
D-STAG: a Formalism for Discourse Analysis
based on SDRT and using Synchronous TAG

Laurence Danlos

Université Paris Diderot, IUF, ALPAGE
Laurence.Danlos@linguist.jussieu.fr

Abstract. We propose d-stag, a new formalism for the automatic anal-
ysis of discourse. The analyses computed by d-stag are hierarchical
discourse structures annotated with discourse relations, which are com-
patible with discourse structures computed in sdrt. A discursive stag
grammar pairs up trees anchored by discourse connectives with trees
anchored by (functors associated with) discourse relations.

1 Introduction

We propose a new formalism for the automatic analysis of texts, called d-stag
for Discourse Synchronous tag. This formalism extends a sentential syntactic
and semantic analyzer to the discursive level: a discursive analyzer computes the
“discourse structure” of the input text. Discourse structures consist of “discourse
relations” (also called “rhetorical relations”) that link together discourse segments

— or more accurately, the meanings these discourse segments convey. A discourse
is coherent just in case every proposition that is introduced in the discourse is
rhetorically connected to another bit of information, resulting in a connected
structure for the whole discourse.

For the discursive part of our analyzer, we rely on sdrt — Segmented
Discourse Representation Theory [1, 2]. d-stag computes discourse structures
which are compatible with those produced in sdrt. Therefore, d-stag can take
advantage of the results brought by this discourse theory.

The research done in the framework of sdrt is theory-oriented, providing
formally detailed accounts of various phenomena pertaining to discourse. Much
less focus has been put on the issue of implementing a robust and efficient
discourse analyzer. For this aspect of the work, we have designed a formalism
based on tag – Tree Adjoining Grammar [3]. After being used successfully for
syntactic analysis in various languages, tag has been extended in two directions:
moving from sentential syntactic analysis to semantic analysis — with, among
others, stag [4–6] —, and moving from the sentence level to the discourse level.
The discourse level initially focuses on text generation — with, among others,
g-tag [7] —, then on discourse parsing — with, among others, d-ltag [8]. The
new formalism presented here relies on all this previous work. In particular, d-
stag and d-ltag, which have roughly the same goal, share the same architecture
with three components:

1. a sentential analyzer, which provides the syntactic and semantic analyses of
each sentence in the discourse given as input,

2. a sentence-discourse interface, which is a mandatory component if one wants
not to make any change to the sentential analyzer,

3. a discursive analyzer, which computes the discourse structure.

This paper is organized as follows. Section 2 presents the main discursive
linguistic data that motivate d-stag. Section 3 gives an introduction to stag.
Section 4 briefly describes the sentence-discourse interface. Section 5 explains in
detail the discursive analyzer. Section 6 compares d-stag and d-ltag.

2 Discursive Linguistic Data

A discourse relation is often explicitly expressed by a “discourse connective”. The
set of discourse connectives includes subordinating and coordinating conjunctions
(because, or) and discourse adverbials (next, therefore). Connectives can be
ambiguous. For example, then lexicalizes the relation Narration in a narrative
(Fred went to the supermarket. Then, he went to the movies.) whereas it lexicalizes
Continuation in an enumeration (. . . The second chapter presents a state of
the art. Then, the third chapter explains the problematics.). Discourse relations
need not be explicitly marked. For example, the relation Explanation in the
connective-free discourse Fred fell. Max tripped him up. of the form C1. C2. must
be inferred from (extra)linguistic knowledge. For such a case, we assume the
existence of an empty adverbial connective, noted ε, following a proposition made
in [9]. So the previous discourse is assumed to be of the form C1. ε C2., and
we say, although somewhat inaccurately, that ε lexicalizes Explanation. In a
nutshell, a discourse relation can be considered as a semantic predicate with
two arguments which is lexicalized by a discourse connective (possibly empty)
with two arguments. The arguments of a discourse relation/connective are the
discursive semantic/syntactic representations of the same (continuous) discourse
segments, These are the basic principles on which our stag discursive grammar
relies.

One should wonder what discourse structures correspond to when represented
as dependency graphs (in which a predicate dominates its arguments). The idea
is widespread that dependency graphs representing discourse structures are tree-
shaped: this is a basic principle in rst — Rhetorical Structure Theory [10, 11]

—, a theory on which many text generation or parsing systems have been based
for the last twenty years. This is also a principle which guided the conception of
d-ltag. Yet this tree-shaped structure is more a myth than a reality, as shown in
[12] and in some of our previous work [13, 14]. sdrt discourse structures are not
represented as dependency graphs, however, in our two aforementioned papers
and in this one, we convert sdrt discourse structures into dependency graphs.
These dependency graphs are dags — Directed Acyclic Graphs — which are not
necessarily tree-shaped. However, these dags respect strong constraints which
rule out a number of dags that don’t correspond to any discourse structure. We
shall justify this claim with the discourses of the form C1 because C2. Adv2 C3.,

in which because lexicalizes Explanation and Ci symbolizes the ith clause (the
logical form for Ci is noted Fi). These discourses yield four types of interpretation

— but no more than four — which are illustrated in examples (1).1

(1)a. Fred is in a bad mood because he lost his keys. Moreover, he failed his
exam.

b. Fred is in a bad mood because he didn’t sleep well. He had nightmares.
c. Fred went to the supermarket because his fridge is empty. Then, he went

to the movies.
d. Fred is upset because his wife is abroad for a week. This shows that he

does love her.

In (1a), Adv2 = moreover lexicalizes the relation
Continuation. The discourse segment C2 Adv2 C3

forms a complex constituent whose logical form,
i.e. Continuation(F2, F3), is the second argument
of Explanation. So the discourse structure is
Explanation(F1, Continuation(F2, F3)), which corre-
sponds to a tree-shaped dependency dag, see the
adjacent figure with R1 = Explanation and R2 =
Continuation. In this example, the second discursive
argument of the conjunction because crosses a sentence
boundary.

