
A learnable representation for syntax using
residuated lattices

Alexander Clark

Department of Computer Science
Royal Holloway, University of London

alexc@cs.rhul.ac.uk

Abstract. We propose a representation for natural language syntax
based on the theory of residuated lattices: in particular on the Galois lat-
tice between contexts and substrings, which we call the syntactic concept
lattice. The natural representation derived from this is a richly structured
context sensitive formalism that can be learned using a generalisation of
distributional learning. In this paper we define the basic algebraic prop-
erties of the syntactic concept lattice, together with a representation de-
rived from this lattice and discuss the generative power of the formalism.
We establish some basic results which show that these representations,
because they are defined language theoretically, can be inferred from in-
formation about the set of grammatical strings of the language. We also
discuss the relation to other grammatical formalisms notably categorial
grammar and context free grammars. We claim that this lattice based
formalism is plausibly both learnable from evidence about the gram-
matical strings of a language and may be powerful enough to represent
natural languages, and thus presents a potential solution to the central
problem of theoretical linguistics.

1 Introduction

Given arbitrary amounts of information about a language, how can we construct
a representation for that language? In formal grammar, we define a class of rep-
resentations for languages, and a function from these representations into the
set of languages. Thus we have the class of Context Free Grammars (CFGs),
and for each CFG, G, we have the language L(G). Given a grammar, there is
an efficient procedure for determining whether a string w ∈ L(G). However, the
inverse problem is hard: given information about the strings that are in some
language L, there are no good procedures for finding a context free grammar G
such that L = L(G). Deciding what the non-terminals of the grammar should
be is hard for linguists to do; it requires tenuous lines of argument from un-
reliable constituent structure tests, and disputes cannot be resolved easily or
empirically. Moreover, the end results are inadequate: no one has ever produced
a descriptively adequate generative grammar for any natural language. Even in
English, the most well studied language, the “correct” analysis is often unclear.
The problem is that the representation is radically under-determined by the evi-
dence. Since there are many possible CF grammars for any CF language, indeed

infinitely many for any infinite language, the task is ill defined without additional
constraints, or an “evaluation procedure” in Chomskyan terms. The mechani-
sation of this process – i.e. the problem of grammatical inference – is thus also
extremely hard. Even learning regular grammars (i.e. non-deterministic finite
state automata) is hard computationally, even in quite a benign learning model
[1]; and therefore learning CFGs, or Tree-adjoining grammars is also hard.

In this paper, we show that it is possible to define alternative representa-
tions that have very attractive properties from a learning point of view. The
key insight is contained in [2]: if the representational primitives of the model
are defined language theoretically, then the model will be easy to learn in an
unsupervised way. Thus rather than defining a representation (like a CFG), and
then defining a map from the representation to the language that it defines, we
proceed in the opposite direction. We start by defining a map from the lan-
guage to the representation. This reduces or eliminates the underdetermination
of the representation by the language. Traditional algorithms for the inference
of deterministic finite state automata exploit this approach implicitly through
the Myhill-Nerode theorem; [2] exploit it explicitly through identifying non-
terminals in a context free grammar with congruence classes of the language.
However neither of these models are descriptively adequate for natural language
syntax.

Here, we extend [3], and rather than basing our model on the congruence
classes of the language, we base it on the lattice structure of those congruence
classes: these form a residuated lattice that we call the syntactic concept lattice.
This greatly enlarges the class of languages that can be represented. A remark-
able consequence, which hints strongly that this approach is on the right track,
is that the natural representation derived from these considerations, is in fact
not a context free formalism, but rather includes some non context free, mildly
context sensitive languages. In addition it is capable of representing richly struc-
tured languages, which require structured non-terminals (i.e. augmented with
feature structures) to be compactly represented by a context free grammar. It
does not include all CFLs, but the examples of those that it does not are bizarre
and do not correspond to phenomena in natural language.

The contributions of this paper are:

1. a definition of the syntactic concept lattice;
2. a proof that this is a residuated lattice;
3. the definition of a grammatical formalism based on this, which is very close

to the learnable class of contextual binary feature grammars [3];
4. some basic results that establish that these representations can be learned

merely from information about which strings are in the language.

2 Contexts and Syntactic Concepts

Distributional learning [4] broadly conceived is the approach that tries to infer
representations based on the “distribution” of strings. Given a finite non-empty
alphabet Σ, we use Σ∗ to refer to the set of all strings and λ to refer to the

empty string. A context is just an ordered pair of strings that we write (l, r)
– l and r refer to left and right. We can combine a context (l, r) with a string
u with a wrapping operation that we write �: so (l, r) � u is defined to be
lur. We will sometimes write f for a context (l, r). Given a formal language
L ⊆ Σ∗ we can consider a relation between contexts (l, r) ∈ Σ∗×Σ∗ and strings
w given by (l, r) ∼L w iff lwr ∈ L. For a given string w we can define the
distribution of that string to be the set of all contexts that it can appear in:
CL(w) = {(l, r)|lwr ∈ L}, equivalently {f |f �w ∈ L}. There is a special context
(λ, λ): clearly (λ, λ) ∈ CL(w) iff w ∈ L. There is a natural equivalence relation
on strings defined by equality of distribution: u ≡L v iff CL(u) = CL(v); this is
called the syntactic congruence. We write [u] for the congruence class of u. A
learning algorithm based on this gave rise to the first linguistically interesting
learnability result for context free languages [2]: this used the congruence classes
to be the non terminals of a context free grammar together with the basic rule
schemas [uv] → [u][v] and [a] → a. In terms of the syntactic monoid, if X, Y, Z
are elements of the syntactic monoid X → Y Z is a production iff X = Y ◦ Z.
Thus the algebraic properties of the monoid define the structure of the grammar
directly.

