
A problem left unsolved by Jean-Michel

Paul Zimmermann, INRIA
(joint work with Tue Ly, Google)

RAIM
Lyon, November 6, 2025

A problem left unsolved by Jean-Michel 1/26

A small problem resists

Credit https://www.celticyourte.frA problem left unsolved by Jean-Michel 2/26

“Correctly Rounded Evaluation of a Function: Why, How, and at What Cost?”,
N. Brisebarre, G. Hanrot, J.-M. Muller, P. Zimmermann, ACM Computing Surveys,
2025:

[...] in binary64 arithmetic, the bad cases for the sine and cosine functions are
not known for input arguments larger than 211.

[...] the table maker’s dilemma can be considered as solved for the binary64
format for univariate functions with the possible exception of trigonometric
functions of large arguments

A problem left unsolved by Jean-Michel 3/26

Hard-to-round cases

sin(0x1.fe767739d0f6dp-2) = 0.0 111...101︸ ︷︷ ︸
53

1 111...111︸ ︷︷ ︸
65

0000101...

The known algorithms (Lefèvre, SLZ) for searching hard-to-round cases assume that
f (x) and f (nextabove(x)) are close.

For the largest binade [21023, 21024), this is not the case. For x = 21023,

sin(x) ≈ 0.563127779850884

sin(nextabove(x)) ≈ −0.976171771886648

A problem left unsolved by Jean-Michel 4/26

State of the art

Worst Cases of a Periodic Function For Large Arguments. Guillaume Hanrot, Vincent
Lefèvre, Damien Stehlé, Paul Zimmermann, ARITH’18, 2007.
Idea: in a given binade, where u := ulp(x), consider arithmetic progressions
x , x + qu, x + 2qu, ..., where qu mod 2π is small.

A problem left unsolved by Jean-Michel 5/26

Example: for the largest binade [21023, 21024), u = 2971, we can take
q = 15106909301, where τ := qu mod 2π ≈ 4.41 · 10−13. For x = 21023,

sin(x) ≈ 0.563127779850884

sin(x + qu) ≈ 0.563127779850519

We can then use classical algorithms on the q arithmetic progressions of size about
300, 000. This algorithm was implemented in the BaCSeL software tool. However, the
BaCSeL code has a large overhead.

In 2023, a full search was done with BaCSeL for sin x in the largest binade
[21023, 21024). It took a total of 102 days on one node (Intel Xeon Gold 6130 at
2.1Ghz). A full search would require about 300 years on one such node.

A problem left unsolved by Jean-Michel 6/26

The brute force approach

Credit https://www.letournepage.com/A problem left unsolved by Jean-Michel 7/26

Our menhir

The grdix cluster (cf Antoine Jégo’s talk)

16 nodes

each node is an AMD EPYC 9754
running at 2.7Ghz with 256 cores
(512 with hyper-threading)

if we can check one value in one cycle,
we can process a binade (252 values)
in less than one hour on one node

A problem left unsolved by Jean-Michel 8/26

Our proposed brute-force algorithm

Use a degree-3 Taylor approximation with remainder (τ = qu mod 2π):

sin(x + iτ) = sin x + iτ cos x − 1
2(iτ)2 sin x − 1

6(iτ)3 cos x + 1
24(iτ)4 sin ξ

Can we make the initialization step fast?

Can we make the search step fast?

A problem left unsolved by Jean-Michel 9/26

New algorithm in image
Let xi = 2e−1 + iu, where u = 2e−53.
Process the arithmetic progression x0, x0 + qu, x0 + 2qu, ...

Then x1, x1 + qu, x1 + 2qu, ...

Finally xq−1, xq−1 + qu, xq−1 + 2qu, ...

Credit https://histoire-geo-ensemble.overblog.comA problem left unsolved by Jean-Michel 10/26

Taylor approximation (1/2)

In the arithmetic progression x , x + qu, x + 2qu, ..., we have the Taylor expansion,
where τ = qu mod 2π:

sin(x + iτ) = sin x︸︷︷︸
a

+ iτ cos x︸ ︷︷ ︸
ib

− 1
2(iτ)2 sin x︸ ︷︷ ︸

i2c

− 1
6(iτ)3 cos x︸ ︷︷ ︸

i3d

+ 1
24(iτ)4 sin ξ︸ ︷︷ ︸

i4e

| sin(x + iτ)− (a + ib + i2c + i3d)| ≤ i4e

For the largest binade: q = 15106909301, τ ≈ 4.41 · 10−13. For x = 21023, we get
a ≈ 2−1, |b| ≈ 2−42, c ≈ 2−84, |d | ≈ 2−126, e ≈ 2−170.

