
Why and how to use arbitrary precision
Kaveh R. Ghazi Vincent Lefèvre Philippe Théveny Paul Zimmermann

Most nowadays floating-point computations are
done in double precision, i.e., with a significand (or
mantissa, see the “Glossary” sidebar) of 53 bits.
However, some applications require more precision:
double-extended (64 bits or more), quadruple pre-
cision (113 bits) or even more. In an article pub-
lished in The Astronomical Journal in 2001, Toshio
Fukushima says: “In the days of powerful computers,
the errors of numerical integration are the main lim-
itation in the research of complex dynamical systems,
such as the long-term stability of our solar system
and of some exoplanets [. . .]” and gives an example
where using double precision leads to an accumulated
round-off error of more than 1 radian for the solar
system! Another example where arbitrary precision
is useful is static analysis of floating-point programs
running in electronic control units of aircrafts or in
nuclear reactors.
Assume we want to determine 10 decimal digits

of the constant 173746a + 94228b − 78487c, where
a = sin(1022), b = log(17.1), and c = exp(0.42). We
will consider this as our running example throughout
the paper. In this simple example, there are no input
errors, since all values are known exactly, i.e., with
infinite precision.
Our first program — in the C language — is:

#include <stdio.h>
#include <math.h>

int main (void)
{

double a = sin (1e22), b = log (17.1);
double c = exp (0.42);
double d = 173746*a + 94228*b - 78487*c;
printf ("d = %.16e\n", d);
return 0;

}

and we get (all experiments in this paper are done
with GCC 4.3.2 running on a 64-bit Core 2 under
Fedora 10, with GNU libc 2.9):

d = 2.9103830456733704e-11

This value is completely wrong, since the expected re-
sult is −1.341818958 · 10−12. We can change double
into long double in the above program, to use
double-extended precision (64-bit significand) on this
platform1 — and change sin(1e22) to sinl(1e22L),
log to logl, exp to expl, %.16e into %.16Le; we then
get:

d = -1.3145040611561853e-12

This new value is “almost as wrong” as the first one.
Clearly the working precision is not enough.

1 What can go wrong
Several things can go wrong in our running example.
First constants such as 1e22, 17.1 or 0.42 might
not be exactly representable in binary. This prob-
lem should not occur for the constant 1e22, which
is exactly representable in double precision, assum-
ing the compiler transforms it into the correct binary
constant, as required by IEEE 754 (see the IEEE
754 sidebar). However 17.1 cannot be represented
exactly in binary, the closest double-precision value
is 2406611050876109 · 2−47, which differs by about
1.4 · 10−15. The same problem happens with 0.42.

Secondly for a mathematical function, say sin,
and a floating-point input, say x = 1022, the value

1On ARM computers, long double is double precision only;
on Power PC, it corresponds to double-double arithmetic (see
the “Glossary” sidebar), and under Solaris, to quadruple pre-
cision.

1

sin x is usually not exactly representable as a double-
precision number. The best we can do is to round
sin x to the nearest double-precision number, say y.
In our case we have y = −7675942858912663 · 2−53,
and the error y − sin x is about 6.8 · 10−18.
Thirdly, IEEE 754 requires neither correct round-

ing (see the IEEE 754 sidebar) of the mathematical
functions like sin, log, exp, nor even some given accu-
racy, and results are completely platform-dependent
[3]. However, while the 1985 version did not say
anything about these mathematical functions, cor-
rect rounding became recommended in the 2008 re-
vision. Thus the computed values for the variables
a, b, c might differ from several ulps (units in last
place, see the “Glossary” sidebar) from the correctly-
rounded result. On this particular platform, whether
optimizations are enabled or not — see Section 3 —
all three functions are correctly rounded for the cor-
responding binary arguments x, which are themselves
rounded with respect to the decimal inputs.
Finally a cancellation happens in the sum

173746a + 94228b − 78487c. Assuming it is com-
puted from left to right, the sum 173746a +
94228b is rounded to x = 1026103735669971 ·
2−33 ≈ 119454.19661583972629, while 78487c is
rounded to y = 4104414942679883 · 2−35 ≈
119454.19661583969719. By Sterbenz’s theorem (see
the “Glossary” sidebar), there are no round-off er-
rors when computing x− y; however the accuracy of
the final result is clearly bounded by the round-off
error made when computing x and y, i.e., 2−36 ≈
1.5 ·10−11. Since the exact result is of the same order
of magnitude, this explains why our final result d is
completely wrong.

