A problem left unsolved by Jean-Michel

Paul Zimmermann, INRIA
(joint work with Tue Ly, Google)

RAIM
Lyon, November 6, 2025

A problem left unsolved by Jean-Michel 1/26

A small problem resists

i

A problem left unsolved by Jean-Michel Credit https://www.celticyvourte.fr 2/26

“Correctly Rounded Evaluation of a Function: Why, How, and at What Cost?",

N. Brisebarre, G. Hanrot, J.-M. Muller, P. Zimmermann, ACM Computing Surveys,
2025:

[-..] in binary64 arithmetic, the bad cases for the sine and cosine functions are
not known for input arguments larger than 2!,

[...] the table maker's dilemma can be considered as solved for the binary64
format for univariate functions with the possible exception of trigonometric
functions of large arguments

A problem left unsolved by Jean-Michel 3/26

Hard-to-round cases

sin(0x1.£fe767739d0f6dp-2) = 0.0111...1011111...111 0000101...
_— T
53 65

The known algorithms (Lefévre, SLZ) for searching hard-to-round cases assume that
f(x) and f(nextabove(x)) are close.

210237 21024) X = 21023v

For the largest binade [, this is not the case. For
sin(x) ~ 0.563127779850884

sin(nextabove(x)) ~ —0.976171771886648

A problem left unsolved by Jean-Michel 4/26

State of the art

Worst Cases of a Periodic Function For Large Arguments. Guillaume Hanrot, Vincent
Lefévre, Damien Stehlé, Paul Zimmermann, ARITH'18, 2007.

Idea: in a given binade, where u := ulp(x), consider arithmetic progressions
X, X + qu,x + 2qu, ..., where qu mod 27 is small.

A problem left unsolved by Jean-Michel 5/26

Example: for the largest binade [21023,21024) " ; = 2971 'we can take

g = 15106909301, where 7 := qu mod 27 =~ 4.41 - 10713, For x = 21023

sin(x) ~ 0.563127779850884

sin(x + qu) ~ 0.563127779850519

We can then use classical algorithms on the g arithmetic progressions of size about
300, 000. This algorithm was implemented in the BaCSeL software tool. However, the
BaCSelL code has a large overhead.

In 2023, a full search was done with BaCSeL for sin x in the largest binade
[21023 21024) |t took a total of 102 days on one node (Intel Xeon Gold 6130 at
2.1Ghz). A full search would require about 300 years on one such node.

A problem left unsolved by Jean-Michel 6/26

The brute force approach

Credit https://www.letournepage.com/

A problem left unsolved by Jean-Michel 7/26

Our menhir

The grdix cluster (cf Antoine Jégo's talk)
16 nodes

each node is an AMD EPYC 9754
running at 2.7Ghz with 256 cores
(512 with hyper-threading)

if we can check one value in one cycle,
we can process a binade (252 values)
in less than one hour on one node

A problem left unsolved by Jean-Michel 8/26

Our proposed brute-force algorithm

Use a degree-3 Taylor approximation with remainder (7 = qu mod 27):

1 1 1
sin(x + iT) = sin x 4 iT cos x — §(i7')2 sinx — 6<iT)3 cos x + ﬂ(iT)‘l sin&

Can we make the initialization step fast?

Can we make the search step fast?

A problem left unsolved by Jean-Michel 9/26

New algorithm in image

Let x; = 2¢7 1 + ju, where u = 267533,

Process the arithmetic progression xg, xg + qu, xg + 2qu, ...
Then x1,x1 + qu, x1 + 2qu, ...

Finally xq—1,Xxg—1 + qu, xg—1 + 2qu, ...

Credit https://histoire-geo-ensemble.overblog.com

A problem left unsolved by Jean-Michel 10/26

Taylor approximation (1/2)

In the arithmetic progression x, x + qu, x + 2qu, ..., we have the Taylor expansion,
where 7 = qu mod 27:

1 1 1
sin(x + iT7) = sinx + jT cos x — 5(/7’)2 sinx — 6(iT)3 cos x + ﬂ(i7)4 sin&
a ib

i2c i3d ‘e
|sin(x + iT) — (a+ ib+ i’c + i*d)| < i*e

For the largest binade: g = 15106909301, 7 ~ 4.41 - 10713, For x = 21923 we get
am 271 |b| =272, c 278 |d| = 27120 e n 27170

