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m Grobner bases algorithms ~~ well-suited when K is a finite field.
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Algebraic cryptanalysis
General framework

m Modeling of a cryptosystem by an algebraic polynomial system;

m Coefficients in a finite field;
m Solving — retrieving secret information;

m Complexity — security;

m Grobner bases algorithms ~~ well-suited when K is a finite field.

filxt,...,xa) = 0 list the solutions in
fi,...,fmeK[x,..., %], - K"
where K is a finite field Fa(x1,.. s %) = 0 K"

SAT reduces to PoSSo when K = [F;
Bézout theorem ~ d" solutions in K.

NP-hard problem ~~ {

But... cryptographic properties = Structured algebraic systems.

Question: impact of structures on GB computations.
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O-dimensional solving strategy with Grobner bases

fi=---=f,= Complexity | Algorithms

Buchberger (1965)

“greviex’ Gb Row.EcheIon forms of Macaulay o (m("+dreg)w> Fa (Faugére 1999)
matrices up to degree dreg n Fs (Faugére 2002)
y
“lex” Gb Linear algebra in @ as a K-| O (nDEG(/)3) |FGLM
vect. space of dim. DEG(/) Faugeére, Gianni,
~ g(u) =0,x = hij(u) Lazard, Mora (1993)

Macaulay matrix in degree d

fi=-=fn=0,deg(fi) = d Degree of regularity:
Rows: all products tf; where maximal degree reached
t € Monomials(d — d;).

. Hilbert series:
Columns: monomials of degree d.

generating series of the rank defects
my > - >my

! Z dlm d/ld)
deN

. dreg = deg(HS) + 1
tefon g g(HS) )

tif1
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reN. Mo,..., M,: n+ 1 matrices of size p x q.

MinRank Problem

Find A1, ..., An such that

Rank (Mo -y A,-M;) <r

i=1

m Multivariate generalization of the EigenValue problem.

m Applications in cryptology, coding theory, geometry, ...
Kipnis/Shamir Crypto'99 Faugére/Levy-dit-Vehel/Perret, Crypto '08
Courtois Crypto'01 Gaborit/Ruatta/Schrek’13

m Fundamental NP-hard problem of linear algebra.
Buss/Frandsen/Shallit, 1999.
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Let r < g < p be integers and M be the p x g matrix

f1,1(X) qu(X)
M(X) = : :
fp,l(X) fpyq(X)

with f;j € K[x1,...,xn] of degree D.

Generalized MinRank Problem

Compute the set of points x € K" such that rank(M(x)) < r.

~ polynomial system solving problem: Minors,+1(M(X)) =0
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Main results

with J.-C. Faugére, M. Safey El Din

p X q matrix. n variables. Entries of degree D.
Zero-dimensional case (n = (p—r)(qg —r)).

System — revlex GB — lex GB.
‘ & Change of ordering

. [ q n + dreg) . 3
comteity | 0(( 2 )(, 1) 4er)) 0 (n-DEG?)

Degree and regularity (under genericity assumptions on the coefficients)
dreg = Dr(q—r)+(D—1)(p—r)(q—r)+1

qg—r—1

") (g— i'(p+1)!
DEG = D(P—")(a—r) C\ :
Q (g—1—)l(p—r+i)!

~ families of Generalized MinRank Problems that can be solved in
complexity polynomial in the number of solutions.
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Application in Cryptology

Courtois, Crypto'01
Authentication scheme based on the difficulty of MinRank. Proposed parameters:

p=q, K =TFess21, r = q— 3.

Complexity of the algebraic attack: O(q°)

q | security FGb Fs+FGLM

6 2106 2.8s

7 2122 130s

11 2138 238 days (est.) on 64 quadcore proc.

Bottleneck for g = 11: computing the input system.
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Roadmap of the proof

il ... Vig fix ... figq
2 = Minors,+1 . . 7 = Minors, 1
V.1 -+ Vpgq for o foa
Thom/Porteous 71, Giambelli 04, The degree of 7 is
Harris/Tu 84 s
The degree of 2 is p(P—r)(a=r) 9 1—[ il(p +i)!
—r—1 i=0 (q—].—l)'(p—l’-l—l)l
9 i(p+1)!

