Algebraic Cryptanalysis of the PKC'2009 Algebraic Surface Cryptosystem

Jean-Charles Faugère Pierre-Jean Spaenlehauer

UPMC - CNRS - INRIA Paris - Rocquencourt LIP6 - SALSA team

PKC'2010 – École Normale Supérieure – Paris 2010/05/26

$\overline{\textit{Motivations}}$

Post-quantum Cryptography

- Lattice-based crypto.
- Code-based crypto.
- Knapsack-based crypto.
- Multivariate crypto.

Motivations

Post-quantum Cryptography

- Lattice-based crypto.
- Code-based crypto.
- Knapsack-based crypto.
- Multivariate crypto.

Multivariate crypto \rightarrow often based on the difficulty of Polynomial System Solving (HFE, UOV, ...).

Motivations

Post-quantum Cryptography

- Lattice-based crypto.
- Code-based crypto.
- Knapsack-based crypto.
- Multivariate crypto.

Multivariate crypto \rightarrow often based on the difficulty of Polynomial System Solving (HFE, UOV, ...).

Algebraic cryptanalysis

Evaluation of the **security** of various crypto primitives by means of **algebraic tools**.

Another difficult algebraic problem:

Section Finding Problem

Given $S(x,y,t) \in \mathbb{F}_p[x,y,t]$, find $\mathbf{u_x}(t), \mathbf{u_y}(t) \in \mathbb{F}_p[t]$ such that

$$S(\mathbf{u}_{\mathbf{x}}(t),\mathbf{u}_{\mathbf{y}}(t),t)=0.$$

Principle of ASC: use S as public key and (u_x, u_y) as secret key.

Another difficult algebraic problem:

Section Finding Problem

Given $S(x,y,t) \in \mathbb{F}_p[x,y,t]$, find $\mathbf{u_x}(t), \mathbf{u_y}(t) \in \mathbb{F}_p[t]$ such that

$$S(\mathbf{u}_{\mathbf{x}}(t),\mathbf{u}_{\mathbf{y}}(t),t)=0.$$

Principle of ASC: use S as public key and (u_x, u_y) as secret key.

High degree polynomials, few variables

 \rightarrow short keys $(\mathcal{O}(n)$ for a security of 2^n)!!

Another difficult algebraic problem:

Section Finding Problem

Given $S(x, y, t) \in \mathbb{F}_p[x, y, t]$, find $\mathbf{u_x}(t), \mathbf{u_y}(t) \in \mathbb{F}_p[t]$ such that

$$S(\mathbf{u}_{\mathbf{x}}(t),\mathbf{u}_{\mathbf{y}}(t),t)=0.$$

Principle of ASC: use S as public key and (u_x, u_y) as secret key.

High degree polynomials, few variables

- \rightarrow short keys $(\mathcal{O}(n))$ for a security of 2^n !!
 - ASC: Akiyama/Goto/Miyake PKC'09.
 Resistant to all known attacks.

Another difficult algebraic problem:

Section Finding Problem

Given $S(x,y,t) \in \mathbb{F}_p[x,y,t]$, find $\mathbf{u_x}(t), \mathbf{u_y}(t) \in \mathbb{F}_p[t]$ such that

$$S(\mathbf{u}_{\mathbf{x}}(t),\mathbf{u}_{\mathbf{y}}(t),t)=0.$$

Principle of ASC: use S as public key and (u_x, u_y) as secret key.

High degree polynomials, few variables

- \rightarrow short keys $(\mathcal{O}(n)$ for a security of 2^n)!!
 - ASC: Akiyama/Goto/Miyake PKC'09.
 Resistant to all known attacks.
 - Akiyama/Goto 04, PQCrypto'06, SCIS'07.3 SFP-based cryptosystems.
 - → Security analysis: Uchiyama/Tokunaga 07. Attacks: Voloch 07, Iwami ASCM'08.

