Complexity	0 ((r	$\frac{p}{+1} \binom{q}{r+1} \binom{n+d_{reg}}{d_{reg}}^{\omega}$	$O\left(n\cdotDEG^3\right)$

Degree and regularity (under genericity assumptions on the coefficients)

$$d_{reg} = Dr(q - r) + (D - 1)(p - r)(q - r) + 1$$

DEG =
$$D^{(p-r)(q-r)} \prod_{i=0}^{q-r-1} \frac{i!(p+i)!}{(q-1-i)!(p-r+i)!}$$

 $p \times q$ matrix. n variables. Entries of degree D. **Zero-dimensional** case (n = (p - r)(q - r)).

	System	\longrightarrow	grevlex GB → lex GB.
Complexity	0 (($\binom{p}{r+1}\binom{q}{r+1}\binom{n+d_reg}{d_reg}^{\omega}$	$O\left(\mathbf{n}\cdotDEG^3\right)$

Degree and regularity (under genericity assumptions on the coefficients)

$$d_{reg} = Dr(q-r) + (D-1)(p-r)(q-r) + 1$$

DEG =
$$D^{(p-r)(q-r)} \prod_{i=0}^{q-r-1} \frac{i!(p+i)!}{(q-1-i)!(p-r+i)!}$$

families of Generalized MinRank Problems that can be solved in complexity polynomial in the number of solutions.

Application in Cryptology

Courtois, Crypto'01

Authentication scheme based on the difficulty of MinRank. Proposed parameters: $p=q,~\mathbb{K}=\mathbb{F}_{65521},~r=q-3.$

Application in Cryptology

Courtois, Crypto'01

Authentication scheme based on the difficulty of MinRank. Proposed parameters: p=q, $\mathbb{K}=\mathbb{F}_{65521}$, r=q-3.

Complexity of the algebraic attack: $O(q^9)$

Application in Cryptology

Courtois, Crypto'01

Authentication scheme based on the difficulty of MinRank. Proposed parameters: $p=q,~\mathbb{K}=\mathbb{F}_{65521},~r=q-3.$

Complexity of the algebraic attack: $O(q^9)$

q	security	FGb F₅+FGLM
6	2 ¹⁰⁶	2.8s
7	2 ¹²²	130s
11	2 ¹³⁸	238 days (est.) on 64 quadcore proc.

Bottleneck for q = 11: computing the input system.

$$\mathscr{D} = \mathsf{Minors}_{r+1} \begin{pmatrix} v_{1,1} & \dots & v_{1,q} \\ \vdots & \ddots & \vdots \\ v_{p,1} & \dots & v_{p,q} \end{pmatrix}$$

Entries are variables

$$r \times r$$
 matrix: $A_{i,j}(t) = \sum_{\ell} \binom{p-i}{\ell} \binom{q-j}{\ell} t^{\ell}$

$$\mathcal{D} = \mathsf{Minors}_{r+1} \begin{pmatrix} v_{1,1} & \dots & v_{1,q} \\ \vdots & \ddots & \vdots \\ v_{p,1} & \dots & v_{p,q} \end{pmatrix}$$

Thom/Porteous 71, Giambelli 04, Harris/Tu 84
The degree of 𝒯 is

$$\prod_{i=0}^{q-r-1} \frac{i!(p+i)!}{(q-1-i)!(p-r+i)!}$$

Conca/Herzog AMS'94, Abhyankar '88 The Hilbert series of $\mathscr D$ is

$$\mathsf{HS}_{\mathscr{D}}(t) = rac{\mathsf{det}(A(t))}{t^{inom{r}{2}}(1-t)^{pq-(p-r)(q-r)}}$$

$$r \times r$$
 matrix: $A_{i,j}(t) = \sum_{\ell} \binom{p-i}{\ell} \binom{q-j}{\ell} t^{\ell}$

$$\mathcal{D} = \mathsf{Minors}_{r+1} \begin{pmatrix} v_{1,1} & \dots & v_{1,q} \\ \vdots & \ddots & \vdots \\ v_{p,1} & \dots & v_{p,q} \end{pmatrix}$$