Py @ 1-ilp—r+i)

Conca/Herzog AMS’94, Abhyankar '88 The Hilbert series of Z is
The Hilbert series of 7 is b N )
det(A(t 1 —t=)p=rig=r
det(A(1)) Hsz(r) - SHAE DAL =)
t(z) 1—-2e)"

HSo(t) =

t(;) (1-— t)Pq—(P—r)(q—r)

rx rmatrix: Aij(t) =Y, (7,7)(%,7)t" Ingredients of the proof:

transfer of properties of D by adding m Cohen-Macaulay rings;

vij— i) m quasi-homogeneous polynomials.
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Quadratic boolean systems
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Quadratic boolean systems
with M. Bardet, J.-C. Faugére, B. Salvy

Boolean MQ Problem

fi,...,fm € Fa[x1,..., xn] quadratic polynomials.
Find one/all boolean solution of the system

fl(X:[,...,X,-,) = 0
fa(x1,...,%a) = 0
fm(X1,...,xn) = 0

NP-hard problem ~» SAT.

Security of several modern cryptosystems relies on the difficulty of Boolean MQ
(QUAD....).

Asymptotically, the number of solutions follows a Poisson law of parameter 2"~™
~ few solutions for random systems (Fusco/Bach, TAMC'07).

Best proven worst case complexity bound: exhaustive search, 4 - 2" log, n
(Bouillaguet/Chen/Cheng/Chou/Niederhagen/Shamir/Yang CHES'10).

Problem: construct an O(29") algorithm, with ¢ < 1.
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CHES'10....;

m SAT-Solvers: Davis/Putnam/Logemann/Loveland J. of ACM'60, Comm. of
ACM’62;

m Grobner bases algorithms;

m Hybrid approach: Bettale/Faugére/Perret J. of Math. Crypto’09.

over [Fy, random systems # generic systems
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fl,...,meFz[Xl,...,Xn].

Algorithm:
use (sparse) linear algebra to prune useless subtrees in the exhaustive search tree.

Complexity analysis
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Under precise algebraic assumptions, if m = n, the complexity is
m O (2°#*") with a deterministic variant;
m of expectation O (20‘791") with a probabilistic variant.

+ generalizations when m = an (a > 1).

Algebraic assumptions: variant of Froberg Conjecture on the algebraic structure of
generic overdetermined systems.
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F(x1,...,Xn—1,0) F(x1,...,%Xn—1,1
Xn71=0 Xn71:1 Xn— 1—0 Xn— 1—:l
depth k
F(Xl,.. sy Xn— 2,070) F(Xl,.. s Xn— 2,170) FX1,.. s Xn— 2,0 ].) FX17.. s Xn— 271 1)
d? o7 d? 2 d? o d? o

2k systems in n — k variables, with no solution?

Hilbert Nullstellensatz

.. _k
F(X1,...,Xy—k>@n—k+1,---,an) has no solution in F3

1e(F,x? —x1,...,X2 — Xn)

Can be tested by solving
a linear system
involving the
Macaulay matrix

14



Boolean Macaulay matrix in degree d

I=<f1,...,fm>CFz[Xl,...,X,-,].
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i=1

Deciding if the system has solutions or not is reduced to
testing the consistency of a sparse linear system.

Problem: which d? J

15
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Algorithm BooleanSolve

Input: m,n, k € Nsuch that m>n> k

fi, ..., fm quadratic polynomials in Fa[x1, ..., Xn].

Output:The set of boolean solutions of the system f; = --- = f, = 0.
S =g.
do:= some integer. (choice of a bound)
For all (ap—k+1,.--,an) € F&

For i from 1 to m (specialization)

f;'(X1, . ,X,,,k) = f;'(X1, vy Xn—kyAn—k+41y- - a,,) € ]Fz[X1, . ,X,,,k].
EndFor
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Algorithm BooleanSolve

Input: m,n, k € Nsuch that m>n> k

fi, ..., fm quadratic polynomials in Fa[x1, ..., Xn].
Output:The set of boolean solutions of the system f; = --- = f, = 0.
S =g.
do:= some integer. (choice of a bound)
For all (ap—k+1,.--,an) € F&
For i from 1 to m (specialization)
f;'(X1, 8oa ,X,,,k) = f;'(X1, vy Xn—kyAn—k+41y- - a,,) € ]Fz[xl, 500 ,Xn—k]-
EndFor B B
M := boolean Macaulay matrix of (f1,...,7m) in degree do.
If the systemu-M = (0 ... 0 1) isinconsistent (pruning)
T := solutions of the system (f = --- = f, = 0) (exhaustive search).
For all (tl, Cey t,,,k) eT
S:=S5Su{(ts, -tk An—k+1s---,an)}
EndFor
EndIf
EndFor
Return S.