We can also define the natural dual equivalence relation for contexts (l, r) ≡L

(l′, r′) iff for all w, lwr ∈ L iff l′wr′ ∈ L, and we write [l, r] for the equivalence
class of the context (l, r) under this relation.

3 Concept lattice

It was realised first by [5] that the relation ∼L forms a Galois connection between
sets of contexts and sets of strings. Galois lattices have been studied extensively
in computer science and data mining under the name of Formal Concept Analysis
[6] and these distributional lattices have been used occasionally in NLP for lexical
analysis, e.g. [7, 8]. For a modern treatment of Galois lattices and lattice theory
in general see [9].

For a given language L we can define two polar maps from sets of strings to
sets of contexts and vice versa. Given a set of strings S we can define a set of
contexts S′ to be the set of contexts that appear with every element of S.

S′ = {(l, r) : ∀w ∈ S lwr ∈ L} (1)

Dually we can define for a set of contexts C the set of strings C ′ that occur with
all of the elements of C

C ′ = {w : ∀(l, r) ∈ C lwr ∈ L} (2)

We define a syntactic concept to be an ordered pair of a set of strings S and a
set of contexts C, written 〈S, C〉, such that S′ = C and C ′ = S. A set of strings
(contexts) is closed iff S = S′′ (C = C ′′). Note that for any sets S′′′ = S′ and
C ′′′ = C ′. Thus for any set of strings S we can define a concept C(S) = 〈S′′, S′〉,
and similarly for any set of contexts C, we can define C(C) = 〈C ′, C ′′〉.

We can define a partial order on these concepts where:

〈S1, C1〉 ≤ 〈S2, C2〉 iff S1 ⊆ S2.

S1 ⊆ S2 iff C1 ⊇ C2. We can see that C(L) = C({(λ, λ)}), and clearly w ∈ L iff
C({w}) ≤ C({(λ, λ)}). We will drop some brackets to improve legibility.

Definition 1. The concepts of a language L form a complete lattice B(L), called
the syntactic concept lattice, where > = C(Σ∗), ⊥ = C(Σ∗×Σ∗), where 〈Sx, Cx〉∧
〈Sy, Cy〉 is defined as 〈Sx∩Sy, (Sx∩Sy)′〉 and ∨ dually as 〈(Cx∩Cy)′, Cx∩Cy〉.

It is easy to verify that these operations satisfy the axioms of a lattice.
Figure 1 shows the syntactic concept lattice for the regular language L =

{(ab)∗}. Note that though L is infinite, the lattice B(L) is finite and has only 7
concepts.

⊥ = 〈∅, Σ∗ × Σ∗〉

〈[a], [λ, b], 〉 〈[b], [a, λ]〉 L = 〈[ab] ∪ [λ], [λ, λ]〉 〈[ba] ∪ [λ], [a, b]〉

1 = 〈[λ], [a, b] ∪ [λ, λ]〉

⊤ = 〈Σ∗, ∅〉

Fig. 1. The Hasse diagram for the syntactic concept lattice for the regular language
L = {(ab)∗}. Each concept (node in the diagram) is an ordered pair of a set of strings,
and a set of contexts. We write [u] for the equivalence class of the string u, [l, r] for
the equivalence class of the context (l, r).

4 Monoid structure

In addition to the lattice structure of B(L), we can also give it a monoid struc-
ture. We define the concatenation of two concepts as follows:

Definition 2. 〈Sx, Cx〉 ◦ 〈Sy, Cy〉 = 〈(SxSy)′′, (SxSy)′〉

It is easy to verify that the result is a concept, that this operation is associa-
tive, and that 1 = C(λ) is the unit and that this monoid operation respects the
partial order of the lattice, in that if X ≤ Y , then W ◦X ◦Z ≤ W ◦Y ◦Z. This is
therefore a lattice-ordered monoid. The left part of Table 1 shows this operation
for the language L = {(ab)∗}. Moreover, we can define two residual operations
as follows. We extend the operation � to contexts as (l, r)�(l′, r′) = (ll′, r′r), so
(f1�f2)�w = f1� (f2�w) for two contexts f1, f2 and a string w. We extend it
to sets in the natural way. So for example, C�(λ, S) = {(l, yr)|(l, r) ∈ C, y ∈ S}.

Definition 3. Suppose X = 〈Sx, Cx〉 and Y = 〈Sy, Cy〉 are concepts. Then
define the residual X/Y = C(Cx � (λ, Sy)) and Y \X = C(Cx � (Sy, λ))

These are unique, and satisfy the following conditions:

Lemma 1. Y ≤ X \ Z iff X ◦ Y ≤ Z iff X ≤ Z/Y .

Proof. Suppose X ≤ Z/Y ; then S′
x = Cx ⊇ Cz � (λ, Sy). Therefore (SxSy)′ ⊇

Cz, and so (SxSy)′′ ⊆ C ′
z = Sz, and so X ◦ Y ≤ Z. Conversely suppose that

X ◦ Y ≤ Z. Then we know that lxyr ∈ L for any x ∈ Sx, y ∈ SY , (l, r) ∈ Cz.
Therefore x must have all of the contexts of the form (l, yr), i.e. Cx ⊃ Cz�(λ, Sy),
and so X ≤ Z/Y . Exactly similar arguments hold for X \ Z.

