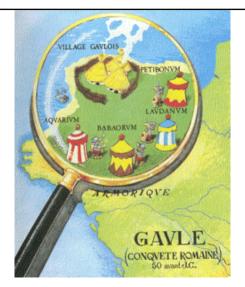
### A problem left unsolved by Jean-Michel

Paul Zimmermann, INRIA (joint work with Tue Ly, Google)

RAIM Lyon, November 6, 2025

### A small problem resists



Credit https://www.celticyourte.fr

"Correctly Rounded Evaluation of a Function: Why, How, and at What Cost?", N. Brisebarre, G. Hanrot, **J.-M. Muller**, P. Zimmermann, ACM Computing Surveys, 2025:

[...] in binary64 arithmetic, the bad cases for the sine and cosine functions are not known for input arguments larger than  $2^{11}$ .

[...] the table maker's dilemma can be considered as solved for the binary64 format for univariate functions with the possible exception of trigonometric functions of large arguments

#### Hard-to-round cases

$$\sin(0x1.fe767739d0f6dp-2) = 0.0\underbrace{111...101}_{53}1\underbrace{111...111}_{65}0000101...$$

The known algorithms (Lefèvre, SLZ) for searching hard-to-round cases assume that f(x) and f(nextabove(x)) are close.

For the largest binade  $[2^{1023}, 2^{1024})$ , this is not the case. For  $x = 2^{1023}$ ,

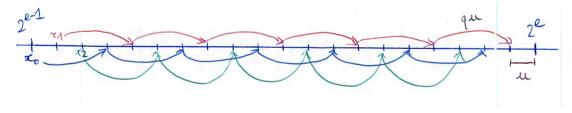
 $sin(x) \approx 0.563127779850884$ 

 $sin(nextabove(x)) \approx -0.976171771886648$ 

### State of the art

Worst Cases of a Periodic Function For Large Arguments. Guillaume Hanrot, Vincent Lefèvre, Damien Stehlé, Paul Zimmermann, ARITH'18, 2007.

Idea: in a given binade, where u := ulp(x), consider arithmetic progressions x, x + qu, x + 2qu, ..., where  $qu \mod 2\pi$  is small.



Example: for the largest binade  $[2^{1023}, 2^{1024})$ ,  $u = 2^{971}$ , we can take q = 15106909301, where  $\tau := qu \mod 2\pi \approx 4.41 \cdot 10^{-13}$ . For  $x = 2^{1023}$ ,

$$\sin(x) \approx 0.563127779850884$$

$$\sin(x + qu) \approx 0.563127779850519$$

We can then use classical algorithms on the q arithmetic progressions of size about 300,000. This algorithm was implemented in the BaCSeL software tool. However, the BaCSeL code has a large overhead.

In 2023, a full search was done with BaCSeL for  $\sin x$  in the largest binade  $[2^{1023}, 2^{1024})$ . It took a total of 102 days on one node (Intel Xeon Gold 6130 at 2.1Ghz). A full search would require about 300 years on one such node.

6/26

## The brute force approach



#### Our menhir



The grdix cluster (cf Antoine Jégo's talk)

16 nodes

each node is an AMD EPYC 9754 running at 2.7Ghz with 256 cores (512 with hyper-threading)

if we can check one value in one cycle, we can process a binade  $(2^{52} \text{ values})$  in less than one hour on one node

## Our proposed brute-force algorithm

Use a degree-3 Taylor approximation with remainder ( $\tau = qu \mod 2\pi$ ):

$$\sin(x + i\tau) = \sin x + i\tau \cos x - \frac{1}{2}(i\tau)^2 \sin x - \frac{1}{6}(i\tau)^3 \cos x + \frac{1}{24}(i\tau)^4 \sin \xi$$

Can we make the initialization step fast?

Can we make the search step fast?

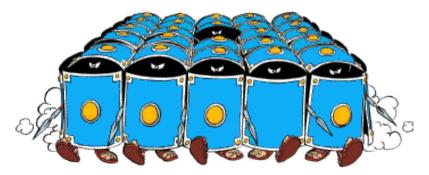
## New algorithm in image

Let  $x_i = 2^{e-1} + iu$ , where  $u = 2^{e-53}$ .

Process the arithmetic progression  $x_0, x_0 + qu, x_0 + 2qu, ...$ 

Then  $x_1, x_1 + qu, x_1 + 2qu, ...$ 

Finally  $x_{q-1}, x_{q-1} + qu, x_{q-1} + 2qu, ...$ 



Credit https://histoire-geo-ensemble.overblog.com

## Taylor approximation (1/2)

In the arithmetic progression x, x + qu, x + 2qu, ..., we have the Taylor expansion, where  $\tau = qu \mod 2\pi$ :

$$\sin(x + i\tau) = \underbrace{\sin x}_{a} + \underbrace{i\tau \cos x}_{ib} - \underbrace{\frac{1}{2}(i\tau)^{2} \sin x}_{i^{2}c} - \underbrace{\frac{1}{6}(i\tau)^{3} \cos x}_{i^{3}d} + \underbrace{\frac{1}{24}(i\tau)^{4} \sin \xi}_{i^{4}e}$$

$$|\sin(x + i\tau) - (a + ib + i^{2}c + i^{3}d)| < i^{4}e$$

For the largest binade: q=15106909301,  $\tau\approx 4.41\cdot 10^{-13}$ . For  $x=2^{1023}$ , we get  $a\approx 2^{-1}$ ,  $|b|\approx 2^{-42}$ ,  $c\approx 2^{-84}$ ,  $|d|\approx 2^{-126}$ ,  $e\approx 2^{-170}$ .

