Algebraic Cryptanalysis of the PKC’2009

Algebraic Surface Cryptosystem

1/17

Jean—Charles Faugére  Pierre—Jean Spaenlehauer

UPMC — CNRS - INRIA Paris - Rocquencourt
LIP6 — SALSA team

PKC’2010 — Ecole Normale Supérieure — Paris
2010/05/26

@ ﬁp aome %I INRIA




Motivations

Post-quantum Cryptography

m Lattice-based crypto.
m Code-based crypto.
m Knapsack-based crypto.

m | Multivariate crypto.

2/17



Motivations

Post-quantum Cryptography

m Lattice-based crypto.
m Code-based crypto.
m Knapsack-based crypto.

m | Multivariate crypto. ‘

Multivariate crypto — often based on the difficulty of Polynomial
System Solving (HFE, UOV, ...).

2/17 PJ Spaenlehauer



Motivations

Post-quantum Cryptography

m Lattice-based crypto.
m Code-based crypto.
m Knapsack-based crypto.

m | Multivariate crypto. ‘

Multivariate crypto — often based on the difficulty of Polynomial
System Solving (HFE, UOV, ...).

Algebraic cryptanalysis

Evaluation of the security of various crypto primitives by means of
algebraic tools.
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Algebraic Surface Cryptosystem (ASC)

Another difficult algebraic problem:

Section Finding Problem

Given S(x,y,t) € Fp[x,y, t], find u,(t),uy(t) € Fp[t] such that

S(ux(t),uy(t), t) =0.

Principle of ASC: use S as public key and (uy, u,) as secret key.
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Algebraic Surface Cryptosystem (ASC)

Another difficult algebraic problem:

Section Finding Problem

Given S(x,y,t) € Fp[x,y, t], find u,(t),uy(t) € Fp[t] such that

S(ux(t),uy(t), t) =0.

Principle of ASC: use S as public key and (uy, u,) as secret key.

High degree polynomials, few variables
— short keys (O(n) for a security of 27) !!

= ASC: Akiyama/Goto/Miyake PKC'09.
Resistant to all known attacks.

m Akiyama/Goto 04, PQCrypto'06, SCIS'07.
3 SFP-based cryptosystems.

— Security analysis: Uchiyama/Tokunaga 07.
Attacks: Voloch 07, lwami ASCM'08.
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Main results

Security parameters:

p: cardinality of the ground field Fp.
d: degree of the secret section (ux(t), uy,(t)).
w: degree in x,y of the public surface: w = deg, (S(x,y, t)).
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Main results

Security parameters:

p: cardinality of the ground field Fp.
d: degree of the secret section (ux(t), uy,(t)).
w: degree in x,y of the public surface: w = deg, (S(x,y, t)).

Cryptanalysis of PKC’09 ASC

m New algebraic attack on the PKC’'09 version of ASC...

m ... which relies on Grobner bases computations and on decomposition
of ideals.

Message recovery attack.

m Often faster than the decryption algorithm !

Breaks recommended parameters in 0.05 seconds !

m Complexity: quasi-linear in the size of the secret key...

m ... and polynomial in all other security parameters: (5(w7dlog(p)).
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Description of ASC.

Level 1 Attack: deterministic.
Level 2 Attack: deterministic.
Level 3 Attack: probabilistic.

o

Complexity analysis of the Level 3 Attack.

Experimental results.
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Description of PKC'09 ASC

Notation: g € Pol(I") — the support of the polynomial g is a subset of I

Security parameters: p, d, w.
Other public parameters: ¢, [, 5.

m € Pol(T' ).
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Description of PKC'09 ASC

Notation: g € Pol(I") — the support of the polynomial g is a subset of I

Security parameters: p, d, w.
Other public parameters: ¢, [, 5.

m € Pol(T' ).
Encryption Decryption
f €g Pol(Ty). h(t) = (Fo — F1)(ux, uy, t)
n,n €r POl(rf) = (f X (50 - 51))(UX7 Uy, t)‘
s0,51 €r Pol(T's). Factor h(t) and recover a factor  of

Fi=m+rS+sif, i €{0,1}|degree deg(f(ux(t), uy(t),t)).

return (Fo(x,y, t), F1(x,y,t)). [ m(ux, uy, t) = Fo(ux, uy,t) mod f
Recover m by solving a linear system.
Verify with a MAC.
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Level 1 Attack (1)

substitution (need the secret key), factorization, linear system.
Can we get rid of the substitution step ?
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Decomposition of ideals: generalization of factorization.
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Lemma (decomposition of ideals)

