Double Matrix Algorithm (Task 2.3)
Participants

- Paul Zimmermann (task leader)
- Cécile Pierrot
- Charles Bouillaguet
- Ambroise Fleury?
- Post-doc to be hired (LIP6)?
References

Cf git repo, biblio/dble_matrix
Slides from Thorsten Kleinjung at WCNT 2011.
“Mersenne factory” paper, 2014.
Slides from Emmanuel and Pierrick, 2015.
Antoine Joux ?
Abstract: “Most factorizations used a new double-product approach that led to additional savings in the matrix step.”

Page 14: “Details about the new filtering strategy will be provided once we have more experience with it.”
The Idea

Let M be the matrix at the end of “purge” (singleton removal + “clique” algorithm).

Each row of M consists of a relation, and each column correspond to an ideal.

The “merge” step (Structured Gaussian Elimination) combines rows to eliminate columns:

$$PM = M'$$

The linear algebra step computes (left) matrix-vector products vM'. Instead, we can compute $w = vP$ and then wM.

If the cumulated cost of vP and wM is less than that of vM', we win!
Some figures

RSA-250: M has 1.8G rows and columns with average weight 24. M' has 405M rows, with average weight 252.

When doing “replay”, with the classical strategy, we do row combinations directly on M, with initial average weight of 24.

With the double matrix strategy, we do row combinations on P, which is initially the identity, with average weight 1.
Possible Subtasks

- rewrite “replay” to perform the row combinations on P, initialized to the identity matrix, to get an idea of the final average weight of P.
- rewrite “merge” to work on both M' (initialized to M) and P (initialized to 1). We need to construct M' to know which ideals we can eliminate.
sage: M

[[0 1 0 0 0 1 0 0]
 [1 0 1 1 0 1 1 1]
 [1 0 1 0 1 0 0 0]
 [1 0 0 1 0 1 0 1]
 [1 1 0 1 1 1 0 0]
 [0 0 0 1 0 1 0 1]
 [0 1 0 1 1 0 0 1]
 [1 0 1 0 1 1 1 1]]

If we want to cancel column 6 (starting from 0) we add row 1 to row 7.
If we want to cancel column 6 (starting from 0) we add row 1 to row 7:

```sage
P1 = matrix(GF(2), 8, 8, 1); P1[7,1] = 1
sage: P1, P1*M
```

Row 1 and column 6 are now inactive. Now to cancel column 7 we add row 5 to rows 3 and 6.
To cancel column 7 we add row 5 to rows 3 and 6:

```python
sage: P2=matrix(GF(2),8,8,1); P2[3,5]=P2[6,5]=1
sage: P2*P1, P2*P1*M

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
\end{bmatrix},
\begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
\end{bmatrix}
\]

Rows 1, 5 and columns 6, 7 are now inactive.
At each step we need the current matrix $M'$ to identify which ideals we can merge, and the current $P$ to compute the cost of each merge:

- scan columns of $M'$ to identify those $j$ of weight $k \leq K$;
- for each such column $j$ of weight $k$, compute the cost of the merge in $P$;
- perform the merges with smallest cost by updating both $P$ and $M'$. 