Main results

Security parameters:

```
p: cardinality of the ground field \mathbb{F}_p.
d: degree of the secret section (u_x(t), u_y(t)).
w: degree in x, y of the public surface: w = \deg_{xy}(S(x, y, t)).
```

Main results

Security parameters:

```
p: cardinality of the ground field \mathbb{F}_p.
d: degree of the secret section (u_x(t), u_y(t)).
w: degree in x, y of the public surface: w = \deg_{xy}(S(x, y, t)).
```

Cryptanalysis of PKC'09 ASC

- New algebraic attack on the PKC'09 version of ASC...
- ... which relies on Gröbner bases computations and on decomposition of ideals.
- Message recovery attack.
- Often faster than the decryption algorithm!
- Breaks recommended parameters in 0.05 seconds!
- Complexity: quasi-linear in the size of the secret key...
- ... and **polynomial** in all other **security parameters**: $\widetilde{\mathcal{O}}(w^7 d \log(p))$.

Outline

- **Description** of ASC.
- **Level 1 Attack**: deterministic.
- **Level 2 Attack**: deterministic.
- Level 3 Attack: probabilistic.
- **Complexity analysis** of the Level 3 Attack.
- Experimental results.

Description of PKC'09 ASC

Notation: $g \in Pol(\Gamma) \rightarrow$ the support of the polynomial g is a subset of Γ .

Security **parameters**: *p*, *d*, *w*.

Other public **parameters**: Γ_f , Γ_m , Γ_S .

 $m \in \text{Pol}(\Gamma_m)$.

Description of PKC'09 ASC

Notation: $g \in Pol(\Gamma) \rightarrow$ the support of the polynomial g is a subset of Γ .

Security **parameters**: p, d, w.

Other public **parameters**: Γ_f , Γ_m , Γ_S .

 $m \in \text{Pol}(\Gamma_m)$.

Encryption

```
\begin{split} &f \in_R \mathsf{Pol}(\Gamma_f), \\ &r_0, r_1 \in_R \mathsf{Pol}(\Gamma_f), \\ &s_0, s_1 \in_R \mathsf{Pol}(\Gamma_S), \\ &F_i = m + r_i S + s_i f, \quad i \in \{0, 1\} \\ &\mathsf{return} \ \left(F_0(x, y, t), F_1(x, y, t)\right). \end{split}
```

Description of PKC'09 ASC

Notation: $g \in Pol(\Gamma) \to the support of the polynomial g is a subset of <math>\Gamma$.

Security parameters: p, d, w.

Other public parameters: Γ_f , Γ_m , Γ_S .

 $m \in \text{Pol}(\Gamma_m)$.

Encryption

 $f \in_R Pol(\Gamma_f)$. $r_0, r_1 \in_R \text{Pol}(\Gamma_f).$ $s_0, s_1 \in_R Pol(\Gamma_s).$ $F_i = m + r_i S + s_i f, i \in \{0, 1\}$ return $(F_0(x, y, t), F_1(x, y, t)) \cdot | m(u_x, u_y, t) = F_0(u_x, u_y, t) \mod \tilde{f}$.

Decryption

$$h(t) = (F_0 - F_1)(u_x, u_y, t) = (f \times (s_0 - s_1))(u_x, u_y, t).$$

Factor h(t) and recover a factor \tilde{f} of degree $deg(f(u_x(t), u_v(t), t))$.

$$m(u_x, u_y, t) = F_0(u_x, u_y, t) \mod f$$
.
Recover m by solving a linear system.

Verify with a MAC.

substitution (need the secret key), **factorization**, **linear system**. Can we get rid of the **substitution step** ?

substitution (need the secret key), factorization, linear system.

Can we get rid of the substitution step?

Decomposition of ideals: generalization of factorization.

substitution (need the secret key), factorization, linear system.

Can we get rid of the substitution step?

Decomposition of ideals: generalization of factorization.

$$F_i = m + r_i S + s_i f, i \in \{0, 1\}.$$

Lemma (decomposition of ideals)

$$\langle F_0 - F_1, S \rangle = \langle (s_0 - s_1)f, S \rangle$$

= $\langle s_0 - s_1, S \rangle \cap \langle f, S \rangle$

How to compute $\langle f, S \rangle$:

substitution (need the secret key), factorization, linear system.

Can we get rid of the substitution step?