<F0—F1,5> = <(50—$1)f,5>
= <So—51,5>ﬂ<f,5>

How to compute (f,S):

m Eliminate the variable x (Grdbner basis, resultant,...):
(Fo — F1,S) NFply, t] = (Q(y, t)).
m Factor Q(y,t) = Qo(y,t)Qi(y, t) where deg,(Qo) > deg, (G1).
[ ] <50 —51,5> = <F0 - F]_,S,Ql>
(f,S) =(Fo — F1,S, Qo).
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Level 1 Attack (1)

Fi=m+nrS+sif, i€{0,1}.

J=A(f,S)+ (Fo,F1) = (m,f,S).
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Level 1 Attack (1)

F,-:m—|—r;5—|—s;f, iE{O,l}.

J=A(f,S)+ (Fo,F1) = (m,f,S).

Normal Form

NF(-): Fp-linear application Fy[x,y, t] — Fp[x, v, t].
Ker(NF,) = J.
Can be computed when a Grébner basis of J is known.
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Level 1 Attack (1)

F;:m+r;5—|—s;f, iE{O,l}.

Lemma

J=A(f,S)+ (Fo,F1) = (m,f,S).

Normal Form

NF(-): Fp-linear application Fy[x,y, t] — Fp[x, v, t].
Ker(NF,) = J.
Can be computed when a Grébner basis of J is known.

The support of m(x,y, t) is known ().

m= Z AuU.

uelm,

meJ = NF;(m)=0.
= > ANFy(u) =0.

uelm,
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Level 1 Attack — Algorithm

9/17

: Compute GB((Fo — F1,5) NFply, t]) ={Q(y, t)}.

Factor Q =[] Qi(y, t).
Let Qo(y,t) € Fply,t] be an irreducible factor with highest degree
with respect to y.

Compute a Grobner basis of the ideal J = (Fp, F1, S, Qo).
Solve the linear system over F,

> ANFy(u) =0.

uerm
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R<x,y,t>:=PolynomialRing (GF(p) ,3,"grevlex");
Res:=Resultant (R! (FO-F1) ,R!X,x);
F:=Factorization(Res) ;
maxdeg:=Max ([Degree(R!f[1],R!y) : £ in F1);
exists (QO){f[1]:f in F| Degree(R!f[1],R!y) eq maxdeg};
J:=Ideal([R!QO,R!X,R!FO,R!F1]);
Groebner (J) ;
Coeffm:=PolynomialRing(GF (p) , #Lambda_m* (deg_t+1));
R2<x,y,t>:=PolynomialRing(Coeffm,3) ;
plaintext:=&+[Coeffm. ((i-1)*(deg_t+1)+j)*
R2!NormalForm(R!x"Lambda_m[i] [1]*
R!y“Lambda m[i] [2]*R!t"(j-1),J)
i in [1..#Lambda_m], j in [1..deg_t+1]];
V:=Variety(Ideal(Coefficients(plaintext)));

Toy example (p =17, d = 3, w = 5): broken in 136 seconds.
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Level 2 Attack

Principle: polynomials have high degree in t and low degree in x, y
— compute in Fy(t)[x, y]. J
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Principle: polynomials have high degree in t and low degree in x, y
— compute in Fy(t)[x, y].

Problem: in Fy(t)[x,y], (m,f,S) =TFp(t)[x,y]
— the final linear system has an infinite number of solutions.

Solution: “deform” the ideal (m, f,S) by adding a new variable:

J={fS)+{(Fo+z,FL+2z)=(m+z,f,S) CK(t)[x,y,z].

Then apply the same strategy:
NF_//(m —+ Z) =0.

Solving the resulting linear system yields the plaintext.
Toy example (p =17, d = 3, w = 5): broken in 74 seconds.
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Level 3 Attack

Level 2 Attack is Faster than Level 1 Attack but... coefficients in F,(t)
are big during intermediate computations.
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Principle: multi-modular approach.

For several irreducible P,(t) € Fp[t]:
m Compute in F aeg(ry) [X, y] = (Fp[t]/Pe(t))[x, y].
— yields m(x, y,t) mod Py(t).
m Use the CRT to retrieve m(x,y,t) = m(x,y,t) mod [], Pe(t).
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— yields m(x, y,t) mod Py(t).
m Use the CRT to retrieve m(x,y,t) = m(x,y,t) mod [], Pe(t).

