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The Elliptic Curve Method (ECM for short) was invented in 1985 by H. W. Lenstra,
Jr. [5]. It is suited to find small — say 9 to 30 digits — prime factors of large numbers.
Among the different factorization algorithms whose complexity mainly depends on the size
of the factor searched for (trial division, Pollard rho, Pollard p− 1, Williams p + 1), it is
asymptotically the best method known. ECM can be viewed as a generalization of Pollard’s
p − 1 method, just like ECPP generalizes the n − 1 primality test. ECM relies on Hasse’s
theorem: if p is prime, then an elliptic curve over Z/pZ has group order p + 1 − t with
|t| ≤ 2

√
p, where t depends on the curve. If p + 1 − t is a smooth number, then ECM will

— most probably — succeed and reveal the unknown factor p.
Since 1985, many improvements have been proposed to ECM. Lenstra’s original algorithm

had no second phase. Brent proposes in [2] a “birthday paradox” second phase, and further
more technical refinements. In [7], Montgomery presents different variants of phase two of
ECM and Pollard p− 1, and introduces a parameterization with homogeneous coordinates,
which avoids inversions modulo n, with only 6 and 5 modular multiplications per addition
and duplication on E, respectively. It is also possible to choose elliptic curves with a group
order divisible by 12 or 16 [7, 8, 1].

Phase one of ECM works as follows. Let n be the number to factor. An elliptic curve
is E(Z/nZ) = {(x : y : z) ∈ P2(Z/nZ), y2z ≡ x3 + axz2 + bz3 mod n}, where a, b are
two parameters from Z/nZ, and P2(Z/nZ) is the projective plane over Z/nZ. The neutral
element is O = (0 : 1 : 0), also called point at infinity. The key idea is that computations
in E(Z/nZ) project to E(Z/pZ) for any prime divisor p of n, with the important particular
case of quantities which are zero in E(Z/pZ) but not in E(Z/nZ). Pick at random a curve
E and a point P on it. Then compute Q = k · P where k is the product of all prime powers
less than a bound B1 (cf. elliptic curve arithmetic). Let p be a prime divisor of n: if the
order of E over Z/pZ divides k, then Q will be the neutral element of E(Z/pZ), thus its
z-coordinate will be zero modulo p, hence gcd(z, n) will reveal the factor p (unless z is zero
modulo another factor of n, which is unlikely).

Phase one succeeds when all prime factors of g = #E(Z/pZ) are less than B1; phase two
allows one prime factor g1 of g to be as large as another bound B2. The idea is to consider
two families (aiQ) and (bjQ) of points on E, and check whether two such points are equal
over E(Z/pZ). If aiQ = (xi : yi : zi) and bjQ = (x′j : y′j : z′j), then gcd(xiz

′
j − x′jzi, n) will be

non-trivial. This will succeed when g1 divides a non-trivial ai − bj. Two variants of phase
two exist: the birthday paradox continuation chooses the ai’s and bj’s randomly, expecting
that the differences ai − bj will cover most primes up to B2, while the standard continuation
chooses the ai’s and bj’s so that every prime up to B2 divides at least one ai − bj. Both
continuations may benefit from the use of fast polynomial arithmetic, and are then called
“FFT extensions” [8].
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The expected running time of ECM is conjectured to be O(L(p)
√

2+o(1)M(log n)) to find

one factor of n, where p is the (unknown) smallest prime divisor of n, L(x) = e
√

log x log log x

[cf. L-notation], M(log n) represents the complexity of arithmetic modulo n, and the o(1) in
the exponent is for p tending to infinity. The second phase decreases the expected running
time by a factor log p. Optimal bounds B1 and B2 may be estimated from the (usually
unknown) size of the smallest factor of n, using Dickman’s function [9]. For RSA moduli,
where n is the product of two primes of roughly the same size, the running time of ECM is
comparable to that of the Quadratic Sieve.

ECM has been used to find factors of Cunningham numbers (an ± 1 for a = 2, 3, 5, 6,
7, 10, 11, 12). In particular Fermat numbers Fn = 22n

+ 1 are very good candidates for
n ≥ 10, since they are too large for general purpose factorization methods. Brent completed
the factorization of F10 and F11 using ECM, after finding a 40-digit factor of F10 in 1995,
and two factors of 21 and 22 digits of F11 in 1988 [3]. Brent, Crandall, Dilcher and Van
Halewyn found a 27-digit factor of F13 in 1995, a (different) 27-digit factor of F16 in 1996,
and a 33-digit factor of F15 in 1997.

Some applications of ECM are less obvious. The factors found by the Cunningham project
[4] help to find primitive polynomials over GF(q). They are also used in the Jacobi sum and
cyclotomy tests for primality proving [6].

Brent maintains a list of the ten largest factors found by ECM (ftp://ftp.comlab.ox.
ac.uk/pub/Documents/techpapers/Richard.Brent/champs.txt); his extrapolation from
previous data would give an ECM record of 70 digits in year 2010, 85 digits in year 2018,
and 100 digits in year 2025. As of April 2003, the ECM record is a factor of 55 digits.
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