F2

R1

F1 R2

F3

In (1b), Adv2 = ε lexicalizes Explanation.
The discourse structure is Explanation(F1, F2) ∧
Explanation(F2, F3), which corresponds to a non tree-
shaped dependency dag.

F2

R1

F1

R2

F3

In (1c), Adv2 = then lexicalizes Narration.
The discourse structure is Explanation(F1, F2) ∧
Narration(F1, F3), which corresponds to a non tree-
shaped dependency dag. F2

R1

F1

R2

F3

In (1d), Adv2 = ε lexicalizes Commentary. The
discourse segment C1 because C2 forms a complex
constituent whose logical form is the first argu-
ment of Commentary. So the discourse structure is
Commentary(Explanation(F1, F2), F3), which corre-
sponds to a tree-shaped dependency dag.

F2

R1

F1

R2

F3

In conclusion, these empirical data show that a formalism for the automatic
analysis of discourse must be able to compute dependency structures which are
not tree-shaped.2 This principle guided the conception of d-stag. More precisely,

1 In [15], these four types of interpretation are finally brought to light, thanks to the
Penn Discourse Tree Bank (PDTB), which is an English corpus manually annotated
for discourse relations and their arguments [16].

2 In rst, (1b) and (1c) are represented as trees that must be interpreted with the ”Nu-
clearity Principle” [17]. However, as explained in [14], the Nuclearity Principle leads to
a wrong interpretation for (1d), namely Explanation(F1, F2)∧Commentary(F1, F3).

from this (and other) data, we laid down the constraints below which govern
the arguments of a discourse connective/relation using the following terminology.
The clause in which a connective appears is called its “host clause”. An adverbial
connective appears in front of its host clause or within its VP. A subordinating
conjunction always appears in front of its host clause, which is called an “adverbial
clause.” At the sentence level, an adverbial clause modifies a “matrix clause.” It
is located on its right, on its left, or inside it before its VP. When it is located on
its right, the subordinating conjunction is said to be “postposed,” otherwise it is
said to be “preposed.” A discourse connective/relation has two arguments which
are the syntactic/semantic representations of two discourse segments that we call
the “host segment” and the “mate segment”. These segments are governed by
the following constraints.

Constraint 1 The host segment of a connective is identical to or starts at its
host clause (possibly crossing a sentence boundary).

Constraint 2 The mate segment of an adverbial is anywhere on the left of its
host segment (generally crossing a sentence boundary).3

Constraint 3 The mate segment of a postposed conjunction is on the left of its
host segment without crossing a sentence boundary.

Constraint 4 The mate segment of a preposed conjunction is identical to or
starts at the matrix clause (possibly crossing a sentence boundary).

3 Introduction to TAG and STAG

This section is reproduced except where noted from [6] with permission of the
authors. It begins with a brief introduction to the use of tag in syntax.

“A tree-adjoining grammar (tag) consists of a set of elementary tree structures
and two operations, substitution and adjunction, used to combine these structures.
The elementary trees can be of arbitrary depth. Each internal node is labeled with
a nonterminal symbol. Frontier nodes may be labeled with either terminal symbols
or nonterminal symbols and one of the diacritics ↓ or ∗. Use of the diacritic
↓ on a frontier node indicates that it is a substitution node. The substitution
operation occurs when an elementary tree rooted in the nonterminal symbol A
is substituted for a substitution node labeled with the nonterminal symbol A.
Auxiliary trees are elementary trees in which the root and a frontier node, called
the foot node and distinguished by the diacritic ∗, are labeled with the same
nonterminal. The adjunction operation involves splicing an auxiliary tree with
root and designated foot node labeled with a nonterminal A at a node in an
elementary tree also labeled with nonterminal A. Examples of the substitution
and adjunction operations on sample elementary trees are shown in Figure 1.”

“Synchronous tag (stag) extends tag by taking the elementary structures
to be pairs of tag trees with links between particular nodes in those trees. An
3 However, the mate segment must conform to the Right Frontier Constraint, which

has been postulated in sdrt, see Sect. 4.1.1.

P

NP↓ VP

V

likes

NP↓NP

John

=⇒

P

NP

John

VP

V

likes

NP↓

P

NP↓ VP

V

likes

NP↓VP

Adv

apparently

VP*

=⇒

P

NP↓ VP

Adv

apparently

VP

VP

likes

NP↓

Fig. 1. Example TAG substitution and adjunction operations (reproduced from [6])

stag is a set of triples, 〈tL, tR,_〉 where tL and tR are elementary tag trees
and _ is a linking relation between nodes in tL and nodes in tR [4, 5]. Derivation
proceeds as in tag except that all operations must be paired. That is, a tree can
only be substituted or adjoined at a node if its pair is simultaneously substituted
or adjoined at a linked node.” We notate the links by using circled indices (e.g.
À) marking linked nodes.