Therefore the syntactic concept lattice is a residuated lattice [10]. The map
that takes S → 〈S′′, S′〉 for arbitrary sets of strings is a 1,∨, ◦-homomorphism
from the “free” residuated lattice of the powerset of Σ∗; but not a homomorphism
of ∧. Every language, computable or not, has a unique well defined syntactic
concept lattice, which we can use as the basis for a representation that will be
accurate for a certain class of languages.

◦ > L 1 R A B ⊥
> > > > > > > ⊥
L > L L > A > ⊥
1 > L 1 R A B ⊥
R > > R R > B ⊥
A > > A A > L ⊥
B > B B > R > ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

◦ > AAB A ABB B AB 1 ⊥
> > > > > > > > ⊥
AAB > > > > AB > AAB ⊥
A > > > AB AB AAB A ⊥
ABB > > > > > > ABB ⊥
B > > > > > > B ⊥
AB > > > > ABB > AB ⊥
1 > AAB A ABB B AB 1 ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Table 1. The concatenation operation. On the left is the operation for the language
L = {(ab)∗}. R = C(ba), A = C(A) etc. On the right is the concatenation operation for
the partial lattice for the context free example described in Figure 2. We write A for
C(a) and similarly for AAB, AB, Note that 1 is an identity, but that this operation
is not associative: (A ◦A) ◦B 6= A ◦ (A ◦B). If the result of an operation is > then the
operation is vacuous.

5 Partial lattice

The lattice B(L) will be finite iff L is regular. If we wish to find finite repre-
sentations for non-regular languages we will wish to only model a fraction of
this lattice. We can do this by taking a finite set of contexts F ⊂ Σ∗ ×Σ∗ and
constructing a lattice using only these contexts and all strings Σ∗. This give us
a finite lattice B(L,F), which will have at most 2|F | elements. We can think of
F as being a set of features, where a string w has the feature (context) (l, r) iff
lwr ∈ L.

Definition 4. For a language L and a set of context F ⊆ Σ∗ ×Σ∗, the partial
lattice B(L,F) is the lattice of concepts 〈S, C〉 where C ⊆ F , and where C =
S′ ∩ F , and S = C ′.

For example, consider everyone’s favourite example of a context free language:
L = {anbn|n ≥ 0}. The concept lattice for this language is infinite: among
other concepts we will have an infinite number of concepts corresponding to
ai for each integral value of i. If we take the finite set of the six contexts F =
{(λ, λ), (λ, b), (a, λ), (aab, λ), (λ, abb), (λ, ab)}, then we will end up with the finite
lattice shown on the left hand side of Figure 2.

〈∅, F 〉

〈[a], {(λ, b), (λ, abb)}〉

〈[a] ∪ [aab], {(λ, b)}〉

〈[b], {(a, λ), (aab, λ)}〉

〈[b] ∪ [abb], {(a, λ)}〉

⊤ = 〈Σ∗, ∅〉

〈[ab] ∪ [λ], {(λ, λ)}〉

〈[λ], {(λ, λ), (λ, ab)}〉

∅

{a}

{a, aab}

{b}

{b, abb}

⊤ = K

{ab, λ}

1 = {λ}

Fig. 2. The Hasse diagram for the partial lattice for L = {anbn|n ≥ 0}, with 6 contexts.
The top element > contains all the strings, and the bottom element contains no strings.
The empty string λ is below the language concept, as it has the context (λ, ab). On the
left we have the true lattice; on the right we have the lattice as inferred from a small
set of strings.

We can define a concatenation operation as before

〈S1, C1〉 ◦ 〈S2, C2〉 = 〈((S1S2)′ ∩ F)′, (S1S2)′ ∩ F 〉

This is now however no longer a residuated lattice as the ◦ operation is no
longer associative, there may not be an identity element, nor are the residuation
operations well defined. The right hand side of Table 1 shows the concatenation
operation for the lattice of Figure 2. We lose the nice properties of the residuated
lattice, but the concatenation is still monotonic with respect to the lattice order
– algebraically this partial lattice is a po-groupoid or lattice-ordered magma.

Given this partial lattice, we can define a representation that will map strings
to concepts of this lattice. Clearly we have the map w 7→ C(w) where each string
is mapped to the correct concept. The concept C(w) is a finite representation of
the distribution of the string w, of CL(w). Since there may be infinitely many
congruence classes in the language, we cannot hope for this representation to be
helpful for all strings, but only for some of the strings. For many strings, the
representation we will get will be >, which is vacuous – it tells us nothing about
the string. However, what we are interested in is predicting one specific context,
(λ, λ), and it may be that we can predict that context exactly.

The lattice B(L,F) will consist of only finitely many concepts, so suppose we
have a list of them and that we can compute the operations ∧, ∨, and ◦. Then
we can define a recursive function that uses the lattice to compute an estimate
of C(w).