# Graphical view



## Taylor approximation (2/2)

$$|\sin(x+i\tau) - (a+ib+i^2c+i^3d)| \le i^4e$$

To search hard-to-round cases with at least *m* identical bits after the round bit:

- [initialization] evaluate efficiently a, b, c, d, e
- [search] for each i, check whether  $a+ib+i^2c+i^3d$  is at distance less than  $2^{-m}\mathrm{ulp}+i^4e$  from a 54-bit floating-point number

#### Initialization

Approximate  $a = \sin x$ ,  $b = \tau \cos x$ ,  $c = \frac{\tau^2}{2} \sin x$ ,  $d = \frac{\tau^3}{6} \cos x$ , bound  $|e| = |\frac{\tau^4}{24} \sin \xi|$ .  $\tau = qu \mod 2\pi$  is fixed for a given binade: we have to compute it only once.

However, we have to compute q different values of  $\sin x$ ,  $\cos x$ , one for each arithmetic progression: x = ju, with  $2^{52} \le j < 2^{52} + q$ .

Define  $(s_j, c_j) = (\sin(ju), \cos(ju))$ .

Compute  $(s_1, c_1) = (\sin u, \cos u)$  (once for each binade).

Use then "binary exponentiation" to obtain  $(s_{2n}, c_{2n}) = (2s_n c_n, c_n^2 - s_n^2)$  (doubling), and  $(s_{2n+1}, c_{2n+1}) = (s_1 s_{2n} + c_1 c_{2n}, c_1 c_{2n} - s_1 s_{2n})$  (multiply).

Thus each pair  $(s_j, c_j)$  can be obtained in 52 "doublings" and on average 26 "multiplies".

Computations in fixed-point arithmetic, with 320 bits (5 words of 64 bits).

### Search

We have now 320-bit approximations of a, b, c, d, e and we are looking for i,  $0 \le i \le n = \lfloor 2^{52}/q \rfloor$ , such that:

$$a+ib+i^2c+i^3d$$

is at distance less than  $2^{-m}ulp + i^4e$  from a 54-bit number.

- define  $f = 2^{-m} \text{ulp} + n^4 e$
- assume there is no binade change for  $a + ib + i^2c + i^3d$

If a, b, c, d, f are scaled appropriately, it suffices to look at the "fractional" bits. Let  $a' = \operatorname{frac}(2^k a), \ b' = \operatorname{frac}(2^k b), \dots$ 

$$|a'+ib'+i^2c'+i^3d'| \mod 1 \le f'$$
 (centered mod)

## Using 64-bit integers is enough

The low-order bits of a', b', c', d' can be neglected.

Approximate  $a' = A \cdot 2^{-64}$  with A a 64-bit integer, same for b', c', d', f'.

The main equation translates to:

$$|A+iB+i^2C+i^3D| \mod 2^{64} \le G$$
 (centered mod)

with G taking into account the error bound f' and the rounding error in A, B, C, D. This translates to (cf Lefèvre's PhD thesis) with A replaced by A + G:

$$A + iB + i^2C + i^3D \mod 2^{64} \le 2G.$$

### The table of differences method

How to efficiently evaluate  $A+iB+i^2C+i^3D \mod 2^{64}$  for  $0 \leq i < n$ ? Initialize  $\alpha,\beta,\gamma,\delta=A,B+C+D,2C+6D,6D \mod 2^{64}$  for i from 0 to n do  $\text{if } \alpha \leq 2G \text{ then check } x+iq \\ \alpha \leftarrow \alpha+\beta \mod 2^{64} \\ \beta \leftarrow \beta+\gamma \mod 2^{64} \\ \gamma \leftarrow \gamma+\delta \mod 2^{64}$ 

Using int64\_t in the C language, we just write A += B, which performs the reduction modulo  $2^{64}$  (wrap-around trick).

### Batch computation

Assume we have computed  $(s_j, c_j) = (\sin(ju), \cos(ju))$ .

We have  $(s_{j+1}, c_{j+1}) = (s_1c_j + c_1s_j, c_1c_j - s_1s_j)$ .

For a batch of 128 consecutive values of j, we reduce the initialization cost from 128 · 78 doublings/multiplies to 78 + 127, i.e., a speedup of about 50.

### Using SIMD instructions

We can search in parallel in several progressions with parameters  $A_k$ ,  $B_k$ ,  $C_k$ ,  $D_k$  using vector instructions.

For example, with AVX512, we can deal with 8 progressions in parallel.