Thom/Porteous 71, Giambelli 04, Harris/Tu 84
The degree of 𝒯 is

$$\prod_{i=0}^{q-r-1} \frac{i!(p+i)!}{(q-1-i)!(p-r+i)!}$$

Conca/Herzog AMS'94, Abhyankar '88 The Hilbert series of \mathscr{D} is

$$\mathsf{HS}_{\mathscr{D}}(t) = \frac{\det(A(t))}{t^{\binom{r}{2}}(1-t)^{pq-(p-r)(q-r)}}$$

$$r imes r$$
 matrix: $A_{i,j}(t) = \sum_{\ell} \binom{p-i}{\ell} \binom{q-j}{\ell} t^{\ell}$

$$\mathcal{I} = \mathsf{Minors}_{r+1} \begin{pmatrix} f_{1,1} & \dots & f_{1,q} \\ \vdots & \ddots & \vdots \\ f_{p,1} & \dots & f_{p,q} \end{pmatrix}$$

Entries are polynomials

$$\mathscr{D} = \mathsf{Minors}_{r+1} \begin{pmatrix} \mathsf{v}_{1,1} & \dots & \mathsf{v}_{1,q} \\ \vdots & \ddots & \vdots \\ \mathsf{v}_{p,1} & \dots & \mathsf{v}_{p,q} \end{pmatrix}$$

Thom/Porteous 71, Giambelli 04, Harris/Tu 84
The degree of 𝒯 is

$$\prod_{i=0}^{q-r-1} \frac{i!(p+i)!}{(q-1-i)!(p-r+i)!}$$

Conca/Herzog AMS'94, Abhyankar '88 The Hilbert series of \mathscr{D} is

$$\mathsf{HS}_{\mathscr{D}}(t) = \frac{\det(A(t))}{t^{\binom{r}{2}}(1-t)^{pq-(p-r)(q-r)}}$$

$$r \times r$$
 matrix: $A_{i,j}(t) = \sum_{\ell} \binom{p-i}{\ell} \binom{q-j}{\ell} t^{\ell}$

transfer of properties of \mathcal{D} by adding $\langle v_{i,i} - f_{i,i} \rangle$

$$\mathcal{I} = \mathsf{Minors}_{r+1} \begin{pmatrix} f_{1,1} & \dots & f_{1,q} \\ \vdots & \ddots & \vdots \\ f_{p,1} & \dots & f_{p,q} \end{pmatrix}$$

Entries are polynomials

$$\mathscr{D} = \mathsf{Minors}_{r+1} \begin{pmatrix} v_{1,1} & \dots & v_{1,q} \\ & \ddots & & \\ & & & v_{p,1} & \dots & v_{p,q} \end{pmatrix}$$

Thom/Porteous 71, Giambelli 04, Harris/Tu 84
The degree of 𝒯 is

$$\prod_{i=0}^{q-r-1} \frac{i!(p+i)!}{(q-1-i)!(p-r+i)!}$$

Conca/Herzog AMS'94, Abhyankar '88 The Hilbert series of \mathscr{D} is

$$\mathsf{HS}_{\mathscr{D}}(t) = rac{\mathsf{det}(A(t))}{t^{inom{r}{2}}(1-t)^{pq-(p-r)(q-r)}}$$

$$r \times r$$
 matrix: $A_{i,j}(t) = \sum_{\ell} \binom{p-i}{\ell} \binom{q-j}{\ell} t^{\ell}$

transfer of properties of \mathcal{D} by adding $\langle v_{i,i} - f_{i,i} \rangle$

$$\mathcal{I} = \mathsf{Minors}_{r+1} \begin{pmatrix} f_{1,1} & \dots & f_{1,q} \\ \vdots & \ddots & \vdots \\ f_{p,1} & \dots & f_{p,q} \end{pmatrix}$$

