
ASYMPTOTICALLY FAST DIVISION FOR GMP

PAUL ZIMMERMANN

Abstract. Until version 4.2.1, GNUMP (GMP for short) division has complexityO(M(n) log n),
which is not asymptotically optimal. We propose here some division algorithms that achieve
O(M(n)) with small constants, with corresponding GMP code.

1. Previous work

1.1. Karl Hasselström’s Master Thesis. Previous work on fast division was done by
Karl Hasselström in his master thesis (http://www.treskal.com/kalle/exjobb/), whose
abstract says:

I have investigated, theoretically and experimentally, under what circum-
stances Newton division (inversion of the divisor with Newton’s method, fol-
lowed by division with Barrett’s method) is the fastest algorithm for integer
division. The competition mainly consists of a recursive algorithm by Burnikel
and Ziegler.

For divisions where the dividend has twice as many bits as the divisor,
Newton division is asymptotically fastest if multiplication of two n-bit integers
can be done in time O(nc) for c < 1.297, which is the case in both theory
and practice. My implementation of Newton division (using subroutines from
GMP, the GNU Multiple Precision Arithmetic Library) is faster than Burnikel
and Ziegler’s recursive algorithm (a part of GMP) for divisors larger than
about five million bits (one and a half million decimal digits), on a standard
PC.

Hasselström implemented 1/x with Newton’s algorithm, following the description in Knuth,
and Barrett’s division with remainder, given the inverse of the divisor. (His implementation
does not give an approximate quotient as intermediate step.)

2. Approximate Inverse

We describe here algorithms that compute an approximate inverse of some positive real
a. We denote ρ = 1/a the exact inverse.

2.1. Mathematical Analysis. In that section, we assume all computations are done with
infinite precision, thus neglecting roundoff errors.

Lemma 1. Let x > 0, and x′ = x+ x(1− ax). Then:

0 ≤ 1

a
− x′ ≤ x2

θ3
(
1

a
− x)2,

Date: First version in October 2005. Revised August 2006, October 2006, and February 2015 after
feedback from Bill Hart.

1

for some θ ∈ (x, ρ).

Proof. Newton’s iteration consists in approximating the function by its tangent. Let f(t) =
a− 1/t, with ρ = 1/a the root of f . The second-order expansion of f at t = ρ with explicit
remainder is:

f(ρ) = f(x) + (ρ− x)f ′(x) +
(ρ− x)2

2
f ′′(θ),

for some θ ∈ (x, ρ). Since f(ρ) = 0, this simplifies to

ρ = x− f(x)

f ′(x)
− (ρ− x)2

2

f ′′(θ)

f ′(x)
.

Substituting f(t) = a− 1/t, f ′(t) = 1/t2 and f ′′(t) = −2/t3, it follows:

ρ = x+ x(1− ax) +
x2

θ3
(ρ− x)2,

which proves the claim. �

2.2. An implementation in 3M(n) or 2.5M(n). The following code computes an approx-
imate inverse.

The break-even point between mpn invert and mpn divrem (which performs division with
remainder) is around 25 limbs on a Pentium 4 with gmp-4.2.1.

Let β be the GMP internal base, usually β = 232 or 264. The input of mpn invert is
the integer A represented in GMP notation by {ap,n}. It is assumed that A is normalized,
i.e., A ≥ βn/2; we thus have βn/2 ≤ A < βn. The output of mpn invert is the integer X
represented by {xp,n} plus one implicit most significant bit of weight βn; in other words
X = βn + {xp, n}.
void

mpn_invert2 (mp_ptr xp, mp_srcptr ap, mp_size_t n)

{

if (n == 1)

invert_limb (xp[0], ap[0]);

else if (n == 2)

/* omitted special code that guarantees A*X < B^4 <= A*(X+1) */

else

{

mp_size_t l, h;

mp_ptr tp, up;

mp_limb_t cy, th;

TMP_DECL;

l = (n - 1) / 2;

h = n - l;

mpn_invert2 (xp + l, ap + l, h);

TMP_MARK;

tp = TMP_ALLOC_LIMBS (n + h);

up = TMP_ALLOC_LIMBS (2 * h);

mpn_mul (tp, ap, n, xp + l, h);
2

cy = mpn_add_n (tp + h, tp + h, ap, n);

while (cy)

{

mpn_sub_1 (xp + l, xp + l, h, ONE);

cy -= mpn_sub (tp, tp, n + h, ap, n);

}

mpn_com_n (tp, tp, n);

mpn_add_1 (tp, tp, n, ONE);

mpn_mul_n (up, tp + l, xp + l, h);

cy = mpn_add_n (up + h, up + h, tp + l, h - l);

mpn_add_nc (xp, up + 2*h - l, tp + h, l, cy);

if (up[2*h-l-1] + 3 <= 2)

{

/* omitted special code that checks if A*(X+1) < beta^(2n),

and if so adds 1 to {xp, l} */

}

TMP_FREE;

}

}

Lemma 2. If β ≥ 3 is a power of two, the output X of the function mpn invert satisfies:

AX < β2n ≤ A(X + 1).