NP

John

e

john

NP

Mary

e

mary

VP

Adv

apparently

VP∗

t

〈t, t〉

apparently

t∗

P À

NP↓ Â VP Á

V

likes

NP↓ Ã

t ÀÁ

〈e, t〉

〈e, 〈t, t〉〉

likes

e↓ Ã

e↓ Â

Fig. 2. An English syntax/semantics stag fragment (reproduced from [6])

stag has been successfully used in an English sentential syntax/semantics in-
terface [6]. For the sentence John apparently likes Mary, Fig. 2 gives the stag
fragment, Fig. 3 the derivation tree and the derived tree pair. In derivation trees,
“substitutions are notated with a solid line and adjunctions are notated with a
dashed line. Note that each link in the derivation tree specifies a link number
in the elementary tree pair. The links provide the location of the operations
in the syntax tree and in the semantics tree. These operations must occur at
linked nodes in the target elementary tree pair. In this case, the noun phrases
John and Mary substitute into likes at links Â and Ã respectively. The word
apparently adjoins at link Á. The resulting semantic representation can be read
off the derived tree by treating the leftmost child of a node as a functor and
its siblings as its arguments. Our sample sentence thus results in the semantic
representation apparently(likes(john,mary)).”

likes

john
apparently

mary

Â ÃÁ

S

NP

John

VP

Adv

apparently

VP

V

likes

NP

Mary

t

〈t, t〉

apparently

t

〈e, t〉

〈e, 〈e, t〉〉

likes

e

mary

e

john

Fig. 3. Derivation tree and derived tree pair for John apparently likes Mary (reproduced
from [6])

4 Sentence-Discourse Interface

We first explain why this interface is necessary. The idea in d-stag is to extend
a sentential analyzer to the discourse level without making any change to
it. Yet, one cannot directly pass from sentence to discourse because there are
mismatches between the arguments of a connective at the discourse level and its
arguments at the sentence level. First, an adverbial connective has compulsorily
two arguments at the discourse level, whereas it has only one argument at the
sentence level. Second, a subordinating conjunction can have an argument at
the discourse level which crosses a sentence boundary (see (1a) and (3) below),
whereas this is out of the question at the sentence level.

In conclusion, it is necessary to pass through a sentence-discourse interface
which gives sentence boundaries the simple role of punctuation signs and which

allows us to re-compute the (two) arguments of a connective. Such an interface
is also used in d-ltag, by which we were inspired. From the sentential syntactic
analysis, this interface deterministically produces a “Discourse Normalized Form”
(henceforth dnf), which is a sequence of “discourse words:” a discourse word is
mainly a connective, an identifier Ci for a clause (without any connective) or a
punctuation sign. The syntactic and semantic analyses for Cis are those obtained
by the sentential analyzer by removing connectives. An adverbial connective is
moved in front of its host clause if not already there, while keeping a trace of
its original position. If a normalized sentence (except the very first one) doesn’t
start with an adverbial connective, the empty connective ε is introduced. As an
illustration, for (2), the dnf is C1. ε as C2, C3. then

internal C4 because C5.

(2) Fred went to the movies. As he was in a bad mood, he didn’t enjoy it. He
then went to a bar because he was dead thirsty.

The sequence of discourse words making up a dnf follows a regular grammar.
The discursive component of d-stag is illustrated below with the following
regular expressions. A dnf without any preposed conjunction follows the regular
expression C (Punct Conn C)∗, in which the sequence Punct Conn is either . Adv
or (,) Conj where the comma is optional. It is noted C1 Conn2 C2 . . . Cn−1 Cn

disregarding punctuation signs. A dnf with a preposed conjunction includes one
element C which is preceded by the expressions Conj C((,) Conj C)∗. Finally,
Adv and Conj can be optionally followed or preceded by a modifier (Sect. 5.2).

This regular grammar should be completed to take into account coordinating
conjunctions. Moreover, it takes into account neither clausal complements nor
incident clauses nor relative clauses, while these sub-clauses may play a role at
the discourse level. We plan to complete the regular grammar for dnfs in future
research and to extend the discursive component of d-stag accordingly.

5 Discursive Component of D-STAG

For a clause Ci (without any connective), the sentential-discourse interface
provides its syntactic tree rooted in S and noted Ti, its semantic tree rooted in t
and noted Fi, and its derivation tree noted τi. To plug the clausal analyses into
the discourse ones, we use the pair αS-to-D given in Fig. 4-a. In the rest of this
paper, we note τ ′i the derivation tree made of αS-to-D in which τi is substituted
at link }; τ ′1 corresponds to the pair given in Fig. 4-b. We also use the following
convention: as any tree of our grammar includes at the most one substitution
node, this one (when it exists) is systematically marked with link }.

Given the regular grammar for dnfs we have just presented, the discourse
grammar includes trees anchored by a connective (co-anchored by a punctuation
sign) and trees anchored by a connective modifier (Sect. 5.2).

5.1 STAG Grammar for Connectives

When a given connective Conni lexicalizes a single discourse relation Ri, the basic
principle of the discursive stag grammar consists in designing a tree pair, noted

DU À

S↓ }

t À

t↓ }

(a) αS-to-D

DU À

Ti

t À

Fi

(b) τ ′i

Fig. 4. Tree pairs αS-to-D and τ ′i

Conni ÷Ri, whose syntactic tree is anchored by Conni and whose semantic tree
is anchored by a lambda-term associated with Ri. We say, although somewhat
inaccurately, that the semantic tree is anchored by Ri. When a connective is
ambiguous, i.e. it lexicalizes several discourse relations, it anchors as many
syntactic trees as discourse relations it lexicalizes (this is in particular the case
for the empty connective ε). However, ambiguity issues are not in the scope of
this paper.

We start with adverbials and postposed conjunctions, which are connectives
with a similar behavior. Then, we move (Sect. 4.1.2) to preposed conjunctions.

5.1.1 Adverbial Connectives and Postposed Conjunctions

Syntactic trees. The syntactic trees anchored by an adverbial connective or by a
postposed conjunction are given in Fig. 5, in which a discourse connective is of
category DC. Disregarding the features for now, these trees differ only in the
co-anchors which are punctuation signs of category Punct.

DU Ã
»

t: -
b: conj − post = −

–

DU Â
»

t: -
b: conj − post = −

–

DU* Punct

.