A problem left unsolved by Jean-Michel

11/26

Graphical view

]
' Ms =2)
A _
i\J\F(&) ’1

I e e

A problem left unsolved by Jean-Michel 12/26

Taylor approximation (2/2)

|sin(x + iT) — (a4 ib+ i*c + i*d)| < i*e
To search hard-to-round cases with at least m identical bits after the round bit:

@ [initialization] evaluate efficiently a, b, c,d, e

© [search] for each i, check whether a + ib + i>c + i3d is at distance less than
2~Mulp + i*e from a 54-bit floating-point number

A problem left unsolved by Jean-Michel 13/26

Initialization

Approximate a = sinx, b = Tcosx, ¢ = & “sinx, d = = cos x, bound le| = |24 sin&|.
7 = qu mod 27 is fixed for a given binade: we have to compute it only once.

However, we have to compute g different values of sin x, cos x, one for each arithmetic
progression: x = ju, with 252 < j < 252 1 g.

Define (s;, ¢j) = (sin(ju), cos(ju)).

Compute (s1, ¢1) = (sin u, cos u) (once for each binade).

Use then “binary exponentiation” to obtain (s, c2n) = (25nCn, c2 — s2) (doubling),
and (S2nt1, C2nt1) = (S1520 + C1C2n, C1C2n — S1524) (Multiply).

Thus each pair (s;, ¢j) can be obtained in 52 “doublings” and on average 26
“multiplies”.

Computations in fixed-point arithmetic, with 320 bits (5 words of 64 bits).

A problem left unsolved by Jean-Michel 14/26

Search

We have now 320-bit approximations of a, b, ¢, d, e and we are looking for /,
0<i<n=]2%/q|, such that:

a+ib+ilc+idd

is at distance less than 2~ ™ulp + i*e from a 54-bit number.

e define f = 2~ulp + n*e

e assume there is no binade change for a + ib + i’c + i3d

If a,b,c,d,f are scaled appropriately, it suffices to look at the “fractional” bits. Let
a’ = frac(2a), b’ = frac(2%b), ...

&' +ib' + i’ + i¥d' | mod 1 < (centered mod)

A problem left unsolved by Jean-Michel 15/26

Using 64-bit integers is enough

The low-order bits of a’, b, ¢/, d’ can be neglected.
Approximate a’ = A - 27% with A a 64-bit integer, same for b, c’, d’, f'.

The main equation translates to:
|A+iB+i*C+i*D| mod 2% < G (centered mod)

with G taking into account the error bound " and the rounding error in A, B, C, D.
This translates to (cf Leféevre's PhD thesis) with A replaced by A+ G:

A+ B+ i?C + i3D mod 2% < 2G.

A problem left unsolved by Jean-Michel 16/26

The table of differences method

How to efficiently evaluate A+ iB + i2C + i*D mod 2% for 0 < i < n?
Initialize o, 3,v,0 = A,B+ C + D,2C + 6D, 6D mod 24
for i from 0 to n do

if @ < 2G then check x + ig

a < a+ [mod 204

B + 3+~ mod 254

v < v+ & mod 264

Using int64_t in the C language, we just write A += B, which performs the reduction
modulo 2% (wrap-around trick).

A problem left unsolved by Jean-Michel 17/26

Batch computation

Assume we have computed (s;, ¢;) = (sin(ju), cos(ju)).
We have (sj11, ¢j4+1) = (s1¢j + c1Sj, €16 — 515)).

For a batch of 128 consecutive values of j, we reduce the initialization cost from
128 - 78 doublings/multiplies to 78 + 127, i.e., a speedup of about 50.

A problem left unsolved by Jean-Michel 18/26

Using SIMD instructions

We can search in parallel in several progressions with parameters Ay, By, C, Dy using
vector instructions.

For example, with AVX512, we can deal with 8 progressions in parallel.

We only need:

e an instruction to add two vectors of 8 words of 64 bits, each element being added
modulo 2%* (no carry between two elements)

e an instruction to check if a vector contains a element < 2G

A problem left unsolved by Jean-Michel 19/26

Hard-to-round cases of sin x for x > 219

Our SIMD program took from 2.1 hours to 2.3 hours per binade (instead of 2.6 days
with BaCSel) on a grdix node (about 2.4 cycles per value). We found 1,048,756
hard-to-round cases with at least 43 identical bits after the round bit.