Remark 1: the reasoning below requires β ≥ 3, but the lemma might hold for β = 2 too.

Note that the upper inequality β2n ≤ A(X + 1) cannot be replaced by a strict inequality.
Indeed, if A = βn/2, the largest value of X satisfying the lower inequality AX < β2n is
X = 2βn − 1, which gives A(X + 1) = β2n.

Proof. For n = 1 the invert limb internal GMP function returns X = bβ2

A
c, except when

A = β/2 where it returns X = 2β − 1. In all cases we have AX < β2 ≤ A(X + 1), thus the
lemma holds.

For n = 2 the function uses special code — omitted here for brievity — that guarantees
AX < β2n ≤ A(X + 1), like for n = 1.

Now consider n ≥ 3. We have ` = b(n− 1)/2c and h = n− `, thus n = h + ` and h > `.
The idea of the algorithm is to first compute an approximate inverse of the upper h limbs
of A, and then to update it to n limbs using Newton’s iteration.

After the recursive call

mpn_invert2 (xp + l, ap + l, h);

we have by induction

(1) AhXh < β2h ≤ Ah(Xh + 1),

where Ah = {ap+`, h} and Xh = βh+{xp+`, h}. Let T be the value of cy ·βn+h+{tp, n+h}.
After

mpn_mul (tp, ap, n, xp + l, h);

cy = mpn_add_n (tp + h, tp + h, ap, n);
3

we have T = AXh. After the while-loop

while (cy)

{

mpn_sub_1 (xp + l, xp + l, h, ONE);

cy -= mpn_sub (tp, tp, n + h, ap, n);

}

we still have T = AXh, where T and Xh may have new values, and in addition T < βn+h.
Note that since the initial value of AXh satisfies AXh < βn+h + 2βn, and A ≥ βn/2, the
number of loops is at most 4. (This is achieved for example for A = 542, β = 4 and
n = 5.) We also have βn+h < T + A; we prove the latter by distinguishing two cases.
Either we entered the while-loop, then since the value of T decreases by A at each loop,
the previous value T + A was necessarily larger or equal to βn+h. If we didn’t enter the
while-loop, the value of T is the original one T = AXh. Multiplying Eq. (1) by β` gives:
βn+h ≤ Ahβ

`(Xh + 1) ≤ A(Xh + 1) = T + A. We thus have:

T < βn+h ≤ T + A.

It follows T ≥ βn+h − A > βn+h − βn. In summary, βn+h − βn < T < βn+h, then 0 <
βn+h−T < βn: thus βn+h−T — when considered as a n+h-limb number — has its h upper
limbs equal to zero. This is what we compute with the following lines (the mpn_add_1 call
cannot yield any carry since βn+h − T < βn):

mpn_com_n (tp, tp, n);

mpn_add_1 (tp, tp, n, ONE);

The last lines compute the product of the h most significant limbs of βn+h − T by Xh, and
put its ` most significant limbs in the low part X` of the result X:

mpn_mul_n (up, tp + l, xp + l, h);

cy = mpn_add_n (up + h, up + h, tp + l, h - l);

mpn_add_nc (xp, up + 2*h - l, tp + h, l, cy);

Now let us perform the error analysis. Compared to Lemma 1, x stands for Xhβ
−h, a

stands for Aβ−n, and x′ stands for Xβ−n. The while-loop ensures that we start from an
approximation x < 1/a, i.e., AXh < βn+h. Then Lemma 1 guarantees that x ≤ x′ ≤ 1/a if
x′ is computed with infinite precision. Here we have x ≤ x′, since X = Xhβ

h + X`, where
X` ≥ 0. The only differences with infinite precision are:

• the low ` limbs from 1 − ax are neglected, and only its upper part (1 − ax)h is
considered;
• the low 2h− ` limbs from x(1− ax)h are neglected.

Those two approximations make the computed value of x′ smaller or equal to the one which
would be computed with infinite precision, thus we have for the computed value x′:

x ≤ x′ ≤ 1/a.

The mathematical error is bounded from Lemma 1 by x2

θ3
(ρ−x)2 < β−2h since x2

θ3
≤ 1 and

|ρ− x| < β−h. The truncation from 1− ax, which is multiplied by x < 2, produces an error
4

less than 2β−2h. Finally the truncation of x(1− ax)h produces an error less than β−n. The
final result is thus:

x′ ≤ ρ < x′ + β−n + 3β−2h.

Assuming 3β−2h ≤ β−n, which holds as soon as β ≥ 3 since 2h > n, this simplifies to:

x′ ≤ ρ < x′ + β−n(1 + 3/β),

which gives with x′ = Xβ−n and ρ = βn/A:

(2) X ≤ β2n

A
< X + 1 + 3/β.