Decomposition of ideals: generalization of factorization.

$$F_i = m + r_i S + s_i f, i \in \{0, 1\}.$$

Lemma (decomposition of ideals)

$$\langle F_0 - F_1, S \rangle = \langle (s_0 - s_1)f, S \rangle$$

= $\langle s_0 - s_1, S \rangle \cap \langle f, S \rangle$

How to compute $\langle f, S \rangle$:

■ Eliminate the variable x (Gröbner basis, resultant,...):

$$\langle F_0 - F_1, S \rangle \cap \mathbb{F}_p[y, t] = \langle Q(y, t) \rangle.$$

substitution (need the secret key), factorization, linear system.

Can we get rid of the substitution step?

Decomposition of ideals: generalization of factorization.

$$F_i = m + r_i S + s_i f, i \in \{0, 1\}.$$

Lemma (decomposition of ideals)

$$\langle F_0 - F_1, S \rangle = \langle (s_0 - s_1)f, S \rangle$$

= $\langle s_0 - s_1, S \rangle \cap \langle f, S \rangle$

How to compute $\langle f, S \rangle$:

■ Eliminate the variable x (Gröbner basis, resultant,...):

$$\langle F_0 - F_1, S \rangle \cap \mathbb{F}_p[y, t] = \langle Q(y, t) \rangle.$$

■ Factor $Q(y,t) = Q_0(y,t)Q_1(y,t)$ where $\deg_y(Q_0) \ge \deg_y(Q_1)$.

substitution (need the secret key), factorization, linear system.

Can we get rid of the substitution step?

Decomposition of ideals: generalization of factorization.

$$F_i = m + r_i S + s_i f, i \in \{0, 1\}.$$

Lemma (decomposition of ideals)

$$\langle F_0 - F_1, S \rangle = \langle (s_0 - s_1)f, S \rangle$$

= $\langle s_0 - s_1, S \rangle \cap \langle f, S \rangle$

How to compute $\langle f, S \rangle$:

■ Eliminate the variable x (Gröbner basis, resultant,...):

$$\langle F_0 - F_1, S \rangle \cap \mathbb{F}_{\rho}[y, t] = \langle Q(y, t) \rangle.$$

- Factor $Q(y,t) = Q_0(y,t)Q_1(y,t)$ where $\deg_y(Q_0) \ge \deg_y(Q_1)$.
- $\langle s_0 s_1, S \rangle = \langle F_0 F_1, S, Q_1 \rangle$ $\langle f, S \rangle = \langle F_0 F_1, S, Q_0 \rangle.$

$$F_i = m + r_i S + s_i f, i \in \{0, 1\}.$$

Lemma

$$J = \langle f, S \rangle + \langle F_0, F_1 \rangle = \langle m, f, S \rangle.$$

$$F_i = m + r_i S + s_i f, i \in \{0, 1\}.$$

Lemma

$$J = \langle f, S \rangle + \langle F_0, F_1 \rangle = \langle m, f, S \rangle.$$

Normal Form

 $\mathsf{NF}_{J}(\cdot)$: \mathbb{F}_{p} -linear application $\mathbb{F}_{p}[x,y,t] \to \mathbb{F}_{p}[x,y,t]$.

 $Ker(NF_J) = J.$

Can be computed when a $Gr\"{o}bner\ basis$ of J is known.

$$F_i = m + r_i S + s_i f, i \in \{0, 1\}.$$

Lemma

$$J = \langle f, S \rangle + \langle F_0, F_1 \rangle = \langle m, f, S \rangle.$$

Normal Form

 $\mathsf{NF}_{J}(\cdot)$: \mathbb{F}_{p} -linear application $\mathbb{F}_{p}[x,y,t] \to \mathbb{F}_{p}[x,y,t]$.

 $Ker(NF_J) = J.$

Can be computed when a **Gröbner basis** of J is known.