Toy example (p =17, d = 3, w = 5): broken in 0.05 seconds.
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Level 3 Attack — Algorithm

1: Choose n = deg,(m)log(p)/C irreducible polynomials of
degree ~ C/log(p) such that ) deg(P;) > deg.(m).

2: for i from 1 to n do
32 K=Fp[t]/(Pr).
4:  Compute Resy(Fo — F1,S) € K[y].
5. Factor Resy(Fo — F1,S).

Let Qo(y) € K[y] be an irreducible factor of highest degree in y.
6: Compute a GB of the ideal

J=(Fo+z,Fi+2,5 Q) CK[x,y,z]
7:  Solve the linear system over K:

NF_//(Z) + Z mU(t)NF_//(xiyj) =0.
(i) EAm

@

Retrieve m mod Py =3 ; yea,, mi(t)x'y/.
9: end for
10: Use the CRT to get m = m mod [] Py.
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Complexity of the Level 3 Attack

m Number of loops: wd log(p)/C.
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m Number of loops: wd log(p)/C.
m Computation of the resultant: O(w?).
= Factorization (Cantor-Zassenhaus algorithm): O(w* + w2().
m Grébner basis computation (Faugére Fy/Fs): O(w®)
(degree of regularity estimated with the Macaulay bound)).
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Complexity of the Level 3 Attack

m Number of loops: wd log(p)/C.
m Computation of the resultant: O(w?).
= Factorization (Cantor-Zassenhaus algorithm): O(w* + w2().
m Grébner basis computation (Faugére Fy/Fs): O(w®)
(degree of regularity estimated with the Macaulay bound)).

= CRT: O(wd log(p)/C).

The total binary complexity of the Level 3 Attack is upper bounded by:

O(dw' log(p))-

— quasi-linear in dlog(p) which is the size of the secret key.
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Ezperimental results (I) — increasing d and p

d lw size of size of ; ; ; ; security

P public key | secret key | " fact | *GB | Trotal | 1010
2 [ 505 310 bits | 102 bits [0.0290.02590.0150.05s] 2102
2 [100] 5| 560 bits | 202 bits [[0.03s/0.02s/0.02s[0.07s| 2202
2 [400] 5| 2060 bits | 802 bits || 0.1s|0.1s|0.1s|[0.30s| 2802
2 [1600] 5| 8060 bits | 3202 bits || 0.3s]0.3s|0.4s| 1.0s | 23202
2 5000 5 | 25060 bits | 10002 bits || 0.8s|1.3s | 0.8s | 3.0s | 210002
17 | 50 | 5| 1267 bits | 409 bits [ 0.2s]2.4s|0.4s| 3.0s | 2409
17 [400| 5 | 8420 bits | 3270 bits ||1.45s27.7s| 3.9s |33.1s| 23270
17 [800| 5 | 16595 bits | 6500 bits || 3.1s| 70s | 9.5s | 83s | 20500
[10007/500] 5 | 34019 bits | 13289 bits | 29s [217s] 64s | 310s | 21328
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Ezxperimental results (II) — increasing w

P W bt eyboore ke | e | 165 |ty tors | ot
21[50] 5 [310 bits|102 bits[0.0250.025 0.01s/0.0015 0.05s| 2102
2150[15| 810 bits | 102 bits || 0.7s | 0.3s | 4.4s | 0.03s| 5.4s | 2102
2(50[25[1310 bits| 102 bits || 3s | 1s | 32s | 0.2s | 37s | 2102
2(50(35[1810 bits| 102 bits || 10s | 3s | 260s | 1s | 274s | 2102
2[50[45[2310 bits| 102 bits || 30s | 7s [1352s| 4s [1393s| 2102
2150[55(2810 bits| 102 bits || 70s | 12s [4619s| 13s [4714s| 2102
2150[65[3310 bits| 102 bits || 147s| 22s 124085 27s [12604s 2102
2150[75(3810 bits| 102 bits || 288s| 38s [37900s 56s [38280s 2102
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Description of the underlying algebraic structure.

Algebraic cryptanalysis of ASC by using tools from Computer
Algebra (Grobner bases, resultants, efficient CRT, decomposition of
ideals, ...).

Breaks the recommended parameters in 0.05 seconds.

Often faster than the legal decryption algorithm.

Perspectives

m Still no efficient algorithm to solve the Section Finding Problem
(SFP).
— SFP-based multivariate crypto 7
Signature ?
Authentification 7
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