DC

Advi

DU Á

DU↓ }

DU Ã

DU Â

DU*
»

t: conj − post = +
b: -

–
(Punct)

,

DC

Conji

DU Á

DU↓ }

Fig. 5. Syntactic trees for adverbial connectives and postposed conjunctions

These trees observe the following principles: they are auxiliary trees with two
arguments given by a substitution node DU↓ and a foot node DU∗, where
DU (Discourse Unit) symbolizes the discursive syntactic analysis of a discourse
segment. The substitution node is for the host argument of the connective, i.e. the
DU for the host segment substitutes at DU↓. If the DU for the host clause has
undergone an adjunction, then the host segment starts at — but is not identical
to — the host clause, see Constraint 1 in Sect. 2. The foot node corresponds to

the mate argument of the connective. It is located on its left, which conforms to
Constraints 2 and 3. The fact that the mate segment of a postposed conjunction
cannot cross a sentence boundary, contrarily to that of an adverbial, is handled
with features [conj − post = ±] explained later.

In a dnf of the form C1 Conn1 C2 Conn2 . . . Cn (disregarding punctuation
signs), the attachment of a new segment Connn Cn+1 is only realized by ad-
junction of the tree anchored by Connn — in which the syntactic tree of the
pair τ ′n+1 has been substituted — at a node of the syntactic tree representing
C1 . . . Cn. Keeping to the linear order of the dnf requires that the adjunction of a
new segment be realized at a node which is located on the right frontier of the
syntactic tree. That is the reason why the trees anchored by an adverbial or a
postposed conjunction include three nodes labelled DU , with link Á, Â or Ã, on
their right frontier. These nodes are marked with different links, which allows us
to get various semantic interpretations, as shown below. There exist three nodes
DU with different links, and not a single node DU with three different links, so
as to allow several adjunctions to different nodes, for example an adjunction at
DUÂ to attach the new segment Connn Cn+1 and an adjunction at DUÃ to
attach the segment Connn+1 Cn+2. It should be noted that if an adjunction is
done at DUÂ to attach Connn Cn+1, DUÁ is no longer on the right frontier of
the syntactic tree. Therefore, DUÁ can no longer be an adjunction site to attach
Connn+1 Cn+2. This constraint will be generalized in Constraint 5 below.

Semantic trees. At first sight, one could consider that a discourse relation Ri

is associated with the functor Ri = λxy.Ri(x, y) with x, y : t, Ri(x, y) : t,
and Ri : 〈t, 〈t, t〉〉, Ri anchoring a tree with a foot node t∗ and a substitution
node t↓. Yet this is appropriate only to analyze a simple dnf with two clauses,
for example a dnf of the form C1 because C2 as shown in Fig. 6 in which
β1 = becausepost ÷ Explanation.

τ ′2

β1

τ ′1

}

À
t Ã

〈t, t〉

〈t, 〈t, t〉〉

R1

t

F1

t À

F2

R1 = ExplanationDU Ã

DU Â

DU

T1

DC

because

DU Á

DU À

T2

Fig. 6. Derivation tree and derived tree pair for a dnf of the form C1 because C2 (using
the functor R1 in the semantic tree)

However, with this simple functorRi, it is impossible to obtain four interpretations
(of which two are a conjunction of formulae) for dnfs with three clauses (see
Sect. 2). Therefore, we define two type-shifting operators Φ′ and Φ′′: they take
Ri as argument and return two new functors R′i and R′′i associated with the
discourse relation Ri.

Definition 1 Φ′ = λRiXY.X(λx.Y (λy.Ri(x, y)))
Φ′(Ri) = R′i = λXY.X(λx.Y (λy.Ri(x, y)))
with X,Y : ttt = 〈〈t, t〉, t〉 and x, y : t

Φ′ triggers a type raising. The resulting functor R′i is of type 〈ttt, 〈ttt, t〉〉 in
which ttt symbolizes the type 〈〈t, t〉, t〉. It co-anchors tree (A), given in Fig. 7-a,
whose foot node is of type t. (A) is used for adjunctions at links À and Ã. If the
first argument of R′i is λP.P (F1) of type ttt, the second one λQ.Q(F2) of type
ttt, then the result is Ri(F1, F2) of type t. So, for a dnf with two clauses, R′i
leads to the same result as Ri. Yet, the type raising is necessary to introduce
nodes ttt Á and ttt Â at which (B) can adjoin.

Definition 2 Φ′′ = λRiXY P.X(λx.Y (λy.Ri(x, y) ∧ P (x)))
Φ′′(Ri) = R′′i = λXY P.X(λx.Y (λy.Ri(x, y) ∧ P (x)))
with X,Y : ttt = 〈〈t, t〉, t〉, P : 〈t, t〉 and x, y : t

Φ′′ introduces a conjunction of terms. The resulting functor R′′i is of type
〈ttt, 〈ttt, ttt〉〉. It anchors tree (B), given in Fig. 7-b, whose foot node is of type
ttt. (B) is used for adjunctions at links Á and Â. If the first argument of R′′i is
λP.P (F1), the second one λQ.Q(F2), then the result is λP.(Ri(F1, F2) ∧ P (F1))
of type ttt.