A problem left unsolved by Jean-Michel 11/26

Graphical view

A problem left unsolved by Jean-Michel 12/26

Taylor approximation (2/2)

| sin(x + iτ)− (a + ib + i2c + i3d)| ≤ i4e

To search hard-to-round cases with at least m identical bits after the round bit:

[initialization] evaluate efficiently a, b, c, d , e
[search] for each i , check whether a + ib + i2c + i3d is at distance less than
2−mulp + i4e from a 54-bit floating-point number

A problem left unsolved by Jean-Michel 13/26

Initialization

Approximate a = sin x , b = τ cos x , c = τ2

2 sin x , d = τ3

6 cos x , bound |e| = | τ4

24 sin ξ|.
τ = qu mod 2π is fixed for a given binade: we have to compute it only once.
However, we have to compute q different values of sin x , cos x , one for each arithmetic
progression: x = ju, with 252 ≤ j < 252 + q.
Define (sj , cj) = (sin(ju), cos(ju)).
Compute (s1, c1) = (sin u, cos u) (once for each binade).
Use then “binary exponentiation” to obtain (s2n, c2n) = (2sncn, c2

n − s2
n) (doubling),

and (s2n+1, c2n+1) = (s1s2n + c1c2n, c1c2n − s1s2n) (multiply).
Thus each pair (sj , cj) can be obtained in 52 “doublings” and on average 26
“multiplies”.
Computations in fixed-point arithmetic, with 320 bits (5 words of 64 bits).

A problem left unsolved by Jean-Michel 14/26

Search

We have now 320-bit approximations of a, b, c, d , e and we are looking for i ,
0 ≤ i ≤ n = ⌊252/q⌋, such that:

a + ib + i2c + i3d

is at distance less than 2−mulp + i4e from a 54-bit number.
• define f = 2−mulp + n4e
• assume there is no binade change for a + ib + i2c + i3d
If a, b, c, d , f are scaled appropriately, it suffices to look at the “fractional” bits. Let
a′ = frac(2ka), b′ = frac(2kb), ...

|a′ + ib′ + i2c ′ + i3d ′| mod 1 ≤ f ′ (centered mod)

A problem left unsolved by Jean-Michel 15/26

Using 64-bit integers is enough

The low-order bits of a′, b′, c ′, d ′ can be neglected.
Approximate a′ = A · 2−64 with A a 64-bit integer, same for b′, c ′, d ′, f ′.
The main equation translates to:

|A + iB + i2C + i3D| mod 264 ≤ G (centered mod)

with G taking into account the error bound f ′ and the rounding error in A, B, C , D.
This translates to (cf Lefèvre’s PhD thesis) with A replaced by A + G :

A + iB + i2C + i3D mod 264 ≤ 2G .

A problem left unsolved by Jean-Michel 16/26

The table of differences method

How to efficiently evaluate A + iB + i2C + i3D mod 264 for 0 ≤ i < n?
Initialize α, β, γ, δ = A, B + C + D, 2C + 6D, 6D mod 264

for i from 0 to n do
if α ≤ 2G then check x + iq
α← α + β mod 264

β ← β + γ mod 264

γ ← γ + δ mod 264

Using int64_t in the C language, we just write A += B, which performs the reduction
modulo 264 (wrap-around trick).

A problem left unsolved by Jean-Michel 17/26

Batch computation

Assume we have computed (sj , cj) = (sin(ju), cos(ju)).

We have (sj+1, cj+1) = (s1cj + c1sj , c1cj − s1sj).

For a batch of 128 consecutive values of j , we reduce the initialization cost from
128 · 78 doublings/multiplies to 78 + 127, i.e., a speedup of about 50.

A problem left unsolved by Jean-Michel 18/26

Using SIMD instructions

We can search in parallel in several progressions with parameters Ak , Bk , Ck , Dk using
vector instructions.

For example, with AVX512, we can deal with 8 progressions in parallel.