2 The GNU MPFR library
By arbitrary precision, we mean the ability for the
user to choose the precision of each calculation. (One
also says multiple precision, since this means that
large significands (see the “Glossary” sidebar) are
split over several machine words; modern computers
can store at most 64 bits in one word, i.e., about 20
digits.) Several programs or libraries enable one to
perform computations in arbitrary precision, in par-

ticular most computer algebra systems, like Math-
ematica, Maple, or Sage. We focus here on GNU
MPFR, which is a C library dedicated to floating-
point computations in arbitrary precision (for other
languages than C, see the “Other languages” side-
bar). What makes MPFR different is that it guar-
antees correct rounding (see the IEEE 754 sidebar).
With MPFR, our running example becomes:
#include <stdio.h>
#include <stdlib.h>
#include "mpfr.h"

int main (int argc, char *argv[])
{

mp_prec_t p = atoi (argv[1]);
mpfr_t a, b, c, d;
mpfr_inits2 (p, a, b, c, d, (mpfr_ptr) 0);
mpfr_set_str (a, "1e22", 10, GMP_RNDN);
mpfr_sin (a, a, GMP_RNDN);
mpfr_mul_ui (a, a, 173746, GMP_RNDN);
mpfr_set_str (b, "17.1", 10, GMP_RNDN);
mpfr_log (b, b, GMP_RNDN);
mpfr_mul_ui (b, b, 94228, GMP_RNDN);
mpfr_set_str (c, "0.42", 10, GMP_RNDN);
mpfr_exp (c, c, GMP_RNDN);
mpfr_mul_si (c, c, -78487, GMP_RNDN);
mpfr_add (d, a, b, GMP_RNDN);
mpfr_add (d, d, c, GMP_RNDN);
mpfr_printf ("d = %1.16Re\n", d);
mpfr_clears (a, b, c, d, NULL);
return 0;

}

This program takes as input the working precision p.
With p = 53, we get:
d = 2.9103830456733704e-11

Note that this is exactly the result we got with double
precision. With p = 64, we get:
d = -1.3145040611561853e-12

which matches the result we got with double-
extended precision. With p = 113, which corresponds
to IEEE-754 quadruple precision, we get here:
d = -1.3418189578296195e-12

which matches exactly the expected result.

2

3 Constant folding
In a given program, when an expression is a constant
like 3 + (17 × 42), it might be replaced at compile-
time by its computed value. The same holds for
floating-point values, with an additional difficulty:
the compiler should be able to determine the round-
ing mode to use. This replacement done by the com-
piler is known as constant folding [4]. With correctly-
rounded constant folding, the generated constant de-
pends only on the format of the floating-point type
on the target platform, and no more on the processor,
system, and mathematical library used by the build-
ing platform. This provides both correctness (the
generated constant is the correct one with respect to
the precision and rounding mode) and reproducibil-
ity (platform-dependent issues are eliminated). As
of version 4.3, GCC uses MPFR to perform constant
folding of intrinsic (or builtin) mathematical func-
tions such as sin, cos, log, sqrt. Consider for example
the following program:

#include <stdio.h>
#include <math.h>

int main (void)
{

double x = 2.522464e-1;
printf ("sin(x) = %.16e\n", sin (x));
return 0;

}

With GCC 4.3.2, if we compile this program with-
out optimizing (i.e., using -O0), we get as result
2.4957989804940914e-01. With optimization (i.e.,
using -O1), we get 2.4957989804940911e-01. Why
this discrepancy? With -O0, the expression sin(x)
is evaluated by the mathematical library (here the
GNU C library, also called GNU libc or glibc). With
-O1, GCC recognizes the expression sin(x) is a con-
stant, with rounding mode is to nearest, calls MPFR
to evaluate it, and directly replaces sin(x) with its
correctly rounded value.2 The correct value is the one

2When compiling with -O1, we can even omit linking with
the mathematical library, i.e., gcc -O1 test.c, which proves
that the mathematical library is not used at all. On the
contrary, gcc -O0 test.c yields a compiler error, and gcc

obtained with -O1. Note however that if the GNU
C library does not round correctly on that example,
most values are correctly rounded by the GNU C li-
brary (on computers without extended precision), as
recommended by IEEE 754-2008. In the future, we
can hope correct rounding for every input and every
function.

Note: on x86 processors, the GNU C library
uses the fsin implementation from the x87 co-
processor, which for x = 0.2522464 returns the cor-
rectly rounded result. However this is just by chance,
since among the 107 double-precision numbers includ-
ing 0.25 and above, fsin gives an incorrect rounding
for 2452 of them.

4 Conclusion
We have seen in this paper that using double preci-
sion variables with a significand of 53 bits can lead to
much less than 53 bits of accuracy in the final results.
Among the possible reasons for this loss of accuracy
are roundoff errors, numerical cancellations, errors
in binary-decimal conversions, bad numerical quality
of mathematical functions, . . .We have seen that us-
ing arbitrary precision, for example with the GNU
MPFR library, helps to increase the final accuracy.
More importantly, the correct rounding of mathe-
matical functions in MPFR helps to increase the re-
producibility of floating-point computations among
different processors, with different compilers and/or
operating systems, as demonstrated by the example
of constant folding within GCC.

References
[1] Fousse, L., Hanrot, G., Lefèvre, V.,

Pélissier, P., and Zimmermann, P. MPFR:
A multiple-precision binary floating-point library
with correct rounding. ACM Trans. Math. Softw.
33, 2 (2007), article 13.

-O0 test.c -lm works, showing that the mathematical li-
brary is needed here. To disable constant folding and other
optimizations on intrinsic builtin functions one can use gcc
-fno-builtin, or more specifically gcc -fno-builtin-sin to
target the sin function by itself.

