A GMP-based implementation of Schönhage-Strassen’s large integer multiplication algorithm

Paul Zimmermann

INRIA Lorraine/LORIA, Nancy, France

(joint work with Torbjörn Granlund, Alexander Kruppa and Pierrick Gaudry)
Question: Given two N-bit integers, how fast can we multiply them?

- complex floating-point FFT: $O(n \log^* n)$ where
 \[
 \log^* n = \log(n) \log \log(n) \log \log \log(n) \ldots
 \]
- FFT mod $2^N + 1$ (called SSA here): $O(n \log(n) \log \log(n))$

<table>
<thead>
<tr>
<th></th>
<th>transform length</th>
<th>coeff size</th>
<th>transform cost</th>
<th>pointwise cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex FFT</td>
<td>$\frac{n}{\log n}$</td>
<td>$\log n$</td>
<td>$n M(\log n)$</td>
<td>$\frac{n}{\log n} M(\log n)$</td>
</tr>
<tr>
<td>SSA</td>
<td>\sqrt{n}</td>
<td>\sqrt{n}</td>
<td>$\sqrt{n} \log(n) O(\sqrt{n})$</td>
<td>$\sqrt{n} M(\sqrt{n})$</td>
</tr>
</tbody>
</table>
Complex FFT

Efficient implementations in Prime95 (G. Woltman, GIMPS), Glucas (G. Ballester Valor).

Used to find/check the 44th (known) Mersenne prime:

\[2^{32,582,657} - 1 \quad (9,808,358 \text{ digits}) \]

The Electronic Frontier Foundation (EFF) offers $100,000 to the first individual or group who discovers a prime number with at least 10,000,000 decimal digits.

If coefficients are represented in signed-digit notations:

\[A = \sum_{i=0}^{n-1} a_i \beta^i, \]

where \(-\beta/2 < a_i \leq \beta/2\), then a product coefficient:

\[c_k = \sum_{i+j=k} a_i b_j \]

exceed \(\alpha n \beta^2\) with small probability.
Motivation

SSA is implemented in GNU MP since version 3.1 (released in August 2000).

In July 2005, Allan Steel published a web page
http://magma.maths.usyd.edu.au/users/allan/intmult.html:

 Magma V2.12-1 is up to 2.3 times faster than GMP 4.1.4 for large integer multiplication

Visits of Torbjörn Granlund in March-April, November-December 2006.
Schönhage-Strassen’s Algorithm

\[\mathbb{Z} \]
\[\downarrow \]
\[R_N := \mathbb{Z}/(2^N + 1)\mathbb{Z} \]
\[\downarrow \]
\[\mathbb{Z}[x] \mod (x^K + 1) \]
\[\downarrow \]
\[R_n[x] \mod (x^K + 1) \]
\[\downarrow \]
\[R_n \]
From R_N to $\mathbb{Z}[x] \mod (x^K + 1)$

Write $N = K \cdot \ell$ where $K = 2^k$ (transform length).

Interpret $a \in [0, 2^N]$ as $A(2^\ell)$ where:

$$A(x) = \sum_{i=0}^{K-1} a_i x^i.$$

Idem for $b \in [0, 2^N]$:

$$B(x) = \sum_{i=0}^{K-1} b_i x^i.$$

$a = A(2^\ell)$ and $b = B(2^\ell)$ thus $ab \equiv C(2^\ell) \mod (2^N + 1)$ where $C(x) = A(x)B(x) \mod (x^N + 1)$.

From \(\mathbb{Z}[x] \mod (x^K + 1) \) to \(R_n[x] \mod (x^K + 1) \)

\[
C(x) := A(x)B(x) \mod (x^K + 1)
\]

\[
= (c_0 - c_K) + (c_1 - c_{K+1})x + \cdots + (c_{K-2} - c_{2K-2})x^{K-2} + c_{K-1}x^{K-1}
\]

where:

\[
c_m = \sum_{i+j=m} a_ib_j
\]

The coefficients of \(C(x) \) take at most \(2^k \cdot 2^{2^\ell} \) values: it suffices to compute them mod \(2^n + 1 \) with:

\[
n \geq 2\ell + k.
\]
Arithmetic modulo $2^n + 1$

A residue modulo $2^n + 1$ is represented by:

$$a = (a_m, a_{m-1}, \ldots, a_0),$$

with $0 \leq a_i < 2^w$ for $0 \leq i < m$, and $0 \leq a_m \leq 1$ ($w = 32$ or $w = 64$).