Definition 5. For any language L and set of contexts F , which therefore defines
a lattice B(L,F), we define φ : Σ∗ → B(L,F) recursively by

– φ(λ) = C(λ)
– φ(a) = C(a) for all a ∈ Σ, (i.e. for all w, |w| = 1)
– for all w with |w| > 1,

φ(w) =
∧

u,v∈Σ+:uv=w

φ(u) ◦ φ(v) (3)

or alternatively if we take w = a1 . . . an,

φ(w) =
n−1∧
i=1

φ(a1 . . . ai) ◦ φ(ai+1 . . . an) (4)

This is a recursive definition, that can be efficiently computed in O(|w|3) time
using dynamic programming techniques, analogously to the CKY algorithm.
Equation 3 needs some explanation. In B(L), C(u) ◦ C(v) = C(uv). This is not
true always in B(L,F), but we can establish that C(u) ◦ C(v) ≥ C(uv). Thus if
w = uv we know that C(w) will be less than C(u) ◦ C(v), and that this will be
true for all u, v such that uv = w. Since it is less than all of them, it will be
less that the ∧ over them all since meet is a greatest lower bound. So we know
that C(w) ≤

∧
u,v C(u) ◦ C(v). So φ(w) simply recursively computes this upper

bound on C(w). In the worst case this will just trivially give >, but we hope that
this upper bound will often be tight so that φ(w) = C(w). This may appear to
be a slightly circular definition, as it is indeed: however, as we shall see we can

infer the algebraic structure of the lattice in a straightforward way from data,
at which point it ceases to be circular.

Note that φ(w) aggregates information from every bracketing of w; since ◦
is not in general associative in the partial lattice, each bracketing may give a
different result. Moreover, the formalism can combine information from different
derivations which is more powerful: this is because W ◦(X∧Y) ≤ (W ◦X)∧(W ◦
Y), but often without equality. This means that it can represent some context
sensitive languages, and that the structural descriptions or derivations will no
longer be trees, but rather directed acyclic graphs.

This map depends on L and F , but we can establish that it is always an
upper bound:

Lemma 2. For any language L and set of contexts F , for any string w, φ(w) ≥
C(w)

This means that the set of contexts predicted will be a subset of the true set
of features.

Proof. By recursion on length of w, using the fact that C(u) ◦ C(v) ≥ C(uv).
Clearly it is true for |w| = 1 and |w| = 0, by construction C(w) = φ(w). Suppose
it is true for |w| ≤ k. By definition φ(w) is a meet over the different elements
φ(u)◦φ(v), where w = uv. By the inductive hypothesis, φ(u) ≥ C(u), and φ(v) ≥
C(v). Therefore, for each u, v we have that φ(u) ◦ φ(v) ≥ C(u) ◦ C(v) ≥ C(w).
C(w) must be less than or equal to the greatest lower bound (meet) of all these
φ(u) ◦ φ(v) which is φ(w).

Assuming that (λ, λ) ∈ F , we can define the language generated by this
representation to be:

L̂ = L(B(L,F)) = {w|φ(w) ≤ C((λ, λ))} (5)

As a simple corollary we have:

Lemma 3. For any language L and for any set of contexts F , L(B(L,F)) ⊆ L.

We can define a class of languages L as the set of all languages L such that
there is a finite set of contexts F such that L = L(B(L,F)). Since we have made
no assumptions at all about L up to now, not even that is is computable, we will
find that there are many languages where there is no finite set of contexts that
define the language. L is clearly a countable class of recursive languages; we will
discuss the language theoretic properties of this class in Section 7, but we will
see that it does not correspond to the Chomsky hierarchy.

To recap: given the set of contexts F and the language L, we have a uniquely
defined partial lattice B(L,F), that as we shall see can be inferred from data
about the language. This lattice can be considered as a representation that
computes for every substring an estimate of the distribution of that substring.
If this estimate predicts that the substring can occur in the context (λ, λ) then
the string is in the language defined by this representation. φ is the recursive
computation defined by the lattice that computes this estimate.

6 Learnability

These representations have been defined in language theoretic terms: that is to
say, rather than focussing on the function from representation to language, we
have focussed on defining a function from the language to the representation. It
is therefore straightforward to find learning algorithms for this class. The lattice
representation exactly mirrors a fragment of the syntactic concept lattice of the
target language.

This paper is not focussed on the learning algorithms: see [3] for the first
result along these lines. We will state some results that we hope make clear the
fundamental tractability of the learning process. First, that if we increase the
set of contexts then the language will increase. This, combined with Lemma 3,
means that any sufficiently large context set will define the correct language.

Lemma 4. If F ⊆ G then L(B(L,F)) ⊆ L(B(L,G))

We will prove this by establishing a more general lemma. We define the
obvious map f from B(L,G) → B(L,F), as 〈S, C〉 7→ 〈(C ∩ F)′, C ∩ F 〉. and
the map back as f∗(〈S, C〉) = 〈S, S′〉. 1

Lemma 5. For any language L, and two sets of contexts F ⊆ G, given the two
computational maps φF : Σ∗ → B(L,F) and φG : Σ∗ → B(L,G), then for all
w, f(φG(w)) ≤ φF (w).

Intuitively this lemma says that when we map from the richer, bigger lattice
to the small one, we always get a more specific prediction.

Proof. We will use two facts about the map f : f(X ∧ Y) ≤ f(X) ∧ f(Y), and
f(X ◦ Y) ≤ f(X) ◦ f(Y). Again by recursion on the length of w; clearly if
|w| = 1, f(φG(w)) = f(C(w)G) = C(w)F = φF (w). We put a subscript to
C() to indicate which lattice we are talking about. Inductive step: f(φG(w)) =
f(
∧

u,v φG(u) ◦ φG(v)) ≤
∧

u,v f(φG(u) ◦ φG(v)) ≤
∧

u,v f(φG(u)) ◦ f(φG(v)) ≤∧
u,v φF (u) ◦ φF (v) = φF (w).

The second lemma is that we can infer B(L,F) from a finite amount of data.
Given a finite set of strings K we can define the lattice B(K, L, F) in the obvious
way:

Definition 6. Given a set of strings K and a set of contexts F and a language
L, define B(K, L, F) to be the complete lattice formed by the ordered pairs 〈S, C〉,
where S ⊆ K, C ⊆ F , and where S′ ∩ F = C, and C ′ ∩K = S.