Largest binade: 1038 hard-to-round cases (exactly those found by BaCSeL in 2023).

A problem left unsolved by Jean-Michel

X m sinx &
0x1.e009c53148belp+991 64 1.0
0x1.cfe482285f8edp+860 63 -1.0
0x1.6acbb262calffp+849 68 1.0
0x1.db41f3cb71d7bp+680 63 1.0
0x1.4c96c11134d36p+577 63 -1.0
0x1.e7e44a78ac18cp+197 63 -1.0
0x1.230280c47f5c1p+136 63 0.270
0x1.504cacblfleafp+131 64 -1.0
0x1.b951f1572ebabp+23 65 -1.0

20/26

Hard-to-round cases of cos x for x > 219

We found 1,049,705 hard-to-round cases with > 43 identical bits after the round bit.

A problem left unsolved by Jean-Michel

X m Ccosx &
0x1.5afb7107105d9p+1006 62 0.918
0x1.e009c53148belp+992 62 -1.0
0x1.b7£e89bf86037p+917 62 -0.101
0x1.6acbb262calffp+852 62 1.0
0x1.6acbb262calffp+851 64 1.0
0x1.6acbb262calffp+850 66 -1.0
0x1.1£fa76750679fcp+285 62 0.225
0x1.504cacb1fleafp+132 62 -1.0
0x1.b951f1572ebabp+24 63 -1.0

21/26

Hard-to-round cases of tan x for x > 210

Our SIMD program took from 3.0 hours to 6.5 hours on a grdix node (mean 4.4 hours,
about 5 cycles per value). We found 1,045,244 hard-to-round cases with at least 43
identical bits after the round bit.

X m tanx =
0x1.20e3e80d2b617p+990 61 -1.15
0x1.94bb90326441ap+953 61 -0.32
0x1.52042b55571c6p+952 60 -1.83
0x1.fe6e530194af6p+681 62 5.00
0x1.8b4c4b528e351p+578 60 -1.59
0x1.57237795e9208p+324 61 0.68

A problem left unsolved by Jean-Michel

22/26

Conclusion

262 yalues for each function

e we completed a search among about
e maybe degree 3 would have been enough?

e does Lefevre's algorithm combined with our initialization yield a speedup?

e the hard-to-round cases will be available from the CORE-MATH git repository

e found no failure with the LLVM and CORE-MATH sin/cos/tan functions

The TMD is now fully solved for univariate binary64 functions!

A problem left unsolved by Jean-Michel 23/26

Menhirs are still useful!

ASTERIX, QU EST-CE QUi SE PASSE ZZ TOuT CE
QUE JAIME FAIRE DANS LA VIE EST DEVENU
ENNUYEUX /.. 1L MANQUERAIT PLUS QUE
JAPPRENNE QUE LES MENKIRS (A SERT A RIEN...

Credit https://www.decideurs-magazine.com

A problem left unsolved by Jean-Michel

24/26

Lefevre's algorithm

New results on the distance between a segment and Z2. Application to the exact
rounding, Vincent Lefevre, ARITH 2005.

Algorithm based on the three-gap theorem to find the smallest integer r € [0, N — 1]
such that (b — ra) mod 1 < dp.

Complexity o(n) for an arithmetic progression of length n.

Degree-1 approximation instead of degree-3: requires larger g thus smaller length n of
arithmetic progressions.

Not compatible with SIMD speedup?

Preliminary experiments for sin x: 31% faster in “good” binades (e = 996, n = 1474),
7.2 times slower for “median” binades (e = 920, n = 97), 84 times slower for “bad”
binades (e = 793, n = 8).

Much more dependent of length of arithmetic progressions.

A problem left unsolved by Jean-Michel 25/26

The tangent function

tan(x +h) = tanx + h(1+tan®x) + h?tan x(1 + tan® x)
1 1
+ §h3(1 +tan? x)(1 + 3tan? x) + §h4 tan&(1 + tan2€)(2 + 3tan2¢)

20 4
154

104

growth of the ratio
(error term)/(tan x)
5] with respect to tan x

T T T T T
0.0 0.5 1.0 1.5 2.0

A problem left unsolved by Jean-Michel 26/26