We only need:

- $\bullet$  an instruction to add two vectors of 8 words of 64 bits, each element being added modulo  $2^{64}$  (no carry between two elements)
- an instruction to check if a vector contains a element  $\leq 2G$

### Hard-to-round cases of $\sin x$ for $x > 2^{10}$

Our SIMD program took from 2.1 hours to 2.3 hours per binade (instead of 2.6 days with BaCSeL) on a grdix node (about 2.4 cycles per value). We found 1,048,756 hard-to-round cases with at least 43 identical bits after the round bit.

| X                      | m  | $\sin x \approx$ |
|------------------------|----|------------------|
| 0x1.e009c53148be1p+991 | 64 | 1.0              |
| 0x1.cfe482285f8edp+860 | 63 | -1.0             |
| 0x1.6ac5b262ca1ffp+849 | 68 | 1.0              |
| 0x1.db41f3cb71d7bp+680 | 63 | 1.0              |
| 0x1.4c96c11134d36p+577 | 63 | -1.0             |
| 0x1.e7e44a78ac18cp+197 | 63 | -1.0             |
| 0x1.230280c47f5c1p+136 | 63 | 0.270            |
| 0x1.504cac51f1eafp+131 | 64 | -1.0             |
| 0x1.b951f1572eba5p+23  | 65 | -1.0             |

Largest binade: 1038 hard-to-round cases (exactly those found by BaCSeL in 2023).

# Hard-to-round cases of $\cos x$ for $x \ge 2^{10}$

We found 1,049,705 hard-to-round cases with  $\geq$  43 identical bits after the round bit.

| X                       | m  | $\cos x \approx$ |
|-------------------------|----|------------------|
| 0x1.5afb7107105d9p+1006 | 62 | 0.918            |
| 0x1.e009c53148be1p+992  | 62 | -1.0             |
| 0x1.b7fe89bf86037p+917  | 62 | -0.101           |
| 0x1.6ac5b262ca1ffp+852  | 62 | 1.0              |
| 0x1.6ac5b262ca1ffp+851  | 64 | 1.0              |
| 0x1.6ac5b262ca1ffp+850  | 66 | -1.0             |
| 0x1.1fa76750679fcp+285  | 62 | 0.225            |
| 0x1.504cac51f1eafp+132  | 62 | -1.0             |
| 0x1.b951f1572eba5p+24   | 63 | -1.0             |

## Hard-to-round cases of $\tan x$ for $x \ge 2^{10}$

Our SIMD program took from 3.0 hours to 6.5 hours on a grdix node (mean 4.4 hours, about 5 cycles per value). We found 1,045,244 hard-to-round cases with at least 43 identical bits after the round bit.

| X                      | m  | $tan x \approx$ |
|------------------------|----|-----------------|
| 0x1.20e3e80d2b617p+990 | 61 | -1.15           |
| 0x1.94bb90326441ap+953 | 61 | -0.32           |
| 0x1.52042b55571c6p+952 | 60 | -1.83           |
| 0x1.fe6e530194af6p+681 | 62 | 5.00            |
| 0x1.8b4c4b528e351p+578 | 60 | -1.59           |
| 0x1.57237795e9208p+324 | 61 | 0.68            |

#### Conclusion

- we completed a search among about 2<sup>62</sup> values for each function
- maybe degree 3 would have been enough?
- does Lefèvre's algorithm combined with our initialization yield a speedup?
- the hard-to-round cases will be available from the CORE-MATH git repository
- found no failure with the LLVM and CORE-MATH sin/cos/tan functions

The TMD is now fully solved for univariate binary64 functions!

### Menhirs are still useful!



Credit https://www.decideurs-magazine.com

## Lefèvre's algorithm

New results on the distance between a segment and Z2. Application to the exact rounding, Vincent Lefèvre, ARITH 2005.

Algorithm based on the three-gap theorem to find the smallest integer  $r \in [0, N-1]$  such that  $(b-ra) \mod 1 < d_0$ .

Complexity o(n) for an arithmetic progression of length n.

Degree-1 approximation instead of degree-3: requires larger q thus smaller length n of arithmetic progressions.

Not compatible with SIMD speedup?

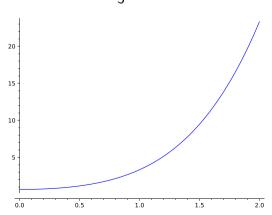
Preliminary experiments for  $\sin x$ : 31% faster in "good" binades (e = 996, n = 1474), 7.2 times slower for "median" binades (e = 920, n = 97), 84 times slower for "bad" binades (e = 793, n = 8).

Much more dependent of length of arithmetic progressions.

### The tangent function

$$\tan(x+h) = \tan x + h(1+\tan^2 x) + h^2 \tan x (1+\tan^2 x)$$

$$+ \frac{1}{3}h^3 (1+\tan^2 x)(1+3\tan^2 x) + \frac{1}{3}h^4 \tan \xi (1+\tan^2 \xi)(2+3\tan^2 \xi)$$



growth of the ratio (error term)/( $\tan x$ ) with respect to  $\tan x$