The degree of \mathcal{I} is

$$D^{(p-r)(q-r)} \prod_{i=0}^{q-r-1} \frac{i!(p+i)!}{(q-1-i)!(p-r+i)!}$$

The Hilbert series of \mathcal{I} is

$$\mathsf{HS}_{\mathcal{I}}(t) = \frac{\det(A(t^D))(1-t^D)^{(p-r)(q-r)}}{t^{\binom{r}{2}}(1-t)^n}$$

$$\mathscr{D} = \mathsf{Minors}_{r+1} \begin{pmatrix} \mathsf{v}_{1,1} & \dots & \mathsf{v}_{1,q} \\ \vdots & \ddots & \vdots \\ \mathsf{v}_{p,1} & \dots & \mathsf{v}_{p,q} \end{pmatrix}$$

Thom/Porteous 71, Giambelli 04, Harris/Tu 84

The $\operatorname{\mathbf{degree}}$ of $\mathscr D$ is

$$\prod_{i=0}^{q-r-1} \frac{i!(p+i)!}{(q-1-i)!(p-r+i)!}$$

Conca/Herzog AMS'94, Abhyankar '88 The Hilbert series of \mathscr{D} is

$$\mathsf{HS}_{\mathscr{D}}(t) = rac{\mathsf{det}(A(t))}{t^{inom{r}{2}}(1-t)^{pq-(p-r)(q-r)}}$$

 $r \times r$ matrix: $A_{i,j}(t) = \sum_{\ell} {p-i \choose \ell} {q-j \choose \ell} t^{\ell}$

transfer of properties of
$$\mathcal{D}$$
 by adding $\langle v_{i,i} - f_{i,i} \rangle$

$$\mathbf{I} = \mathsf{Minors}_{r+1} \begin{pmatrix} f_{1,1} & \dots & f_{1,q} \\ \vdots & \ddots & \vdots \\ f_{p,1} & \dots & f_{p,q} \end{pmatrix}$$

The degree of \mathcal{I} is

$$D^{(p-r)(q-r)}\prod_{i=0}^{q-r-1}\frac{i!(p+i)!}{(q-1-i)!(p-r+i)!}$$

The Hilbert series of \mathcal{I} is

$$\mathsf{HS}_{\mathcal{I}}(t) = \frac{\det(A(t^D))(1-t^D)^{(p-r)(q-r)}}{t^{\binom{r}{2}}(1-t)^n}$$

Ingredients of the proof:

- Cohen-Macaulay rings;
- quasi-homogeneous polynomials.

Quadratic boolean systems with M. Bardet, J.-C. Faugère, B. Salvy

Boolean MQ Problem

 $f_1, \ldots, f_m \in \mathbb{F}_2[x_1, \ldots, x_n]$ quadratic polynomials.

Find one/all boolean solution of the system

$$\begin{cases}
f_1(x_1,\ldots,x_n) &= 0 \\
f_2(x_1,\ldots,x_n) &= 0 \\
&\vdots \\
f_m(x_1,\ldots,x_n) &= 0
\end{cases}$$

Quadratic boolean systems with M. Bardet, J.-C. Faugère, B. Salvy

Boolean MQ Problem

 $f_1,\ldots,f_m\in\mathbb{F}_2[x_1,\ldots,x_n]$ quadratic polynomials.

Find one/all boolean solution of the system

$$\begin{cases}
f_1(x_1, \dots, x_n) &= 0 \\
f_2(x_1, \dots, x_n) &= 0 \\
\vdots &\vdots \\
f_m(x_1, \dots, x_n) &= 0
\end{cases}$$

- NP-hard problem ~> SAT.
- Security of several modern cryptosystems relies on the difficulty of Boolean MQ (QUAD,...).
- Asymptotically, the number of solutions follows a Poisson law of parameter 2^{n-m} → few solutions for random systems (Fusco/Bach, TAMC'07).
- Best proven worst case complexity bound: exhaustive search, 4 · 2ⁿ log₂ n (Bouillaguet/Chen/Cheng/Chou/Niederhagen/Shamir/Yang CHES'10).