〈ttt, t〉

〈ttt, 〈ttt, t〉〉

〈. . .〉

Φ′

〈t, 〈t, t〉〉

Ri

ttt Â

λ P t

P t∗

ttt Á

λ Q t

Q t↓}

t Ã

(a) Tree (A)

〈ttt, ttt〉

〈ttt, 〈ttt, ttt〉〉

〈. . .〉

Φ′′

〈t, 〈t, t〉〉

Ri

ttt Â

ttt∗

ttt Á

λ Q t

Q t↓}

ttt Ã

(b) Tree (B)

Fig. 7. Semantic trees (A) and (B) anchored by R′i = φ′(Ri) and R′′i = φ′′(Ri)

Analysis of dnfs with three clauses. For dnfs with three clauses, four types
of interpretation must be computed. These were illustrated in examples (1) of
the form C1 because C2. Adv2 C3 in Sect. 2, and we are going to explain the
analysis of these examples. We note β1 the tree pair becausepost ÷Explanation
and β2 the pair Adv2 ÷R2. After analyzing C1 because C2, the syntactic tree is
that shown in Fig. 6. The right frontier of this tree includes four nodes labelled
DU which can receive the adjunction of the syntactic tree of β2. These nodes
are marked with link À coming from the syntactic tree of τ ′2 or link Á, Â or Ã
coming from the syntactic tree anchored by because. The analyses of the four
examples in (1) are obtained by adjoining β2 at one of these links.

We start with (1a) with β2 = moreover ÷ Continuation, for which the
discourse structure is Explanation(F1, Continuation(F2, F3)). This is obtained
by adjoining β2 at link À of τ ′2. The node with link À in the semantic tree of τ ′2
is of type t. Therefore, one must use tree (A) anchored by R′2, whose foot node
is of type t. The semantic derived tree for (1a) is given in Fig. 8. The sub-tree
rooted at Gorn address 2 results in λP.P (Continuation(F2, F3)) with P : 〈t, t〉.
So Continuation(F2, F3) is the second argument of R1 = Explanation, whose
first argument is F1, hence the formula Explanation(F1, Continuation(F2, F3)).

t

〈ttt, t〉

〈ttt, 〈ttt, t〉〉

R′1

ttt

λP.P (F1)

ttt

λ P t

P t

〈ttt, t〉

〈ttt, 〈ttt, t〉〉

R′2

ttt

λQ.Q(F2)

ttt

λS.S(F3)

R1 = Explanation

R2 = Continuation

Fig. 8. Semantic derived tree for (1a) with interpretation R1(F1, R2(F2, F3))

We go on with (1b) with β2 = ε ÷ Explanation, for which the discourse
structure is Explanation(F1, F2) ∧ Explanation(F2, F3) with a conjunction of
formulae. This is obtained by adjoining β2 at link Á of β1. The node with
link Á in the semantic tree of β1 is of type ttt. Therefore, one must use tree
(B) anchored by R′′2 , whose foot node is of type ttt. The semantic derived tree
for (1b) is given in Fig. 9-a. The sub-tree rooted at Gorn address 2 results in
λP.(Explanation(F2, F3) ∧ P (F2)) with P : 〈t, t〉. As only F2 is under P , it is
the second argument of R1 = Explanation, whose first argument is F1, hence
the formula Explanation(F1, F2) ∧ Explanation(F2, F3).

For (1c) with β2 = then÷Narration, the structure is Explanation(F1, F2)∧
Narration(F1, F3) with also a conjunction of formulae. This is obtained by
adjoining β2 at link Â of β1. This case is similar to the previous one, so we simply
give the semantic derived tree in Fig. 9-b.

t

〈ttt, t〉

〈ttt, 〈ttt, t〉〉

R′1

ttt

λP.P (F1)

ttt

〈ttt, ttt〉

〈ttt, 〈ttt, ttt〉〉

R′′2

ttt

λQ.Q(F2)

ttt

λS.S(F3)

(a) (1b) with R1 = R2 = Explanation

t

〈ttt, t〉

〈ttt, 〈ttt, t〉〉

R′1

ttt

〈ttt, ttt〉

〈ttt, 〈ttt, ttt〉〉

R′′2

ttt

λP.P (F1)

ttt

λQ.Q(F3)

ttt

λS.S(F2)

(b) (1c) with R1 = Explanation and R2 = Narration

Fig. 9. Semantic derived trees for (1b) and (1c) with interpretations R1(F1, F2) ∧
R2(F2, F3) and R1(F1, F2) ∧R2(F1, F3)

Let us finish with (1d) with β2 = ε÷ Commentary, for which the structure
is Commentary(Explanation(F1, F2), F3). This is obtained by adjoining β2 at
link Ã of β1. The node with link Ã in the semantic tree of β1 is of type t.
Therefore, one must use tree (A) anchored by R′b. The semantic derived tree
for (1d) is given in Fig. 10. The sub-tree rooted at Gorn address 1.2 results in
λP.P (Explanation(F1, F2)) with P : 〈t, t〉.

In conclusion, the four types of interpretation of dnfs of the form C1 Conj1 C2.
Adv2 C3 are computed thanks to the four adjunction sites on the right frontier of
the syntactic tree for C1 Conj1 C2 and to semantic trees (A) and (B) whose foot
nodes are respectively of type t et ttt and which are anchored by R′i and R′′i .

For dnfs with three clauses of the form C1 Conn1 C2 Conn2 C3, we have
just examined the case C1 Conj1 C2. Adv2 C3 where Conn1 is a postposed
conjunction and Conn2 an adverbial. Three cases are left: Conn1 is a postposed

t

〈ttt, t〉

〈ttt, 〈ttt, t〉〉

R′2

ttt

λ P t

P t

〈ttt, t〉

〈ttt, 〈ttt, t〉〉

R′1

ttt

λP.P (F1)

ttt

λQ.Q(F2)

ttt

λS.S(F3)

R1 = Explanation
R2 = Commentary

Fig. 10. Semantic derived trees for (1d) with the interpretation R2(R1(F1, F2), F3)

conjunction and Conn2 also, Conn1 is an adverbial and Conn2 also, Conn1 is an
adverbial and Conn2 a postposed conjunction. The first two cases raise no new
issues. The third case, which concerns dnfs of the form C1. Adv1 C2 Conj2 C3,
raises the issue of fully implementing Constraint 3 from Sect. 2, which states
that the mate segment of a postposed conjunction cannot cross a sentence
boundary. This constraint is implemented thanks to features [conj − post = ±]
which decorate some nodes in the syntactic trees anchored by an adverbial or a
postposed conjunction, which are given in Fig. 5. More precisely:

– the foot node of a tree anchored by a postposed conjunction is decorated
with the top feature conj − post = +,

– the nodes with links Â and Ã in a tree anchored by an adverbial are decorated
with the bottom feature conj − post = −.