To avoid problems, let us be clear. The concepts are ordered pairs that consist
of a finite set of strings, from K, and a finite set of contexts from F .

1 The two maps f, f∗ form a residuated pair in that f(X) ≤ Y iff X ≤ f∗(Y), for any
X ∈ B(L, G) and Y ∈ B(L, F).

Definition 7. Let 〈S1, C1〉 and 〈S2, C2〉 be in B(K, L, F). So S1, S2 are subsets
of K. Define a set of contexts (S1S2)′ ∩ F . If this set of contexts is closed in
B(K, L, F), then we define the concatenation 〈S1, C1〉 ◦ 〈S2, C2〉 = 〈((S1S2)′ ∩
F)′ ∩K, (S1S2)′ ∩ F 〉. Otherwise it is undefined.

Example 1. Suppose L = {(ab)∗} and F = {(λ, λ), (a, λ), (λ, b), (a, b)}, and K =
{λ, a, b}.. B(K, L, F) will have 5 concepts >,⊥, C(a), C(b), C(λ). If we try to
compute C(a) ◦ C(b), everything is fine. We have ab which has contexts (λ, λ)
which is closed, so C(a) ◦ C(b) = C((λ, λ)). But if we try to compute C(b) ◦ C(a),
we will get the singleton set of strings {ba}, which has context set {(a, b)} which
while it is closed in B(L,F) is not closed in B(K, L, F).

Definition 8. The lattice B(K, L, F) is closed under concatenation if for every
pair of concepts X, Y , the concatenation X ◦ Y is defined.

Note that B(L,F) is exactly the same as B(Σ∗, L, F). So in order to compute
B(K, L, F) we need to know which strings in F �KK are in L; computationally
then the algorithm is given F,K and the finite set of strings (F �KK) ∩ L.

Lemma 6. For any L,F , there is a finite set K such that B(K, L, F) is closed
under concatenation and is isomorphic to the B(L,F).

Proof. (Sketch) For each concept in the finite set of concepts {C(u) ∈ B(L,F)|u ∈
Σ∗} pick one such string u. For each pair of concepts X, Y and context f where
f is not in X ◦ Y pick a pair of strings u, v such that u ∈ X, v ∈ Y and uv does
not have the context f .

Moreover as we increase the set of strings K that we are basing the lattice
on, the language defined by the lattice will decrease. Intuitively, as we increase
the sample size the set of context shared by all samples in a given set will only
decrease; thus the predicted set of features will decrease, and φ will move higher
in the lattice, thus reducing the language.

Definition 9. If J ⊂ K we define the map g from B(J, L, F) to B(K, L, F),
i.e. from the smaller lattice to the larger lattice as the map that takes 〈S, C〉
to 〈C ′ ∩ K, C〉, and the map g∗ from B(K, L, F) to B(J, L, F), by 〈S, C〉 7→
〈S ∩ J, (S ∩ J)′ ∩ F 〉.

This is well-defined since S ∩ J will be closed in B(J, L, F).

Lemma 7. For all J,K closed, J ⊂ K, and for all strings w; we have that
g(φJ(w)) ≤ φK(w).

Proof. (Sketch) Again by induction on length of w. Both J and K include the
basic elements of Σ and λ. Suppose true for all w of length at most k, and take
some w of length k + 1. We use some inequalities for g that we do not prove

here.

φK(w) =
∧
u,v

φK(u) ◦ φK(v)

≥
∧
u,v

g(φJ(u)) ◦ g(φJ(v))

≥
∧
u,v

g(φJ(u) ◦ φJ(v))

≥g

(∧
u,v

φJ(u)) ◦ φJ(v))

)
= g(φJ(w))

As a corollary we therefore have:

Lemma 8. For any L,F and any sets of strings J,K s.t Σ ∪ {λ} ⊆ J ⊆
K and where both B(J, L, F) and B(K, L, F) are closed under concatenation,
L(B(J, L, F)) ⊇ L(B(K, L, F)) ⊇ L(B(L,F)).

Finally we note that there are efficient scalable algorithms for computing
these lattices and identifying the frequent concepts; see for example [11]. Thus,
for any sufficiently large set of contexts the lattice B(L,F) will define the right
language; there will be a finite set of strings K such that B(K, L, F) is isomorphic
to B(L,F), and there are algorithms to construct these lattices from K, F and
information about ∼L.

This is still some way from a formal polynomial learnability result. Since the
class of languages is suprafinite, we cannot get a learnability result without using
probabilistic assumptions, which takes us out of the scope of this paper, but see
the related learnability result using a membership oracle in a non probabilistic
paradigm in [3]. Note however that the monotonicity lemmas in the current
approach (Lemmas 5 and 7) are exactly the opposite of the monotonicity lemmas
in [3].

Space does not permit a full example, but consider the CF language L =
{anbn|n ≥ 0}. If F = {(λ, λ), (λ, b), (a, λ), (λ, abb), (aab, λ)}, it is easy to verify
that L(B(L,F)) = L. If K = {λ, a, b, ab, aab, abb}, then B(K, L, F) is isomor-
phic to B(L,F). This is shown on the right hand side of Figure 2.

Algorithms based on heuristic approximations to this approach are clearly
quite feasible: consider sets of contexts of the form (Σ∗a, bΣ∗) where a, b ∈ Σ;
take all frequent contexts; take all frequent substrings; approximate the relation
(l, r) ∼L w probabilistically using a clustering algorithm.