Since β is assumed to be a power of two, equality X = β2n/A can hold only when A is a
power of two itself, i.e., A = βn/2. In that case there is only one value of Xh that is possible
for the recursive call, namely Xh = 2βh − 1. In that case T = βn+h − βn/2 before the
while-loop, which is not entered. Then βn+h − T = βn/2, whose upper part {tp+l, h} is
βh/2, which multiplied by Xh gives β2h− βh/2, whose ` most significant limbs are all β − 1.
Thus X` = β` − 1, and X = 2βn − 1: equality does not occur either in that case. �

Remark 2: the condition up[2*h-l-1] + 3 <= 2 is fullfilled when the limb up[2*h-l-1] is
β − 3, β − 2, or β − 1. When that condition does not hold, taking into account the smaller
limbs from up, the neglected part is bounded strictly by β−3, thus when adding the maximal
mathematical error and that from the truncation of 1− ax, which amounts to at most 3 —
3/β to the next more significant limb — no carry can occur at the next limb. This condition
happens with very low probability with say β = 264. This condition is optimal since for
example with A = 8888, β = 4, n = 7 we need a correction for up2h−`−1 = 1 = β − 3.

Complexity Analysis: let I(n) be the cost to invert an n-limb number. If we neglect the
linear costs, we have I(n) = I(n/2) + M(n, n/2) + M(n/2), where M(n, n/2) is the cost of
multiplying an n× (n/2) product, and M(n/2) the cost of an (n/2)× (n/2) product. If the
n × (n/2) product is performed via two (n/2) × (n/2) products, we have I(n) = I(n/2) +
3M(n/2), which yields M(n) in the quadratic range, 3/2M(n) in the Karatsuba range,
1.704 . . .M(n) in the Toom-Cook 3-way range, and 3M(n) in the FFT range. However, in
the FFT range, a (n/2)× (n/2) product is computed by a FFT on n limbs, and a n× (n/2)
product can be directly computed by a FFT on 3n/2 limbs, which therefore amounts to
3/2M(n/2). In that case the complexity decreases to 2.5M(n) in the FFT range.

Here are some timings obtained on a 2.83Ghz Core 2 Q9550 with gmp-6.0.0 and gcc 4.9.1.
The mpn mul n column gives real timings; the other columns give the ratio with respect to
mpn mul n:

limbs mpn mul n mpn divrem mpn invert2

1000 0.243ms 2.54 1.75
10000 4.84ms 2.54 1.95
100000 66.2ms 2.68 2.13
1000000 982.ms 2.22 1.92
10000000 12.6s 2.76 2.23

2.3. An implementation in 2M(n). In the product AXh:

mpn_mul (tp, ap, n, xp + l, h);

cy = mpn_add_n (tp + h, tp + h, ap, n);
5

we know from Eq. (1) that the result will be very near from βn+h, more precisely:

βn+h − βn < AXh < βn+h + 2βn.

Assume we use an FFT algorithm that computes products modulo βm+1 like Schönhage-
Strassen’s algorithm. We use here m > n. Let AXh = Uβm + V with 0 ≤ V < βm. It
follows from above that U = βn+h−m or U = βn+h−m − 1. Let T = AXh mod (βm + 1) the
value computed by the FFT. We have T = V − U or T = V − U + (βm + 1). It follows
AXh = T +U(βm + 1) or AXh = T + (U − 1)(βm + 1). Taking into account the two possible
values of U , we have AXh = T + (βn+h−m − ε)(βm + 1) where ε ∈ {0, 1, 2}. For m > n, we
have βm ≥ 3βn, thus only one value of ε yields a value in the interval (βn+h−βn, βn+h+2βn).

We summarize the algorithm:

Compute T = AXh mod (βm + 1) using FFT
T ← T + βn+h + βn+h−m { case ε = 0 }
while T ≥ βn+h + 2βn do
T ← T − (βm + 1)

3. Approximate Quotient

Assume we have a dividend B < β2n, a divisor βn/2 ≤ A < βn, and we compute an
approximate quotient Q with the following algorithm:

X ← ApproxInvert(A)
Write B = B1β

n +B0 with 0 ≤ B0, B1 < βn

Q← bB1X
βn c

where the ApproxInvert function returns X such that:

AX < β2n ≤ A(X + 1),

as for example the above mpn invert2 routine.

Lemma 3. The approximate quotient Q satisfies:

0 ≤ B −QA < 4A.

Proof. Let S = β2n − AX, which satisfies 0 < S ≤ A from Lemma 2, and R = B1X −Qβn,
which satisfies 0 ≤ R < βn. We have:

B −QA = B1β
n +B0 −

B1X −R
βn

A

= B1β
n +B0 −

B1

βn
(β2n − S) +

R

βn
A

= B0 +
B1

βn
S +

R

βn
A.

Now B0 < βn ≤ 2A, B1 < βn, S ≤ A and R < βn. �

6