Quadratic boolean systems with M. Bardet, J.-C. Faugère, B. Salvy

Boolean MQ Problem

 $f_1, \ldots, f_m \in \mathbb{F}_2[x_1, \ldots, x_n]$ quadratic polynomials.

Find one/all boolean solution of the system

$$\begin{cases}
f_1(x_1, \dots, x_n) &= 0 \\
f_2(x_1, \dots, x_n) &= 0 \\
\vdots \\
f_m(x_1, \dots, x_n) &= 0
\end{cases}$$

- NP-hard problem ~→ SAT.
- Security of several modern cryptosystems relies on the difficulty of Boolean MQ (QUAD,...).
- Asymptotically, the number of solutions follows a Poisson law of parameter 2^{n-m} → few solutions for random systems (Fusco/Bach, TAMC'07).
- Best proven worst case complexity bound: exhaustive search, $4 \cdot 2^n \log_2 n$ (Bouillaguet/Chen/Cheng/Chou/Niederhagen/Shamir/Yang CHES'10).

Problem: construct an $O(2^{cn})$ algorithm, with c < 1.

Related works

Algorithmic Tools

- Exhaustive search: Bouillaguet/Chen/Cheng/Chou/Niederhagen/Shamir/Yang CHES'10....;
- SAT-Solvers: Davis/Putnam/Logemann/Loveland J. of ACM'60, Comm. of ACM'62;
- Gröbner bases algorithms;
- Hybrid approach: Bettale/Faugère/Perret J. of Math. Crypto'09.

Related works

Algorithmic Tools

- Exhaustive search: Bouillaguet/Chen/Cheng/Chou/Niederhagen/Shamir/Yang CHES'10...:
- SAT-Solvers: Davis/Putnam/Logemann/Loveland J. of ACM'60, Comm. of ACM'62;
- Gröbner bases algorithms;
- Hybrid approach: Bettale/Faugère/Perret J. of Math. Crypto'09.

over \mathbb{F}_2 , random systems \neq generic systems

Main results

$$f_1,\ldots,f_m\in\mathbb{F}_2[x_1,\ldots,x_n].$$

Algorithm:

use (sparse) linear algebra to prune useless subtrees in the exhaustive search tree.

13

Main results

$$f_1,\ldots,f_m\in\mathbb{F}_2[x_1,\ldots,x_n].$$

Algorithm:

use (sparse) linear algebra to prune useless subtrees in the exhaustive search tree.

Complexity analysis

Under precise algebraic assumptions, if m = n, the complexity is

- O (2^{0.841n}) with a deterministic variant;
- of expectation $O(2^{0.791n})$ with a **probabilistic** variant.
- + generalizations when $m = \alpha n \ (\alpha \geqslant 1)$.

Algebraic assumptions: variant of **Fröberg Conjecture** on the algebraic structure of generic overdetermined systems.

13

Algorithm

 2^k systems in n-k variables, with no solution?

Algorithm

Hilbert Nullstellensatz

$$\mathsf{F}(x_1,\ldots,x_{n-k},a_{n-k+1},\ldots,a_n)$$
 has no solution in \mathbb{F}_2^{n-k}
$$1 \in \langle \mathsf{F},x_1^2-x_1,\ldots,x_n^2-x_n \rangle$$

1/

Algorithm

Hilbert Nullstellensatz

$$\mathsf{F}(x_1,\ldots,x_{n-k},a_{n-k+1},\ldots,a_n)$$
 has no solution in \mathbb{F}_2^{n-k}
$$1 \in \langle \mathsf{F},x_1^2-x_1,\ldots,x_n^2-x_n \rangle$$

Can be tested by solving
a linear system
involving the
Macaulay matrix

$$I = \langle f_1, \ldots, f_m \rangle \subset \mathbb{F}_2[x_1, \ldots, x_n].$$

Rows: all products tf_i where $t \in SquareFreeMonomials(d-2)$.