16
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Choice of dy (in function of the number of specialized variables k)?
(146)n—k

~ index of the first non-positive coefficient in Toaro™

~> do ~ M(v)n when k = (1 —v)n
M) = (=114 172+ 12427 =107y =1+ 20/ + D3 + 27 ) 7

Sizes of the Macaulay matrices (function of k)?

Complexity of the consistency tests (function of k)7
0(2(1*W+WF(W)+E)")
Find optimal k for asymptotic complexity?

m Gauss: k = 0.73n;
m Coppersmith-Winograd: k = 0.60n
m Wiedemann: k = 0.45n.
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Choice of dy (in function of the number of specialized variables k)?
(146)n—k

~ index of the first non-positive coefficient in Toaro™

~> do ~ M(v)n when k = (1 —v)n
M) = (=114 172+ 12427 =107y =1+ 20/ + D3 + 27 ) 7

Sizes of the Macaulay matrices (function of k)?

Complexity of the consistency tests (function of k)7
0(2(1*W+WF(W)+E)")

Find optimal k for asymptotic complexity?

m Gauss: k = 0.73n;
m Coppersmith-Winograd: k = 0.60n
m Wiedemann: k = 0.45n.

Degeneracy phenomenoms?
~» 7-strong semi-regularity.



Complexity

Complexity analysis

Under precise algebraic assumptions, if m = n, the complexity is
= O (2°%%'") with a deterministic variant;
= O (2°7°'") with a probabilistic Las Vegas variant.

+ generalizations when m = an (a > 1).
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Complexity analysis

Under precise algebraic assumptions, if m = n, the complexity is
= O (2°%%'") with a deterministic variant;
= O (2°7°'") with a probabilistic Las Vegas variant.

+ generalizations when m = an (a > 1).

Experiments

| \

m Algebraic assumptions are verified with prob. close to 1.

m Probabilistic variant: when n = m, more efficient than exhaustive search when
n > 200 v~ Crypto applications (QUAD).

Variant of Fréberg conjecture

The proportion of ~-strong semi-regular systems tends to 1 when n — oo.




Complexity (I1)

Solving an equations in n variables: 2°"

Exhaustive search

in

New
Algorithm

c: exponent of the complexity

0.31"”””’””’”’””’”’”% ”””””””””””””” Wiedema’hh’”

Figure: Exponent of the complexity in terms of «



Conclusion and Perspectives

Structures have an impact on the complexity of
the solving process in algebraic cryptanalysis.
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Algorithmic improvements

m Minrank Challenge (8,9,5)
[Crypto 2008] 328233s  —|[lssac 2010] 935s— [Pasco 2010] 73s
Faugére/Levy-dit-Vehel/Perret  Faugére/S./Safey ~ Faugére/Lachartre
m Dedicated Fs algorithm for multi-homogeneous/sparse systems
(speed-up more than 100 for some overdetermined bihomogeneous

systems)
~ Faugére/S. /Svartz, arXiv:1402.7205, 2014
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[Crypto 2008] 328233s  —|[lssac 2010] 935s— [Pasco 2010] 73s
Faugére/Levy-dit-Vehel/Perret  Faugére/S./Safey ~ Faugére/Lachartre
m Dedicated Fs algorithm for multi-homogeneous/sparse systems
(speed-up more than 100 for some overdetermined bihomogeneous

systems)
~ Faugére/S. /Svartz, arXiv:1402.7205, 2014

Perspectives
m Dedicated algorithm for determinantal systems?
0

2
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m Systematic methodologies for the analysis of structures
(Hilbert series, degree of regularity, tools for commutative algebra
and algebraic geometry, invariants,. . .).

m Impact of ring isomorphisms on Grdbner bases computations
(~» multivariate Cryptography).

m Algorithmic framework for structured systems and implementation
(representation of polynomials, parallelism,.. ).

Thank youl!