These features block the adjunction of Conj2÷R2 at links Â and Ã of Adv1÷R1

thanks to the unification failure (conj−post = +)∪(conj−post = −). Therefore,
Conj2÷R2 can only adjoin at link Á of Adv1÷R1 and at link À of τ ′2, which results
respectively in the interpretations R1(F1, F2)∧R2(F2, F3) and R1(F1, R2(F2, F3)).
These interpretations conform to Constraint 3: the mate argument of R2 is F2,
so the mate segment of Conj2 is C2, which doesn’t cross a sentence boundary.

Analysis of dnfs with n clauses (n > 3) of the form C1 Conn1 C2 . . . Cn. For
dnfs with n clauses, no new mechanism is involved. Attaching the new segment
Connn Cn+1 consists in adjoining Connn ÷Rn — in which τ ′n+1 is substituted

— at link À of τ ′n or at link i with i ∈ {2, 3, 4} of a node βk = Connk ÷Rk in
the derivation tree representing C1 . . . Cn, the node at link i coming from the
syntactic tree of βk being on the right frontier of the syntactic tree for C1 . . . Cn

(to keep to the linear order of the dnf). As it is long and tedious to determine
(the right frontier of) the derived syntactic tree, it is convenient to define a notion

of right frontier on the derivation tree. Since derivation trees are intrinsically
not ordered, a graphical convention which represents derivation trees as ordered
must be called upon. The following convention is satisfactory: the nodes labeled
τ ′k projected onto a line are ordered by following the linear order of the dnf.
With this order relation noted ≺, the nodes βk in the derivation tree which are
possible sites of adjunction for a new segment are those on the right frontier of
the derivation tree, while observing Constraint 5 which governs two adjunctions
at links n and m of the same node:4

Constraint 5 If βj — in which τ ′j+1 is substituted — adjoins at link n of a
node βi, then βk — in which τ ′k+1 is substituted — can adjoin at link m of the
same node βi only if the following rule is observed: τ ′j+1 ≺ τ ′k+1 ⇒ n < m (with
n and m belonging to {2, 3, 4}).

This constraint generalizes the one we formulated before, namely, if an adjunction
is performed at node DUÂ of a syntactic tree anchored by Conni, then a new
adjunction in this tree can be performed at DUÃ but not at DUÁ.

Implementation of RFC. The Right Frontier Constraint (RFC) postulated in
sdrt relies on a distinction between two types of discourse relations: coordinating
(Narration, Continuation) versus subordinating (Explanation, Commentary)
ones. RFC says that it is forbidden to attach new information to the first argument
of a coordinating relation [2]. As a consequence, for example, the interpretation
R1(F1, F2) ∧R2(F1, F3) is excluded when R1 is coordinating.

Implementing RFC in d-stag requires first to distinguish the semantic trees
anchored by a coordinating versus subordinating relation. This is achieved by
creating two copies of semantic trees (A) and (B), which differ in a top feature
[coord = ±] decorating their foot node. Then RFC is implemented by forbidding
any adjunction at link Â of the copies of (A) and (B) whose foot node is
decorated with the feature [coord = +] (then, for example, the interpretation
R1(F1, F2) ∧R2(F1, F3) is excluded when R1 is coordinating).

sdrt postulates other semantic constraints based on the distinction between
coordinating versus subordinating relations, for example the “Continuous Dis-
course Pattern” [18]. There is no room to describe them, however we can say
that they are easily implemented in d-stag thanks to the addition of a set of
features in the semantic trees.

5.1.2 Preposed Conjunctions The syntactic tree anchored by a preposed
conjunction is given in Fig. 11. It is designed so as to respect Constraints 1 and 4
given in Sect. 2. It differs from the syntactic trees anchored by an adverbial or a
postposed conjunction, among other things, by the fact that the foot node DU∗
is dominated by a node DU with link Ä. To take into account this new link, a
node tÄ dominating the foot node t∗ is added into the two copies of semantic
tree (A).
4 This constraint is valid because we assigned links Á, Â and Ã in a well-thought-out

manner.

DU Ã

DU Â

DC

Conji

DU Á

DU↓ }

Punct

,

DU Ä

DU*

whenpre ÷ Circumstance

τ ′2

τ ′1 next÷Narration

τ ′3

À

} Ä

}

Fig. 11. Tree anchored by a preposed conjunction and derivation tree for (3)

An adjunction to link Ä is used when the preposed conjunction plays the role of a
“framing adverbial” [19] as illustrated in (3) of the form When C1, C2. Next C3.
In this discourse, the preposed conjunction when — the framing adverbial —
has its mate segment which crosses a sentence boundary. Its interpretation is
Circumstance(Narration(F2, F3), F1), assuming that when conveys Circumstance
and next conveys Narration.

(3) When he was in Paris, Fred went to the Eiffel Tower. Next, he visited The
Louvre.

The derivation tree for (3) is given in Fig. 11. The semantic trees anchored
by Circumstance and Narration are both (A). The arguments of R′1 with
R1 = Circumstance are λP.P (Narration(F2, F3)) and λQ.Q(F1). Therefore,
Narration(F2, F3) is the first argument of Circumstance, F1 the second one.5

5.2 STAG Grammar for Modifiers of Discourse
Connectives/Relations

As far as we are aware, modification of discourse connectives/relations is a
phenomenon which has been neglected, even in sdrt. However, it is a common
phenomenon as illustrated in (4).