GMP syntax:

```c
    c = a[m] + b[m] + mpn_add_n (r, a, b, m);
    r[m] = (r[0] < c);
    MPN_DECR_U (r, m + 1, c - r[m]);

    c = a[m] - b[m] - mpn_sub_n (r, a, b, m);
    r[m] = (c == 1);
    MPN_INCR_U (r, m + 1, r[m] - c);
```
The basic operation is the *butterfly*:

\[
\begin{cases}
 a \leftarrow a + \omega b \\
 b \leftarrow a - \omega b
\end{cases}
\quad \text{or} \quad
\begin{cases}
 a \leftarrow a + b \\
 b \leftarrow (a - b)\omega
\end{cases}
\]

- the Belgian transform
- higher radix transform
- Bailey’s 4-step algorithm
The Belgian Transform

Main idea: when we perform a butterfly, we reuse at least one of the two outputs in the next butterfly.

 Guarantees less than 50% cache misses.
void fft(int n_stage) {
 int size = 1<<(n_stage-1);
 for (int i=0; i<size/2; i++) { /* initial 2 stage 0 butterflies */
 int stage0_bf = bitrev(i, n_stage-2);
 Radix2Butterfly(&mem[stage0_bf], &mem[stage0_bf+size]);
 stage0_bf += (size/2);
 Radix2Butterfly(&mem[stage0_bf], &mem[stage0_bf+size]);
 if ((stage0_bf-size/2) >= 0) {
 unsigned int branch_ref = 1;
 int offset = 0, upper = stage0_bf;
 for (;branch_reg != 0;){
 /* upper branches */
 for (;((size>1)&&(upper-size/2)>=0));{
 size /= 2;
 Radix2Butterfly(&mem[offset+upper-size],
 &mem[offset+upper]);
 upper -= size;
 branch_reg = (branch_reg << 1)|1;
 }
 for (;((branch_reg&1)==0);){ /* trace back */
 branch_reg = branch_reg >> 1;
 upper += size;
 size *= 2;
 offset -= (size);
 }
 }
 branch_reg ^= 1; /* lower branches */
 if (branch_reg != 0){
 offset += size*2;
 Radix2Butterfly(&mem[offset+upper],
 &mem[offset+upper+size]);
 }
 }
 }
}
The Belgian Transform (recursive version)

BelgianFFT(A, k)
 K = 2^{k-1}
 for i := 0 to K-1
 TreeBfy(A, BitReverse(i, k-1), 1+ord_2(i+1), K)

TreeBfy(A, index, depth, stride)
 Bfy(A[index], A[index+stride])
 if depth > 1
 TreeBfy(A, index-stride/2, depth-1, stride/2)
 TreeBfy(A, index+stride/2, depth-1, stride/2)
The FFT circuit of length 8
Radix4FFT(A, index, k, omega)
 if k == 0
 return;
 if k == 1
 Bfy(A[index], A[index+1], 1);
 return;
 K1 = 2^{k-1}
 K2 = 2^{k-2}
 for j = 0 to K2-1 do
 Bfy(A, index+j, index+j+K1, omega^j);
 Bfy(A, index+j+K2, index+j+K1+K2, omega^(j+K2));
 Bfy(A, index+j, index+j+K2, omega^(2*j));
 Bfy(A, index+j+K1, index+j+K1+K2, omega^(2*j));
 end for;
 Radix4FFTrec(A, index, k-2, omega^4);
 Radix4FFTrec(A, index+K2, k-2, omega^4);
 Radix4FFTrec(A, index+K1, k-2, omega^4);
 Radix4FFTrec(A, index+K1+K2, k-2, omega^4);
Higher Radix Transform

Classical FFT: radix 2, 2 inputs/outputs, 1 butterfly:

\[\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array} \]

Radix 4: 4 inputs/outputs, 2 \times 2 butterflies.

\[\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array} \]

Radix \(2^t\): \(2^t\) inputs/outputs, \(t \times 2^{t-1}\) butterflies.
Bailey’s 4-step Algorithm

Let $K = 2^k$ be the FFT length, where $k = k_1 + k_2$:

1. Perform 2^{k_2} transforms of length 2^{k_1};
2. Multiply the data by weights;
3. Perform 2^{k_1} transforms of length 2^{k_2}.

