ECM is a probabilistic algorithm. Its probability of success depends on the size of the (usually unknown) factor p to be found, on the step 1 and 2 bounds B1 and B2, and possibly on some other implementation-dependent parameters.
The table below indicates for each factor size what is the optimal step 1 limit B1 to use (first argument of the GMP-ECM program). The column "expected curves" corresponds to the default parameters of GMP-ECM. Those figures can be reproduced using the -v option of GMP-ECM.digits | optimal B1 | expected curves (default parameters for GMP-ECM 6) |
expected curves (default parameters for GMP-ECM 7) |
20 | 11,000 | 86 | 107 |
25 | 50,000 | 214 | 261 |
30 | 250,000 | 430 | 513 |
35 | 1,000,000 | 910 | 1,071 |
40 | 3,000,000 | 2,351 | 2,753 |
45 | 11,000,000 | 4,482 | 5,208 |
50 | 43,000,000 | 7,557 | 8,704 |
55 | 110,000,000 | 17,884 | 20,479 |
60 | 260,000,000 | 42,057 | 47,888 |
65 | 850,000,000 | 69,471 | 78,923 |
70 | 2,900,000,000 | 102,212 | 115,153 |
75 | 7,600,000,000 | 188,056 | 211,681 |
80 | 25,000,000,000 | 265,557 | 296,479 |
Update June 5, 2019: Pierrick Gaudry computed experimentally optimal parameters with GMP-ECM 7 (using the output of ecm -v) for a 512-bit input, and for factor size from 30 to 225 bits, by steps of 5 bits. The optimal B1 values he found below follow a regression of the form log(B1) = a*bits+b, with a = 0.0750 and b = 5.332. and the corresponding total effort (B1 times number of curves) follows a regression of the form log(B1*ncurves) = d*bits2+e*bits+f, with d = -0.000203, e = 0.177 and f = 3.097. In terms of the number of curves, one seems to have B1 = 150*ncurves1.5. This table, where the B1 values grow more quickly than in the above one, should be considered as more accurate. The above table is kept for reference.
bits | optimal B1 | expected curves |
30 | 1358 | 2 |
35 | 1270 | 5 |
40 | 1629 | 10 |
45 | 4537 | 10 |
50 | 12322 | 9 |
55 | 12820 | 18 |
60 | 21905 | 21 |
65 | 24433 | 41 |
70 | 32918 | 66 |
75 | 64703 | 71 |
80 | 76620 | 119 |
85 | 155247 | 123 |
90 | 183849 | 219 |
95 | 245335 | 321 |
100 | 445657 | 339 |
105 | 643986 | 468 |
110 | 1305195 | 439 |
115 | 1305195 | 818 |
120 | 3071166 | 649 |
125 | 3784867 | 949 |
130 | 4572523 | 1507 |
135 | 7982718 | 1497 |
140 | 9267681 | 2399 |
145 | 22025673 | 1826 |
150 | 22025673 | 3159 |
155 | 26345943 | 4532 |
160 | 35158748 | 6076 |
165 | 46919468 | 8177 |
170 | 47862548 | 14038 |
175 | 153319098 | 7166 |
180 | 153319098 | 12017 |
185 | 188949210 | 16238 |
190 | 410593604 | 13174 |
195 | 496041799 | 17798 |
200 | 491130495 | 29584 |
205 | 1067244762 | 23626 |
210 | 1056677983 | 38609 |
215 | 1328416470 | 49784 |
220 | 1315263832 | 81950 |
225 | 2858117139 | 63461 |