(4)a. Fred is in a bad mood only/even/except when it is sunny.
b. You shouldn’t trust John because, for example, he never returns what he

borrows. [21]
c. John just broke his arm. So, for example, he can’t cycle to work.[21].

In [21], for example is not considered as a connective modifier but as a
connective whose interpretation is “parasitic” on the relation conveyed by the
connective on its left. This position, which is not linguistically justified, leads to

5 Examples such as (3) make it that, despite appearances, the syntactic discursive
grammar of d-stag is not a tig (Tree Insertion Grammar) [20], since the right tree
anchored by next is adjoined on the spine of the left tree anchored by the preposed
conjunction when.

laborious computations in d-ltag [8, pp 31-35] to obtain the interpretation of
(4b). On the contrary, in d-stag, we propose that for example in (4b) or (4c)
is a modifier of the connective on its left in the same way that only, even and
except in (4a) are modifiers of the connective on their right. This position sounds
more justified on linguistic grounds and it allows us to obtain the interpretation
of a discourse such as (4b) in a very simple way, as we are going to show.

In d-stag, connective modifiers anchor (syntactic) auxiliary trees whose
foot node is DC (left tree for only, even and except, right tree for for exam-
ple). To adjoin these trees, we mark the node labelled DC with link Å in
the syntactic trees for connectives (Fig. 5 and 11). At the semantic level, we
assume that the contribution of a discourse relation modifier consists in trans-
forming a functor Ri of type 〈t, 〈t, t〉〉 into another functor of the same type.
Therefore, the nodes dominating Ri are marked with link Å in the two copies
of (A) and (B). Let us illustrate adjunctions to link Å with (4b) of the form
C1 because for example C2. As explained in [21], the interpretation of (4b) is
Exemplification(F2, λr.Explanation(F1, r)) with r : t. To get this interpreta-
tion, we define the functor For-ex as below. The pair named βfor-ex is given in
Fig. 12, which also shows the derivation tree for (4b). The functor Φ′(For-ex (Ri))
with Ri = Explanation results in the right interpretation.

Definition 3 For-ex = λRipq.Exemplification(q, λr.Ri(p, r))
with Ri : 〈t, 〈t, t〉〉 and p, q : t.

DC

DC∗ for example

〈t, 〈t, t〉〉

〈. . . 〉

For-ex

〈t, 〈t, t〉〉∗

τ ′1

becausepost ÷ Explanation

βfor − exτ ′2

À

Å}

Fig. 12. Pair βfor-ex and derivation tree for (4b)

The correlative constructions with neither . . . nor, either . . . or, not only
. . . but also that are illustrated in (5) can easily be handled in d-stag by
considering e.g. neither and nor as (adverbial) modifiers of the subordinating
conjunctions on their right. The fact that neither and nor cannot appear inde-
pendently is taken into account by a set of features in the syntactic trees for
connectives; however, there is no room to explain these features. For (5a) of the
form C1 neither when C2 nor when C3, the interpretation ¬Condition(F1, F2)∧
¬Condition(F1, F3) — assuming that when lexicalizes the relation Condition

— is obtained (through an adjunction at link Â) by giving neither and nor the
semantics of negation. For (5b) of the form C1 either if C2 or if C3, the in-
terpretation Condition(F1, F2) ∨ Condition(F1, F3) = ¬(¬Condition(F1, F2) ∧

¬Condition(F1, F3)) is obtained by a semantic tree associated to either with two
parts, one for the local scope of negation, and the other one for the global scope
of negation over the conjunction of formulae.6

(5)a. Fred is pleased neither when it is sunny nor when it is rainy.
b. Fred will come either if it is sunny or if it is rainy.
c. Fred is pleased not only when it is sunny but also when it is rainy.

6 Comparison between D-STAG and D-LTAG

d-stag and d-ltag [8] roughly share the same goal and the same architecture.
The discrepancies between these two formalisms mainly lie in the discursive
component.7 First, d-ltag makes little use of discourse relations and ignores
the distinction between coordinating versus subordinating relations. In short,
it doesn’t build on discourse theories. This is even a principle, as shown in the
quotation [8, p 1] “ d-ltag presents a model of low-level discourse structure and
interpretation that exploits the same mechanisms used at the sentence level and
builds them directly on top of clause structure and interpretation”. This prevents
d-ltag from taking advantage of the insights provided by discourse theories,
which supply rhetorical knowledge, among other things.

Next, discourse connectives in d-stag all anchor elementary trees with two
arguments, whereas, in d-ltag, most adverbial connectives (but not the empty
one ε) anchor trees with only one argument (this is, for example, the case for
then whose host segment is “structurally” provided, the mate segment being
“anaphorically” provided [21]). Moreover, subordinating conjunctions in d-ltag
anchor trees with two arguments, but these trees are initial trees whereas they
are auxiliary in d-stag (subordinating conjunctions are considered in d-ltag
as “structural” connectives, neglecting the fact that one of their segments can
cross a sentence boundary). These discrepancies between the trees anchored by a
connective lead to crucial differences in the discursive analyses, especially in the
semantic ones. As an illustration, the syntactic tree and derivation tree produced
by d-ltag for (1c) are given in Fig. 13.