7 Power of the representation

We now look at the language theoretic power of this formalism, and its rela-
tionship to other existing formalisms. We will define L to be the class of all
languages L such that L(B(L,F)) = L for some finite set of contexts F . The
following propositions hold:

– L contains the class of regular languages.
– L contains some languages that are not context free.
– There are some context free languages that are not in L.

The CBFG formalism is clearly closely related. However CBFGs only use the
partial order and not the full lattice structure: moreover the absence of unary
rules for computing ∧ limits the generative power. Note also the relation to
Range Concatenation Grammars [12] and Conjunctive Grammars [13].

7.1 Categorial grammars

We have shown that this concept lattice is a residuated lattice; the theory of
categorial grammars is based largely on the theory of residuation [14]. It is worth
considering the relation of the residuation operations in the concept lattice to
the theory of categorial grammars. Clearly implication → in categorial grammar
corresponds to ≤ in this algebraic framework. Every sequent rule such as X →
Y/(X\Y) can be stated in B(L) as C(X) ≤ C(Y)/(C(X)\C(Y)): an inequality
which is true for all residuated lattices. In terms of the sets of axioms, the concept
lattice satisfies the axioms of the associative Lambek calculus L. However from
a logical point of view the calculus that we use is more powerful. Just as the
Ajdukiewicz-Bar-Hillel calculus which only uses the symbols \, / was extended
to the associative Lambek calculus with the symbol ◦, here we need to add the
additional symbols ∧,∨ from the lattice operations, together with additional
inference rules. Indeed it is the following inference rule that takes us out of the
context free languages, since they are not closed under intersection:

Γ → Y Γ → Z
Γ → Y ∧ Z

Given that [15] showed that the equational theory of residuated lattices is decid-
able, this means that the calculus derived from this formalism is also decidable.

However the approach taken in this paper is profoundly different: in the cat-
egorial grammar style formalism, the underlying model is the residuated lattice
of all subsets of Σ∗, which is a different lattice to B(L). The language is then
defined equationally through the type assignments to the letters of Σ. Here the
model is the syntactic concept lattice, and the language is defined algebraically
through a direct representation of the algebraic structure of part of the lattice.
It is not obvious therefore that the two approaches are potentially equivalent: we
can convert the partial lattice into a set of equations, and define the full lattice
to be the free residuated lattice generated by Σ and these equations, but it may
not be possible to “lexicalise” these equations.

7.2 Context free grammars

We can also consider the relation to context free grammars. Using standard
notation, for a CFG, with a non-terminal N we can define the yield of N as

Y (N) = {w ∈ Σ∗|N ∗⇒ w}

and the distribution as

C(N) = {(l, r) ∈ Σ∗ ×Σ∗|S ∗⇒ lNr}

It is natural to think that 〈Y (N), C(N)〉 ∈ B(L(G)). This is sometimes the
case but need not be; indeed from a learnability point of view this is the major
flaw of CFGs: there is no reason why there should be any simple correspondence
between the concepts of the language and the structure of the grammar. There
are CFLs for which it is impossible to find CFGs where all of the non-terminals
are syntactic concepts, indeed there are some where some of the non-terminals
must correspond to concepts with context sensitive sets of strings.

However we can represent all CFLs that have context free grammars that
have a “Finite Context Property”:

Definition 10. For a context free grammar G, a non-terminal N has the FCP
iff there is a finite set of contexts F (N) such that {w|∀(l, r) ∈ F (N) lwr ∈ L} is
equal to Y (N)

If every non-terminal has the FCP, then it can be shown that the partial
lattice with the union of all the F (N), will define the same language as L.
This means that for every non-terminal in the grammar, we must be able to
pick a finite set of contexts, that suffice to pick out the strings that can be
derived from that non-terminal: F (N) will normally be a subset of C(N). A
single context normally suffices for the simple examples in this paper, but not in
natural languages where lexical ambiguity and coordination mean that one may
need several contexts to pick out exactly the right set of strings. So for example
the context “I was — .”, does not pick out an adjective phrase as “a student”
can also appear in that context.

7.3 Context Sensitive

We can also define some non-context free languages. In particular, we define a
language closely related to the MIX language (consisting of strings with an equal
number of a’s, b’s and c’s in any order) which is known to be non context-free.

Example 2. Suppose we have a context sensitive language Let M = {(a, b, c)∗},
we consider the language L = Labc ∪ Lab ∪ Lac where Lab = {wd|w ∈ M, |w|a =
|w|b}, Lac = {we|w ∈ M, |w|a = |w|c}, Labc = {wf |w ∈ M, |w|a = |w|b = |w|c}.

It is easy to see that this language is non context free. We define the set of
contexts:

F = {(λ, λ), (λ, d), (λ, ad), (λ, bd), (λ, e), (λ, ae), (λ, ce), (λ, f), (ab, λ), (ac, λ)}

The resulting lattice is shown in Figure 3. It can be shown that this lattice
will define the correct context sensitive language.

fe
at

ur
es

 fo
r [

n,
m

,n
]

fe
at

ur
es

 fo
r [

n,
n,

m
]

[n
,m

,n
]

[n
+1

,n
,n

+1
]

[n
,n

+1
,n

]
[n

,n
,n

]

[n
+1

,m
,n

]

[n
+1

,n
+1

,n
]

[n
+1

,n
+2

,n
]

[n
+1

,n
,n

]

[n
,m

,n
+1

]

[n
,n

+1
,n

+1
]

[n
+1

,n
,n

+2
]

[n
,n

,n
+1

]

bo
tto

m

[n
+1

,n
,m

]
[n

,n
+1

,m
]

[n
,n

,m
]

[n
,n

,m
]d

to
p

(a
c,

)
L

 (
ab

,)

[n
,m

,n
]e

Fig. 3. Lattice for the context sensitive example. We will write triples of numbers to
refer to subsets of M . So [n, n, n + 1] refers to the set of strings {w ∈ M |∃n, |w|a =
n, |w|b = n, |w|c = n + 1}.