<table>
<thead>
<tr>
<th></th>
<th>a_0</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_4</td>
<td>a_5</td>
<td>a_6</td>
<td>a_7</td>
<td></td>
</tr>
<tr>
<td>a_8</td>
<td>a_9</td>
<td>a_{10}</td>
<td>a_{11}</td>
<td></td>
</tr>
<tr>
<td>a_{12}</td>
<td>a_{13}</td>
<td>a_{14}</td>
<td>a_{15}</td>
<td></td>
</tr>
</tbody>
</table>
Bailey’s 4-step Algorithm

Bailey(A, k, k1, k2, omega)
 K1 = 2^k1;
 K2 = 2^k2;

 // Phase 1:
 for i = 0 to K2-1 do
 for j := 0 to K1-1 do
 twistedFFT(B, i, k1, k, omega);
 for j = 0 to K1-1 do
 A[i+K2*j] = B[j];

 // No Phase 2!

 // Phase 3:
 for j := 0 to K1-1 do
 for i = 0 to K2-1 do
 B[i] = A[i+K2*j]
 FFT(B, k2, omega^K1);
 for i = 0 to K2-1 do
 A[i+K2*j] = B[i];
Fermat and Mersenne Transforms

Fermat Transform: modulo $2^N + 1$ (negacyclic convolution).

- weighted transform: slightly more expensive.

Mersenne Transform: modulo $2^N - 1$ (cyclic convolution).

- does not work recursively.

- can use twice the FFT length because no 2^K-th root of unity is needed.
The $\sqrt{2}$ Trick

Credited to Schönhage by Bernstein.

A product modulo $2^N \pm 1$ reduces to $K = 2^k$ products modulo $2^{N'} + 1$.

$\omega = 2^{2N'/K}$ is the primitive Kth root of unity.

$\theta = 2^{N'/K}$ is the weight signal (Discrete Weighted Transform).

Fermat transform: K must divide N'.

Mersenne transform: K must divide $2N'$.

$$
\left(2^{3N'/4} - 2^{N'/4}\right)^2 \equiv 2 \pmod{2^{N'} + 1}.
$$

Fermat transform: K must divide $2N'$.

Mersenne transform: K must divide $4N'$.

\implies smaller pointwise products.
Problem: multiply two m-bit numbers.

Original SSA: multiply modulo $2^N + 1$ for $N \geq 2m$ (GMP 4.1.4).

GMP 4.2.1: $2^{2N} + 1$ and $2^{3N} + 1$ for $5N \geq 2m$, and reconstruct by CRT.

Generalization: $2^{aN} + 1$ and $2^{bN} - 1$.

Lemma. Let a, b be two positive integers. Then at least one of $\gcd(2^a + 1, 2^b - 1)$ and $\gcd(2^a - 1, 2^b + 1)$ is 1.

Example: $\gcd(2^{17} + 1, 2^{10} - 1) = 3$, $\gcd(2^{17} - 1, 2^{10} = 1) = 1$.

Proof: study the length mod 3 of the subtractive-Euclidean sequence of (a, b).

Current code uses $1 \leq a \leq 7$, and $b = 1$.
Improved Tuning mod $2^N + 1$

GMP 4.2.1:

```c
#define MUL_FFT_TABLE { 528, 1184, 2880, 5376, 11264, 36864, 114688, 327680, 1310720, 3145728, 12582912, 0 }
```
Improved Tuning mod $2^N + 1$
Improved Tuning mod $2^N + 1$
Improved Tuning mod $2^N + 1$

#define MUL_FFT_TABLE2 {{1, 4 /*66*/}, {401, 5 /*96*/},
{417, 4 /*98*/}, {433, 5 /*96*/}, {865, 6 /*96*/},
{897, 5 /*98*/}, {929, 6 /*96*/}, {2113, 7 /*97*/},
{2177, 6 /*98*/}, {2241, 7 /*97*/}, {2305, 6 /*98*/},
{2369, 7 /*97*/}, {3713, 8 /*93*/}, ...
Current Timings up to 2^{30} bits, 2.4Ghz Opteron
Relative Timings GMP 4.1.4 vs Magma V2.13-6
Relative Timings GMP 4.2.1 vs Magma V2.13-6
Relative Timings new GMP code vs Magma V2.13-6
Relative Timings Magma V2.13-6 vs new GMP code
Conclusion

- every 5% gain is worthwhile
Conclusion

- every 5% gain is worthwhile
- surely not the end of the story . . .
Conclusion

- every 5% gain is worthwhile
- surely not the end of the story . . .
- give challenges to your colleagues!