The **support** of m(x, y, t) is known (Γ_m) .

$$m = \sum_{u \in \Gamma_m} \lambda_u u.$$

$$m \in J \implies \mathsf{NF}_J(m) = 0.$$

$$\Rightarrow \sum_{u \in \Gamma_m} \lambda_u \mathsf{NF}_J(u) = 0.$$

$Level\ 1\ Attack-Algorithm$

- 1: Compute $GB(\langle F_0 F_1, S \rangle \cap \mathbb{F}_p[y, t]) = \{Q(y, t)\}.$
- 2: Factor $Q = \prod Q_i(y, t)$. Let $Q_0(y, t) \in \mathbb{F}_p[y, t]$ be an irreducible factor with highest degree with respect to y.
- 3: Compute a **Gröbner basis** of the ideal $J = \langle F_0, F_1, S, Q_0 \rangle$.
- 4: Solve the linear system over \mathbb{F}_p

$$\sum_{u\in\Gamma_{\boldsymbol{m}}}\lambda_{u}\mathsf{NF}_{J}(u)=0.$$

$Magma\ code$

```
R<x,y,t>:=PolynomialRing(GF(p),3,"grevlex");
Res:=Resultant(R!(F0-F1),R!X,x);
F:=Factorization(Res);
maxdeg:=Max([Degree(R!f[1],R!y) : f in F]);
exists(Q0){f[1]:f in F| Degree(R!f[1],R!y) eq maxdeg};
J:=Ideal([R!Q0,R!X,R!F0,R!F1]);
Groebner(J);
Coeffm: =PolynomialRing(GF(p), #Lambda_m*(deg_t+1));
R2<x,y,t>:=PolynomialRing(Coeffm,3);
plaintext:=\&+[Coeffm.((i-1)*(deg_t+1)+j)*
             R2!NormalForm(R!x^Lambda m[i][1]*
             R!y^Lambda_m[i][2]*R!t^(j-1),J):
             i in [1..#Lambda_m], j in [1..deg_t+1]];
V:=Variety(Ideal(Coefficients(plaintext)));
```

Toy example (p = 17, d = 3, w = 5): broken in 136 seconds.

Principle: polynomials have high degree in t and low degree in $x, y \to \text{compute in } \mathbb{F}_p(t)[x, y]$.

Principle: polynomials have high degree in t and low degree in $x, y \to \text{compute in } \mathbb{F}_p(t)[x, y]$.

Problem: in $\mathbb{F}_p(t)[x,y], \langle m,f,S \rangle = \mathbb{F}_p(t)[x,y]$

→ the final linear system has an infinite number of solutions.

Principle: polynomials have high degree in t and low degree in $x, y \to \text{compute in } \mathbb{F}_p(t)[x, y]$.

Problem: in $\mathbb{F}_p(t)[x,y], \langle m,f,S\rangle = \mathbb{F}_p(t)[x,y]$

 \rightarrow the final **linear system** has an **infinite** number of solutions.

Solution: "deform" the ideal $\langle m, f, S \rangle$ by adding a new variable:

$$J' = \langle f, S \rangle + \langle F_0 + z, F_1 + z \rangle = \langle m + z, f, S \rangle \subset \mathbb{K}(t)[x, y, z].$$

$\overline{Level \ 2} \ Attack$

Principle: polynomials have high degree in t and low degree in $x, y \to \text{compute in } \mathbb{F}_p(t)[x, y]$.

Problem: in $\mathbb{F}_p(t)[x,y], \langle m,f,S \rangle = \mathbb{F}_p(t)[x,y]$

→ the final **linear system** has an **infinite** number of solutions.

Solution: "deform" the ideal $\langle m, f, S \rangle$ by adding a new variable:

$$J' = \langle f, S \rangle + \langle F_0 + z, F_1 + z \rangle = \langle m + z, f, S \rangle \subset \mathbb{K}(t)[x, y, z].$$

Then apply the same strategy:

$$\mathsf{NF}_{J'}(m+z)=0.$$

Solving the resulting linear system yields the plaintext.

Principle: polynomials have high degree in t and low degree in $x, y \to \text{compute in } \mathbb{F}_p(t)[x, y]$.

Problem: in $\mathbb{F}_p(t)[x,y], \langle m,f,S\rangle = \mathbb{F}_p(t)[x,y]$

 \rightarrow the final **linear system** has an **infinite** number of solutions.