Columns: Square-free monomials of degree at most d.

$$m_1 > \cdots > m_\ell$$
 $t_1 f_1$ \vdots $t_k f_m$ $= \mathsf{Mac}$

$$I = \langle f_1, \ldots, f_m \rangle \subset \mathbb{F}_2[x_1, \ldots, x_n].$$

Rows: all products tf_i where $t \in SquareFreeMonomials(d-2)$.

Columns: Square-free monomials of degree at most d.

$$m_1 > \cdots > m_\ell$$
 \vdots
 $t_k f_m$
 $m_1 > \cdots > m_\ell$
 \vdots
 $t_k f_m$

If the system has **no solution**, then $\exists g_1, \ldots, g_m$, s.t.

$$\sum_{i=1}^m f_i g_i = 1 \mod \left\langle x_1^2 - x_1, \dots, x_n^2 - x_n \right\rangle \Rightarrow \exists v \text{ s.t. } v \cdot \mathsf{Mac} = \begin{pmatrix} 0 & \dots & 0 & 1 \end{pmatrix}.$$

$$I = \langle f_1, \ldots, f_m \rangle \subset \mathbb{F}_2[x_1, \ldots, x_n].$$

Rows: all products tf_i where $t \in SquareFreeMonomials(d-2)$.

Columns: Square-free monomials of degree at most d.

$$m_1 > \cdots > m_\ell$$
 $t_1 f_1$ \vdots $t_k f_m$ $=$ Mac

If the system has **no solution**, then $\exists g_1, \ldots, g_m$, s.t.

$$\sum_{i=1}^m f_i g_i = 1 \mod \left\langle x_1^2 - x_1, \dots, x_n^2 - x_n \right\rangle \Rightarrow \exists v \text{ s.t. } v \cdot \mathsf{Mac} = \begin{pmatrix} 0 & \dots & 0 & 1 \end{pmatrix}.$$

Deciding if the system has solutions or not is reduced to testing the consistency of a sparse linear system.

$$I = \langle f_1, \ldots, f_m \rangle \subset \mathbb{F}_2[x_1, \ldots, x_n].$$

Rows: all products tf_i where $t \in SquareFreeMonomials(d-2)$.

Columns: Square-free monomials of degree at most d.

$$m_1 > \cdots > m_\ell$$
 $t_1 f_1$ \vdots $t_k f_m$ $=$ Mac

If the system has **no solution**, then $\exists g_1, \ldots, g_m$, s.t.

$$\sum_{i=1}^m f_i g_i = 1 \mod \left\langle x_1^2 - x_1, \dots, x_n^2 - x_n \right\rangle \Rightarrow \exists v \text{ s.t. } v \cdot \mathsf{Mac} = \begin{pmatrix} 0 & \dots & 0 & 1 \end{pmatrix}.$$

Deciding if the system has solutions or not is reduced to testing the consistency of a sparse linear system.

Problem: which d?

```
Input: m, n, k \in \mathbb{N} such that m \geqslant n > k
f_1, \ldots, f_m quadratic polynomials in \mathbb{F}_2[x_1, \ldots, x_n].

Output: The set of boolean solutions of the system f_1 = \cdots = f_m = 0.
```

 d_0 := some integer.

```
Input: m, n, k \in \mathbb{N} such that m \ge n > k
f_1, \ldots, f_m quadratic polynomials in \mathbb{F}_2[x_1, \ldots, x_n].

Output: The set of boolean solutions of the system f_1 = \cdots = f_m = 0.

S := \emptyset.
```

(choice of a bound)