3

[2] IEEE standard for floating-point arithmetic.
ANSI-IEEE standard 754-2008, 2008. Revision
of ANSI-IEEE Standard 754-1985, approved June
12, 2008: IEEE Standards Board.

[3] Lefèvre, V. Test of mathematical functions
of the standard C library. http://www.vinc17.
org/research/testlibm/.

[4] Wikipedia. Constant folding. http://en.
wikipedia.org/wiki/Constant_folding.

The IEEE 754 standard (side-
bar)
IEEE 754 is a widely used standard for floating-point
representations and operations (your computer uses
it every day without you being aware of it). It is
very important because it defines floating-point for-
mats — enabling two computers to exchange floating-
point values without any loss of accuracy — and it
requires correct rounding for arithmetic operations,
which guarantees that the same program will yield
identical results on two different computers3. IEEE
754 was first approved in 1985, and was revised in
2008 [2]. We describe here this revision, denoted as
IEEE 754-2008. IEEE 754-2008 defines both basic
formats — for computations — and interchange for-
mats — to exchange data between different imple-
mentations. There are five basic formats: binary32,
binary64, binary128, decimal64 and decimal128.
The binary32 and binary64 yield single and dou-
ble (binary) precision respectively, and usually cor-
respond to the float and double data-types in the
ISO C language. The decimal formats are new to
IEEE 754-2008; some preliminary support is avail-
able in GCC. For example decimal64 is denoted by
_Decimal64 in GCC, in conformance with the cur-
rent draft on decimal floating-point arithmetic in C,
TR 247324. Our running example becomes then:

#include <stdio.h>
#include <math.h>

3Under some conditions that we omit here.
4http://www.open-std.org/jtc1/sc22/wg14/www/

projects

int main (void)
{

_Decimal64 a = sin (1e22);
_Decimal64 b = log (17.1);
_Decimal64 c = exp (0.42);
_Decimal64 d = 173746*a+94228*b-78487*c;
printf ("d = %.16e\n", (double) d);
return 0;

}

and we get:

d = 0.0000000000000000e+00

(Note that we had to convert the final result d to
double since the GNU C library does not yet support
printing of decimal formats.)

IEEE 754 requires correct rounding for the four
basic arithmetic operations (+,−,×,÷), the square
root, and the radix conversions (for example when
reading a decimal string into a binary format, or
when printing a binary format into a decimal string).
This means that the computed result should be as if
computed in infinite precision, and then rounded with
respect to the current rounding mode. IEEE 754-
2008 specifies five rounding modes (or attributes):
roundTowardPositive, roundTowardNegative,
roundTowardZero, roundTiesToEven, and
roundTiesToAway.

Double-extended precision and Linux. The
traditional floating-point unit of the 32-bit x86 pro-
cessors can be configured to round the results ei-
ther in double precision (53-bit significand) or in
extended precision (64-bit significand). Most oper-
ating systems, such as FreeBSD, NetBSD and Mi-
crosoft Windows, chose to configure the processor
so that, by default, it rounds in double precision.
On the other hand, under Linux, the rounding is
done in extended precision. This is a bad choice
for the reasons detailed in http://www.vinc17.org/
research/extended.en.html.

4

Glossary (sidebar)
Radix, significand, and exponent. If x is a
floating-point number of precision p in radix β, it
can be written x = ±0.d1d2 . . . dp · βe, where s = ±1
is the sign of x, m = 0.d1d2 . . . dp is the significand
of x, and e is the exponent of x. Note that this rep-
resentation is not unique, unless we force d1 to be
non-zero. Note also that different conventions are
possible for the significand, which lead to different
values for the exponent. For example, IEEE 754-
2008 uses m = d1.d2 . . . dp, which gives an exponent
smaller by one; it also uses a third convention, where
the significand m is an integer.

Unit in last place. If x = ±0.d1d2 . . . dp · βe is
a floating-point number, we denote by ulp(x) the
weight of the least significand digit of x, i.e., βe−p.
(Note that the value of ulp(x) does not depend on the
convention chosen for the (s,m, e) representation.)

Sterbenz’s theorem. Sterbenz’s theorem says
that if x and y are two floating-point numbers of pre-
cision p, such that y/2 ≤ x ≤ 2y, then x−y is exactly
representable in precision p. As a consequence, there
are no round-off errors when computing x− y.

Double-double arithmetic. The “double-
double” arithmetic approximates a real number r
by the sum of two double-precision numbers, say
x + y. If x is the rounding-to-nearest of r, and y is
the rounding-to-nearest of r− x, then double-double
arithmetic gives an accuracy which is twice as large
as that of a “single” double-precision number.

Other languages (sidebar)
Several other languages than C or C++ provide ac-
cess to arbitrary precision floating-point arithmetic.
For what concerns MPFR, there are interfaces for
the Perl, Python, Haskell, Lisp and Ursala languages
(see mpfr.org for more details). Using MPFR from
Fortran is not as easy since one would first have
to convert the MPFR data-types to Fortran; how-
ever if you want to compute say the exponential

of a double-precision number with correct rounding,
this is easy, see http://www.loria.fr/~zimmerma/
mpfr/fortran.html.

5