Solution: "deform" the ideal $\langle m, f, S \rangle$ by adding a new variable:

$$J' = \langle f, S \rangle + \langle F_0 + z, F_1 + z \rangle = \langle m + z, f, S \rangle \subset \mathbb{K}(t)[x, y, z].$$

Then apply the same strategy:

$$\mathsf{NF}_{J'}(m+z)=0.$$

Solving the resulting linear system yields the plaintext.

Toy example (p = 17, d = 3, w = 5): broken in 74 seconds.

Level 2 Attack is **Faster** than Level 1 Attack but... coefficients in $\mathbb{F}_p(t)$ are big during intermediate computations.

Level 2 Attack is **Faster** than Level 1 Attack but... coefficients in $\mathbb{F}_p(t)$ are big during intermediate computations.

Principle: multi-modular approach.

For several irreducible $P_\ell(t) \in \mathbb{F}_p[t]$:

- Compute in $\mathbb{F}_{p^{\deg(P_{\ell})}}[x,y] = (\mathbb{F}_p[t]/P_{\ell}(t))[x,y].$ \rightarrow yields $m(x,y,t) \mod P_{\ell}(t).$
- Use the **CRT** to retrieve $m(x, y, t) = m(x, y, t) \mod \prod_{\ell} P_{\ell}(t)$.

Level 2 Attack is **Faster** than Level 1 Attack but... coefficients in $\mathbb{F}_p(t)$ are big during intermediate computations.

Principle: multi-modular approach.

For several irreducible $P_{\ell}(t) \in \mathbb{F}_{p}[t]$:

- Compute in $\mathbb{F}_{p^{\deg(P_{\ell})}}[x,y] = (\mathbb{F}_p[t]/P_{\ell}(t))[x,y].$ \rightarrow yields $m(x,y,t) \mod P_{\ell}(t).$
- Use the **CRT** to retrieve $m(x, y, t) = m(x, y, t) \mod \prod_{\ell} P_{\ell}(t)$.

Toy example (p = 17, d = 3, w = 5): broken in **0.05** seconds.

$Level\ 3\ Attack-Algorithm$

- 1: Choose $n \approx \deg_t(m) \log(p) / C$ irreducible polynomials of degree $\approx C / \log(p)$ such that $\sum \deg(P_\ell) > \deg_t(m)$.
- 2: **for** *i* from 1 to *n* **do**
- 3: $\mathbb{K} = \mathbb{F}_{p}[t]/(P_{\ell})$.
- 4: Compute $\operatorname{Res}_{x}(F_{0}-F_{1},S)\in\mathbb{K}[y]$.
- 5: Factor $\operatorname{Res}_{x}(F_{0} F_{1}, S)$. Let $Q_{0}(y) \in \mathbb{K}[y]$ be an irreducible factor of highest degree in y.
- 6: Compute a GB of the ideal $J' = \langle F_0 + z, F_1 + z, S, Q_0 \rangle \subset \mathbb{K}[x, y, z].$
- 7: Solve the linear system over \mathbb{K} :

$$\mathsf{NF}_{J'}(z) + \sum_{(i,j) \in \Lambda_m} m_{ij}(t) \mathsf{NF}_{J'}(x^i y^j) = 0.$$

- 8: Retrieve $m \mod P_{\ell} = \sum_{(i,j) \in \Lambda_m} m_{ij}(t) x^i y^j$.
- 9: end for
- 10: Use the CRT to get $m = m \mod \prod P_{\ell}$.

■ Number of loops: $wd \log(p)/C$.

- Number of loops: $wd \log(p)/C$.
 - Computation of the **resultant**: $\mathcal{O}(w^3)$.

- Number of loops: $wd \log(p)/C$.
 - Computation of the **resultant**: $\mathcal{O}(w^3)$.
 - Factorization (Cantor-Zassenhaus algorithm): $\widetilde{\mathcal{O}}(w^4 + w^2 C)$.

- Number of loops: $wd \log(p)/C$.
 - Computation of the **resultant**: $\mathcal{O}(w^3)$.
 - Factorization (Cantor-Zassenhaus algorithm): $\widetilde{\mathcal{O}}(w^4 + w^2 C)$.
 - **Gröbner basis** computation (Faugère F_4/F_5): $\mathcal{O}(w^6)$ (degree of regularity estimated with the Macaulay bound)).