16

```
\begin{array}{ll} \text{Input:} & m,n,k\in\mathbb{N} \text{ such that } m\geqslant n>k\\ & f_1,\dots,f_m \text{ quadratic polynomials in } \mathbb{F}_2[x_1,\dots,x_n].\\ \textbf{Output:} \text{The set of boolean solutions of the system } f_1=\dots=f_m=0.\\ S:=\varnothing.\\ & d_0:=\text{ some integer.} \\ \text{For all } (a_{n-k+1},\dots,a_n)\in\mathbb{F}_2^k\\ & \text{For } i \text{ from } 1 \text{ to } m \\ & \tilde{f}_i(x_1,\dots,x_{n-k}):=f_i(x_1,\dots,x_{n-k},a_{n-k+1},\dots,a_n)\in\mathbb{F}_2[x_1,\dots,x_{n-k}].\\ & \text{EndFor} \end{array}
```

```
Input: m, n, k \in \mathbb{N} such that m \ge n > k
          f_1, \ldots, f_m quadratic polynomials in \mathbb{F}_2[x_1, \ldots, x_n].
Output: The set of boolean solutions of the system f_1 = \cdots = f_m = 0.
S := \varnothing.
d_0:= some integer.
                                                                                      (choice of a bound)
For all (a_{n-k+1},\ldots,a_n)\in\mathbb{F}_2^k
    For i from 1 to m
                                                                                     (specialization)
        \tilde{f}_i(x_1,\ldots,x_{n-k}) := f_i(x_1,\ldots,x_{n-k},a_{n-k+1},\ldots,a_n) \in \mathbb{F}_2[x_1,\ldots,x_{n-k}].
    EndFor
    M := boolean Macaulay matrix of <math>(\tilde{f}_1, \dots, \tilde{f}_m) in degree d_0.
    If the system \mathbf{u} \cdot \mathbf{M} = (0 \dots 0 \ 1) is inconsistent (pruning)
        T:= solutions of the system (\tilde{f}_1=\cdots=\tilde{f}_m=0) (exhaustive search).
        For all (t_1, \ldots, t_{n-k}) \in T
             S := S \cup \{(t_1, \ldots, t_{n-k}, a_{n-k+1}, \ldots, a_n)\}.
        EndFor
    Endlf
EndFor
Return S.
```

- **1** Choice of d_0 (in function of the number of specialized variables k)?
 - \rightarrow index of the first non-positive coefficient in $\frac{(1+t)^{n-k}}{(1-t)(1+t^2)^m}$
 - $ightsquigarrow d_0 \sim M(\gamma) n$ when $k=(1-\gamma) n$
- 2 Sizes of the Macaulay matrices (function of k)?
- 3 Complexity of the consistency tests (function of k)? $O(2^{(1-\gamma+\omega F(\gamma)+\varepsilon)n})$
- 4 Find optimal *k* for **asymptotic complexity**?
 - **Gauss**: k = 0.73n;
 - Coppersmith-Winograd: k = 0.60n
 - Wiedemann: k = 0.45n.
- 5 Degeneracy phenomenoms?
 - $\rightarrow \gamma$ -strong semi-regularity.

- **I** Choice of d_0 (in function of the number of specialized variables k)?
 - \rightarrow index of the first non-positive coefficient in $\frac{(1+t)^{n-k}}{(1-t)(1+t^2)^m}$
 - $\rightsquigarrow d_0 \sim M(\gamma) n$ when $k = (1-\gamma) n$

$$M(\gamma) = \left(-1/\gamma + 1/2 + 1/2\sqrt{2/\gamma^2 - 10/\gamma - 1 + 2(1/\gamma + 2)\sqrt{(1/\gamma + 2)/\gamma}}\right)\gamma.$$

- 2 Sizes of the **Macaulay matrices** (function of k)
- 3 Complexity of the **consistency tests** (function of k)? $O(2^{(1-\gamma+\omega F(\gamma)+\varepsilon)n})$
- 4 Find optimal *k* for **asymptotic complexity**?
 - **Gauss**: k = 0.73n;
 - Coppersmith-Winograd: k = 0.60n
 - Wiedemann: k = 0.45 n
- 5 Degeneracy phenomenoms?
 - $\rightarrow \gamma$ -strong semi-regularity.