We only need:
• an instruction to add two vectors of 8 words of 64 bits, each element being added
modulo 264 (no carry between two elements)
• an instruction to check if a vector contains a element ≤ 2G

A problem left unsolved by Jean-Michel 19/26

Hard-to-round cases of sin x for x ≥ 210

Our SIMD program took from 2.1 hours to 2.3 hours per binade (instead of 2.6 days
with BaCSeL) on a grdix node (about 2.4 cycles per value). We found 1,048,756
hard-to-round cases with at least 43 identical bits after the round bit.

x m sin x ≈
0x1.e009c53148be1p+991 64 1.0
0x1.cfe482285f8edp+860 63 -1.0
0x1.6ac5b262ca1ffp+849 68 1.0
0x1.db41f3cb71d7bp+680 63 1.0
0x1.4c96c11134d36p+577 63 -1.0
0x1.e7e44a78ac18cp+197 63 -1.0
0x1.230280c47f5c1p+136 63 0.270
0x1.504cac51f1eafp+131 64 -1.0
0x1.b951f1572eba5p+23 65 -1.0

Largest binade: 1038 hard-to-round cases (exactly those found by BaCSeL in 2023).
A problem left unsolved by Jean-Michel 20/26

Hard-to-round cases of cos x for x ≥ 210

We found 1,049,705 hard-to-round cases with ≥ 43 identical bits after the round bit.

x m cos x ≈
0x1.5afb7107105d9p+1006 62 0.918
0x1.e009c53148be1p+992 62 -1.0
0x1.b7fe89bf86037p+917 62 -0.101
0x1.6ac5b262ca1ffp+852 62 1.0
0x1.6ac5b262ca1ffp+851 64 1.0
0x1.6ac5b262ca1ffp+850 66 -1.0
0x1.1fa76750679fcp+285 62 0.225
0x1.504cac51f1eafp+132 62 -1.0
0x1.b951f1572eba5p+24 63 -1.0

A problem left unsolved by Jean-Michel 21/26

Hard-to-round cases of tan x for x ≥ 210

Our SIMD program took from 3.0 hours to 6.5 hours on a grdix node (mean 4.4 hours,
about 5 cycles per value). We found 1,045,244 hard-to-round cases with at least 43
identical bits after the round bit.

x m tan x ≈
0x1.20e3e80d2b617p+990 61 -1.15
0x1.94bb90326441ap+953 61 -0.32
0x1.52042b55571c6p+952 60 -1.83
0x1.fe6e530194af6p+681 62 5.00
0x1.8b4c4b528e351p+578 60 -1.59
0x1.57237795e9208p+324 61 0.68

A problem left unsolved by Jean-Michel 22/26

Conclusion

• we completed a search among about 262 values for each function
• maybe degree 3 would have been enough?
• does Lefèvre’s algorithm combined with our initialization yield a speedup?
• the hard-to-round cases will be available from the CORE-MATH git repository
• found no failure with the LLVM and CORE-MATH sin/cos/tan functions

The TMD is now fully solved for univariate binary64 functions!

A problem left unsolved by Jean-Michel 23/26

Menhirs are still useful!

Credit https://www.decideurs-magazine.com
A problem left unsolved by Jean-Michel 24/26

Lefèvre’s algorithm

New results on the distance between a segment and Z2. Application to the exact
rounding, Vincent Lefèvre, ARITH 2005.
Algorithm based on the three-gap theorem to find the smallest integer r ∈ [0, N − 1]
such that (b − ra) mod 1 < d0.
Complexity o(n) for an arithmetic progression of length n.
Degree-1 approximation instead of degree-3: requires larger q thus smaller length n of
arithmetic progressions.
Not compatible with SIMD speedup?
Preliminary experiments for sin x : 31% faster in “good” binades (e = 996, n = 1474),
7.2 times slower for “median” binades (e = 920, n = 97), 84 times slower for “bad”
binades (e = 793, n = 8).
Much more dependent of length of arithmetic progressions.

A problem left unsolved by Jean-Michel 25/26

The tangent function

tan(x + h) = tan x + h(1 + tan2 x) + h2 tan x(1 + tan2 x)

+ 1
3h3(1 + tan2 x)(1 + 3 tan2 x) + 1

3h4 tan ξ(1 + tan2 ξ)(2 + 3 tan2 ξ)

0.0 0.5 1.0 1.5 2.0

5

10

15

20

growth of the ratio
(error term)/(tan x)
with respect to tan x

A problem left unsolved by Jean-Michel 26/26