8 Compact Representation

We have defined a representation which is finite, but it is not very compact
since the representation may be exponentially large in the number of contexts.
In many cases, the number of concepts is polynomially bounded, but it is clearly
desirable to use a more efficient representation. Moreover in natural language,
we need efficient ways of representing combinations of number, case and gender
features in those languages that have them: such features cause an exponential
explosion in the number of atomic categories required [16].

The concepts of B(L,F) are pairs 〈S, C〉 where S is a possibly infinite set of
strings and C is a subset of the finite set F . We can thus represent the concepts
through the sets C, which are the closed context sets of the lattice: that is to say
where C ′′ = C. Not all sets of contexts are closed. We will write F (〈S, C〉) = C,
for the set of contexts of a concept, and F (B(L,F)) for the set of closed context
sets.

We can therefore represent the concepts as subsets of F , i.e. as bitvectors of
length |F |. Looking at Equation 3, we need to be able to perform some compu-
tations: the partial order ≤, the meet ∧ and the concatenation operation ◦.

Clearly F (X ∧ Y) will contain F (X) ∪ F (Y), but it may also contain other
contexts, as F (X)∪F (Y) might not be closed. We need to define some efficient
scheme for determining which additional elements of F need to be added. For
any concept X we can define the set of unordered pairs of concepts H+(X) =
{{Y, Z} : Y ∧Z ≤ X}, with the natural partial order. Clearly this is a down set in
the sense that if {Y, Z} ∈ H+ and W ≤ Y then {W,Z} ∈ H+, so it is natural to
represent it through its maximal elements. Let Hmax(X) be the set of maximal
elements of H+(X); clearly one such element will be the vacuous one {X,>},
but there will also be other non-trivial ones: if f ∈ F (X ∧ Y) \ (F (X) ∪ F (Y)),
then {X, Y } ∈ H+(C(f)) but will not be below {C(f),>}, so there will be a
non-trivial element. Given Hmax(C(f)) for all the features f , we can compute
F (X ∧ Y) efficiently.

We can proceed in the same way for concatenation: for a given concept Z
define G+(Z) to be the set of ordered pairs

G+(Z) = {(X, Y)|X ◦ Y ≤ Z} (6)

This is a set of ordered pairs, not unordered as before, and we can again take
the maximal elements Gmax(Z). There will normally be four trivial elements of
Gmax(Z) which are (Z,1) and (1, Z), and (⊥,>), (>,⊥); not necessarily distinct.
As before, it suffices to use only concepts Z which correspond to individual
features f : thus we can just store Gmax(C(f)). Space does not permit a full
definition of this more compact representation.

Looking at this compact representation of the formalism, we can show that
it is more expressive than context free grammars. Let Σn be an alphabet of size
n; Define Ln = {w ∈ Σ∗

n||w|ai > 0∀i}; i.e. each letter must occur at least once
in w. This is an infinite regular language. There is a compact lattice grammar
polynomial in n, which defines this language, but an exponentially sized context
free grammar would be required to represent it [17].

From a learnability point of view, the compact representation is interesting
since the pairs in Gmax and Hmax are of concepts that are high up in the
lattice, and thus consist of large sets of strings – it is clearly easier to learn a
small number of larger concepts, than a large number of small concepts.

9 Conclusion

We have presented a model for syntax as an alternative to CFGs and categorial
grammars. These models have deep roots in the study of post-Harris structuralist
linguistics in Europe; see for example the work surveyed in [18].

We base the representation on an algebraic structure defined by the lan-
guage: the syntactic concept lattice. Algebraic properties of this lattice can be
converted directly into the “grammar”: this largely removes the arbitrariness of
the representation, and leads to inference algorithms, as well as consequences for
decidability, the existence of canonical forms etc. Given the language, and the
set of features, the representation is determined. Selecting the set of features is
easy as any sufficiently large set of features will define the same language. If the
set of features is too small, then the representation will define a subset of the
correct language.

One objection to this approach is that it doesn’t produce the “right” results:
the structural analyses that we produce do not necessarily agree with the struc-
tures that linguists use to describe sentences, for example in treebanks. But of
course linguists don’t know what the right structures are: tree structures are
not empirical data, but rather theoretical constructs. It is certainly important
that the models support semantic interpretation, but as we know from categorial
grammar this does not require traditional constituent structure. Moreover, the
residuated lattice structure we use has been studied extensively in the model
theory for various logics; we therefore conjecture that it is possible to build se-
mantic analysis on this lattice in a very clean way. Ultimately, we don’t yet
know what the “right” representations are, but we do know they are learnable.
It seems reasonable therefore to start by looking for learnable representations.