- **I** Choice of d_0 (in function of the number of specialized variables k)?
 - \rightarrow index of the first non-positive coefficient in $\frac{(1+t)^{n-k}}{(1-t)(1+t^2)^m}$
 - $ightsquigarrow d_0 \sim M(\gamma) n$ when $k=(1-\gamma) n$

$$M(\gamma) = \left(-1/\gamma + 1/2 + 1/2\sqrt{2/\gamma^2 - 10/\gamma - 1 + 2(1/\gamma + 2)\sqrt{(1/\gamma + 2)/\gamma}}\right)\gamma.$$

- 2 Sizes of the **Macaulay matrices** (function of k)?
- 3 Complexity of the consistency tests (function of k)? $O(2^{(1-\gamma+\omega F(\gamma)+\varepsilon)n})$
- 4 Find optimal *k* for **asymptotic complexity**?
 - **Gauss**: k = 0.73n;
 - Coppersmith-Winograd: k = 0.60n
 - Wiedemann: k = 0.45 n
- 5 Degeneracy phenomenoms?
 - $ightarrow \gamma$ -strong semi-regularity.

- **I** Choice of d_0 (in function of the number of specialized variables k)?
 - \rightarrow index of the first non-positive coefficient in $\frac{(1+t)^{n-k}}{(1-t)(1+t^2)^m}$
 - $ightsquigarrow d_0 \sim \mathit{M}(\gamma)\mathit{n}$ when $\mathit{k} = (1-\gamma)\mathit{n}$

$$M(\gamma) = \left(-1/\gamma + 1/2 + 1/2\sqrt{2/\gamma^2 - 10/\gamma - 1 + 2(1/\gamma + 2)\sqrt{(1/\gamma + 2)/\gamma}}\right)\gamma.$$

- 2 Sizes of the **Macaulay matrices** (function of k)?
- 3 Complexity of the consistency tests (function of k)? $O(2^{(1-\gamma+\omega F(\gamma)+\varepsilon)n})$
- 4 Find optimal *k* for **asymptotic complexity**?
 - **Gauss**: k = 0.73n;
 - Coppersmith-Winograd: k = 0.60n
 - Wiedemann: k = 0.45 n
- 5 Degeneracy phenomenoms?
 - $ightsquigarrow \gamma$ -strong semi-regularity

- **I** Choice of d_0 (in function of the number of specialized variables k)?
 - \rightarrow index of the first non-positive coefficient in $\frac{(1+t)^{n-k}}{(1-t)(1+t^2)^m}$

$$\leadsto d_0 \sim \mathit{M}(\gamma)\mathit{n}$$
 when $\mathit{k} = (1-\gamma)\mathit{n}$

$$M(\gamma) = \left(-1/\gamma + 1/2 + 1/2\sqrt{2/\gamma^2 - 10/\gamma - 1 + 2(1/\gamma + 2)\sqrt{(1/\gamma + 2)/\gamma}}\right)\gamma.$$

- 2 Sizes of the **Macaulay matrices** (function of k)?
- 3 Complexity of the consistency tests (function of k)? $O(2^{(1-\gamma+\omega F(\gamma)+\varepsilon)n})$
- 4 Find optimal *k* for **asymptotic complexity**?
 - Gauss: k = 0.73n;
 - **Coppersmith-Winograd**: k = 0.60n
 - Wiedemann: k = 0.45 n.
- Degeneracy phenomenoms?

 → γ-strong semi-regularity.

- **1** Choice of d_0 (in function of the number of specialized variables k)?
 - \rightarrow index of the first non-positive coefficient in $\frac{(1+t)^{n-k}}{(1-t)(1+t^2)^m}$
 - $\leadsto d_0 \sim M(\gamma) n$ when $k = (1-\gamma) n$

$$M(\gamma) = \left(-1/\gamma + 1/2 + 1/2\sqrt{2/\gamma^2 - 10/\gamma - 1 + 2(1/\gamma + 2)\sqrt{(1/\gamma + 2)/\gamma}}\right)\gamma.$$

- 2 Sizes of the Macaulay matrices (function of k)?
- 3 Complexity of the **consistency tests** (function of k)? $O(2^{(1-\gamma+\omega F(\gamma)+\varepsilon)n})$
- 4 Find optimal k for asymptotic complexity?
 - Gauss: k = 0.73n;
 - **Coppersmith-Winograd**: k = 0.60n
 - Wiedemann: k = 0.45 n.
- 5 Degeneracy phenomenoms?
 - $ightsquigarrow \gamma$ -strong semi-regularity.