- Number of loops: $wd \log(p)/C$.
 - Computation of the **resultant**: $\mathcal{O}(w^3)$.
 - Factorization (Cantor-Zassenhaus algorithm): $\widetilde{\mathcal{O}}(w^4 + w^2 C)$.
 - **Gröbner basis** computation (Faugère F_4/F_5): $\mathcal{O}(w^6)$ (degree of regularity estimated with the Macaulay bound)).
- **CRT**: $\widetilde{\mathcal{O}}(wd \log(p)/C)$.

- Number of loops: $wd \log(p)/C$.
 - Computation of the **resultant**: $\mathcal{O}(w^3)$.
 - **Factorization** (Cantor-Zassenhaus algorithm): $\widetilde{\mathcal{O}}(w^4 + w^2 C)$.
 - **Gröbner basis** computation (Faugère F_4/F_5): $\mathcal{O}(w^6)$ (degree of regularity estimated with the Macaulay bound)).
- **CRT**: $\widetilde{\mathcal{O}}(wd \log(p)/C)$.

Theorem

The total **binary complexity** of the Level 3 Attack is upper bounded by:

$$\widetilde{\mathcal{O}}(dw^7 \log(p)).$$

 \rightarrow quasi-linear in $d \log(p)$ which is the size of the secret key.

Experimental results (I) - increasing d and p

р	d	w	size of	size of	4	t _{fact}	t_{GB}	t _{total}	security
			public key	secret key	t _{res}				bound
2	5 0	5	310 bits	102 bits	0.02s	0.02s	0.01s	0.0 5 s	
2	100	5	560 bits	202 bits	0.03s	0.02s	0.02s	0.07s	2 ²⁰²
2	400	5	2060 bits	802 bits	0.1s	0.1s	0.1s	0.30s	2802
2	1600	5	8060 bits	3202 bits	0.3s	0.3s	0.4s	1.0s	2 ³²⁰²
2	5000	5	25060 bits	10002 bits	0.8s	1.3s	0.8s	3.0s	2^{10002}
17	50	5	1267 bits	409 bits	0.2s	2.4s	0.4s	3.0s	2 ⁴⁰⁹
17	400	5	8420 bits	3270 bits	1.45s	27.7s	3.9s	33.1s	2^{3270}
17	800	5	16595 bits	6500 bits	3.1s	70s	9.5s	83s	2 ⁶⁵⁰⁰
10007	500	5	34019 bits	13289 bits	29s	217s	64s	310s	2^{13289}

Experimental results (II) - increasing w

p	d	W	size of public key	size of secret key	l +	t _{fact}	t _{GB}	t _{LinSys}	t _{total}	security bound
2	50	5	310 bits	102 bits	0.02s	0.02s	0.01s	0.001s	0.05 s	2^{102}
2	50	15	810 bits	102 bits	0.7s	0.3s	4.4s	0.03s	5.4s	2^{102}
2	50	25	1310 bits	102 bits	3s	1s	32s	0.2s	37s	2^{102}
2	50	35	1810 bits	102 bits	10s	3s	260s	1s	274s	2 ¹⁰²
2	50	45	2310 bits	102 bits	30s	7s	1352s	4s	1393s	2^{102}
2	50	55	2810 bits	102 bits	70s	12s	4619s	13s	4714s	2^{102}
2	50	65	3310 bits	102 bits	147s	22s	12408s	27s	12604s	
2	50	75	3810 bits	102 bits	288s	38s	37900s	56s	38280s	2 ¹⁰²

Conclusion

- Description of the underlying algebraic structure.
- Algebraic cryptanalysis of ASC by using tools from Computer Algebra (Gröbner bases, resultants, efficient CRT, decomposition of ideals, . . .).
- Breaks the recommended parameters in 0.05 seconds.
- Often faster than the legal decryption algorithm.

Perspectives

- Still no efficient algorithm to solve the Section Finding Problem (SFP).
- → SFP-based multivariate crypto ? Signature ? Authentification ?

. . .