Just as with context free grammars, we can define a derivation that will
“prove” that the string is grammatical. With lattice grammars, rather than being
trees, these will be directed acyclic graphs or hypergraphs, where the nodes are
associated with a particular span or segment of the input string, and each node
is labelled with a concept. Looking at the context sensitive example discussed
above, it is clear that the derivation cannot in general be a tree. We think that
minimal derivations will be particularly interesting for semantic interpretation:
a derivation is minimal if the concept associated with a span cannot be replaced
by a more general concept, while still maintaining the validity of the associated
DAG. In this case, classical cases of lexical and syntactic ambiguity will give
rise to structurally distinct minimal derivations. In general, there will not be a
one-to-one map between derivations and semantic interpretations: rather there
will be what is called in CG parsing “spurious ambiguity”. If the set of features
is large, then the number of possible derivations will increase. For a regular

language, if we have one context out of each context class, we will have structural
completeness, and every tree can give rise to a derivation. The other important
difference with a CFG is that the labels in the structural descriptions of sentences
are not atomic symbols, as is this case with a non-terminal in a CFG, but rather
are elements of a lattice.

Converting an existing CFG into a lattice grammar is not always possible:
however for CFGs that are models for natural languages it should be straightfor-
ward. All that is needed is to find a finite set of contexts that picks out the yield
of each non-terminal: given a large sample of positive example trees generated
by the CFG in question will give a large sample of C(N) and Y (N), for any
non-terminal N . However this is not the right approach: we are not interesting
in representing CFGs, but in representing natural languages, and the limitations
of CFG as representations of natural language are very well known.

The most radical property of lattice grammars is this: lattice grammars in
this approach are not written by human linguists, rather they are determined
by the data. The normal activity of linguistics is that some interesting data
are discovered and linguists will manually construct some appropriate analysis
together with a grammar for the fragment of the language considered. There
are normally many possible grammars and analyses. With lattice grammars, the
data decides: there is no role for the linguist in deciding what the appropriate
structural description for a sentence is. The linguist can decide what the contexts
are, and how many are used, and thus can control to some extent the set of
possible structural descriptions, but given the set of contexts, the rules and the
possible analyses for individual sentences are fixed given agreement about the
data.

There is an interesting link to the classic presentation found in traditional
descriptive grammars, such as [19]. In such grammars, the syntactic properties of
a word are described through their occurrences in sample sentences: the lattice
approach allows a fairly direct translation of this description into a generative
grammar: Consider for example adjectives in English, which typically appear
in three positions attributive, predicative, and postpositive, and which accept
degree modifiers and adverb modifiers [19, p.528]. Each of these properties can
be associated with a context, writing the gap as “—” “They are —”, “I saw
some — people” , “There is someone —”, “They are very —”, “He is the most
— person I know”, “He was remarkably —”. A word like “happy” can appear
in all of the contexts.

These lattice based models potentially satisfy the three crucial constraints
for a model of language [20]; they may be sufficiently expressive to represent
natural languages compactly, they can be learned efficiently, and they do not
posit a rich domain specific and evolutionary implausible language faculty. We
suggest they are therefore worthy of further study.

References

1. Angluin, D., Kharitonov, M.: When won’t membership queries help? J. Comput.
Syst. Sci. 50 (1995) 336–355

2. Clark, A., Eyraud, R.: Polynomial identification in the limit of substitutable
context-free languages. Journal of Machine Learning Research 8 (Aug 2007) 1725–
1745

3. Clark, A., Eyraud, R., Habrard, A.: A polynomial algorithm for the inference of
context free languages. In: Proceedings of International Colloquium on Grammat-
ical Inference, Springer (September 2008) 29–42

4. Harris, Z.: Distributional structure. In Fodor, J.A., Katz, J.J., eds.: The Structure
of Language. Prentice-Hall (1954) 33–49

5. Sestier, A.: Contribution à une théorie ensembliste des classifications linguistiques.
In: Premier Congrès de l’Association Française de Calcul, Grenoble (1960) 293–305

6. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag (1997)

7. Popa-Burca, L.: On algebraic distributional analysis of romanian lexical units. In
Kay, M., ed.: Abstracts of the 1976 International Conference on Computational
Linguistics COLING. (1979) 54

8. Basili, R., Pazienza, M., Vindigni, M.: Corpus-driven unsupervised learning of
verb subcategorization frames. Proceedings of the 5th Congress of the Italian
Association for Artificial Intelligence (AI* IA97) (1997)

9. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge
University Press (2002)

10. Jipsen, P., Tsinakis, C.: A survey of residuated lattices. Ordered Algebraic Struc-
tures (2002) 19–56

11. Choi, V.: Faster algorithms for constructing a galois/concept lattice. In: SIAM
Conference on Discrete Mathematics 2006, University of Victoria, Canada (2006)

12. Boullier, P.: Chinese Numbers, MIX, Scrambling, and Range Concatenation Gram-
mars. Proceedings of the 9th Conference of the European Chapter of the Associ-
ation for Computational Linguistics (EACL 99) (1999) 8–12

13. Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Com-
binatorics 6(4) (2001) 519–535

14. Moortgat, M.: Multimodal linguistic inference. Journal of Logic, Language and
Information 5(3) (1996) 349–385

15. Ono, H., Komori, Y.: Logics Without the Contraction Rule. The Journal of
Symbolic Logic 50(1) (1985) 169–201

16. Gazdar, G., Klein, E., Pullum, G., Sag, I.: Generalised Phrase Structure Grammar.
Basil Blackwell (1985)

17. Asveld, P.: Generating all permutations by context-free grammars in Chomsky
normal form. Theoretical Computer Science 354(1) (2006) 118–130

18. Marcus, S.: Algebraic Linguistics; Analytical Models. Academic Press, N. Y. (1967)
19. Huddleston, R., Pullum, G., Bauer, L.: The Cambridge grammar of the English

language. Cambridge University Press New York (2002)
20. Jackendoff, R.: Alternative minimalist visions of language. Proceedings of Chicago

Linguistics Society (41) (2008)