Complexity

Complexity analysis

Under precise algebraic assumptions, if m = n, the complexity is

- $O(2^{0.841n})$ with a **deterministic** variant;
- $O(2^{0.791n})$ with a **probabilistic Las Vegas** variant.

+ generalizations when $m = \alpha n \ (\alpha \geqslant 1)$.

Complexity

Complexity analysis

Under precise algebraic assumptions, if m = n, the complexity is

- $O(2^{0.841n})$ with a **deterministic** variant;
- $O(2^{0.791n})$ with a **probabilistic Las Vegas** variant.
- + generalizations when $m = \alpha n \ (\alpha \geqslant 1)$.

Experiments

- Algebraic assumptions are verified with prob. close to 1.
- Probabilistic variant: when n = m, more efficient than exhaustive search when $n \ge 200 \leadsto \text{Crypto applications}$ (QUAD).

Variant of Fröberg conjecture

The **proportion** of γ -strong semi-regular systems tends to 1 when $n \to \infty$.

Complexity (II)

Figure: Exponent of the complexity in terms of α

Conclusion and Perspectives

Structures have an impact on the complexity of the solving process in algebraic cryptanalysis.

Conclusion and Perspectives

Structures have an impact on the complexity of the solving process in algebraic cryptanalysis.

Algorithmic improvements

- Minrank Challenge (8,9,5)[Crypto 2008] **328233s** \longrightarrow [Issac 2010] **935s** \longrightarrow [Pasco 2010] **73s** Faugère/Levy-dit-Vehel/Perret Faugère/S./Safey Faugère/Lachartre
- Dedicated F_5 algorithm for multi-homogeneous/sparse systems (speed-up more than 100 for some overdetermined bihomogeneous systems)
 - → Faugère/S./Svartz, arXiv:1402.7205, 2014

Conclusion and Perspectives

Structures have an impact on the complexity of the solving process in algebraic cryptanalysis.

Algorithmic improvements

- Minrank Challenge (8,9,5)[Crypto 2008] 328233s \longrightarrow [Issac 2010] 935s \longrightarrow [Pasco 2010] 73sFaugère/Levy-dit-Vehel/Perret Faugère/S./Safey Faugère/Lachartre
- Dedicated F_5 algorithm for multi-homogeneous/sparse systems (speed-up more than 100 for some overdetermined bihomogeneous systems)
 - → Faugère/S./Svartz, arXiv:1402.7205, 2014

Perspectives

Dedicated algorithm for determinantal systems?

Challenges

■ Systematic methodologies for the analysis of structures (Hilbert series, degree of regularity, tools for commutative algebra and algebraic geometry, invariants,...).

Challenges

- Systematic methodologies for the analysis of structures (Hilbert series, degree of regularity, tools for commutative algebra and algebraic geometry, invariants,...).
- Impact of ring isomorphisms on Gröbner bases computations (multivariate Cryptography).

Challenges

- Systematic methodologies for the analysis of structures
 (Hilbert series, degree of regularity, tools for commutative algebra and algebraic geometry, invariants,...).
- Impact of ring isomorphisms on Gröbner bases computations (multivariate Cryptography).
- Algorithmic framework for structured systems and implementation (representation of polynomials, parallelism,...).

Challenges

- Systematic methodologies for the analysis of structures
 (Hilbert series, degree of regularity, tools for commutative algebra and algebraic geometry, invariants,...).
- Impact of ring isomorphisms on Gröbner bases computations (multivariate Cryptography).
- Algorithmic framework for structured systems and implementation (representation of polynomials, parallelism,...).

Thank you!