The syntactic tree includes three nodes labelled DC, while it includes only
two nodes labelled DC in d-stag since the empty connective ε is introduced
only in the absence of any other adverbial. The derivation tree results in the
discourse structure Narration(Explanation(F1, F2), F3), which is wrong: the
explanation given for Fred’s visit to the supermarket (his fridge was empty)
shouldn’t be under the scope of Narration, which is a relation linking together
two events and not a causal relation and an event. As explained before, the
discourse structure for (1c) is Explanation(F1, F2) ∧ Narration(F1, F3). This
6 This is the only case which requires a multi-component semantic tree (for the

discourses we have dealt with so far).
7 The sentential components of d-stag and d-ltag are also crucially different, since

d-stag relies on stag, which is not the case for d-ltag. However, the sentential level
is out of the scope of this paper, see [6] for a discussion on the various approaches
for a sentential syntax-semantics interface.

structure, which corresponds to a non tree-shaped dependency graph, cannot be
obtained in d-ltag.

DU

DC

ε

DU

DU

T1

DC

because

DU

T2

DU

DC

then

DU

T3

αbecause

τ ′1 τ ′2

βε

τ ′3

βthen

Fig. 13. d-ltag syntactic tree and derivation tree for (1c)

“The distinction between structural and anaphoric connectives in d-ltag
is based on considerations of computational economy and behavioral evidence
from cases of multiple connectives” [21, p 552]. In (6), whose dnf is of the form
C1 but C2 because then C3, two connectives share the same host clause C3.

(6) John ordered three cases of Barolo. But he had to cancel the order because
then he discovered he was broke. [21]

In d-stag, we propose the following solution to handle multiple connectives. The
dnf for (6) is automatically converted into C1 but C2 because C3 then C3 which
conforms to the regular pattern for dnfs (without any preposed conjunction). The
tree pair τ ′3 associated to C3 is given in Fig. 14-a: the syntactic leaf is the empty
string ε, the semantic leaf is F3 (the semantic formula for C3). So we can say that
C3 is the (fake) host clause of because, which has only a semantic contribution. The
interpretation of (6), i.e. Contrast(F1, F2)∧Explanation(F2, F3)∧After(F1, F3)
assuming that then conveys After, is obtained by the mechanisms described
in Sect. 5.1.1 which build the derivation tree given in Fig. 14-b (with β1 =
but÷ Contrast, β2 = because÷ Explanation and β3 = then÷After).

DU À

ε

t À

F3

(a) τ ′3

τ ′2

β1

τ ′1

β2

τ ′3

β3

τ ′3

}

À

Á

} }

Â

(b) Derivation tree for (6)

Fig. 14. Tree pair τ ′3 and derivation tree for (6)

7 Conclusion

We have presented d-stag, a formalism which extends a sentential syntax-
semantics interface to the discourse level. It allows us to compute discourse
structures which are compatible with those produced in sdrt, an elaborated
discourse theory. The stag discursive grammar mainly consists of syntactic trees
anchored by a connective which are paired with semantic trees anchored by the
discourse relation (or one of the discourse relations) lexicalized by the connective.
It is designed so that discourse structures correspond to dependency graphs which
are not necessarily tree shaped. The stag discursive grammar also includes trees
anchored by modifiers of discourse connectives/relations.

The discursive component takes as input a dnf that is computed by a sentence-
discourse interface. This interface is neccesary if one doesn’t want to make any
change to the sentential analyzer. A dnf is a sequence of discourse words which
follows a regular grammar. The regular grammar we have presented in this
paper is not yet completed. We plan to extend it, especially to take into account
those sub-clauses which play a role at the discursive level. This extended regular
grammar will lead to an extended stag discursive grammar. We don’t foresee
any crucial difficulty for this grammar, thanks to stag’s richness of expressivity.

The implementation of d-stag in a French discourse analyzer is work in
progress [22]. The analyzer will produce a forest of dependency trees which
represents the set of possible analyses. The extraction of the best analysis (or
the n best analyses) will require to build probabilistic disambiguation models
based on the French annotated corpus Annodis [23].8

References

1. Asher, N.: Reference to Abstract Objects in Discourse. Kluwer, Dordrecht (1993)
2. Asher, N., Lascarides, A.: Logics of Conversation. Cambridge University Press,

Cambridge (2003)
3. Joshi, A.: Tree-adjoining grammars. In Dowty, D., Karttunen, L., Zwicky, A., eds.:

Natural language parsing. Cambridge University Press (1985) 206–250
4. Shieber, S.: Restricting the weak-generative capacity of synchronous tree-adjoining

grammars. Computational Intelligence 10(4) (1994) 371–385
5. Shieber, S., Schabes, Y.: Synchronous tree-adjoining grammars. In: Proceedings

of the 13th International Conference on Computational Linguistics. Volume 3.,
Helsinki (1990) 253–258

6. Nesson, R., Shieber, S.: Simpler TAG semantics through synchronization. In:
Formal Grammars, Malaga (2006)

7. Danlos, L.: G-TAG: A lexicalized formalism for text generation inspired from TAG.
In Abeill, A., Rambow, O., eds.: TAG Grammar. CSLI (2001)

8. Forbes-Riley, K., Webber, B., Joshi, A.: Computing discourse semantics: The
predicate-argument semantics of discourse connectives in D-LTAG. Journal of
Semantics 23(1) (2006)

8 http://w3.erss.univ-tlse2.fr:8080/index.jsp?perso=annodis&subURL=

ANNODISfr.html

9. Harris, Z.: Mathematical Structures of Language. Krieger Pub co, New York (1986)
10. Mann, W.C., Thompson, S.A.: Rhetorical structure theory : Toward a functional

theory of text organization. Text 8(3) (1988) 243–281
11. Marcu, D.: The rhetorical parsing of unrestricted texts: A surface-based approach.

Computational Linguistics 26(3) (2000) 395–448
12. Wolf, F., Gibson, E.: Coherence in Natural Language: Data Structures and Appli-

cations. The MIT Press, London (2006)
13. Danlos, L.: Discourse dependency structures as constrained DAGs. In: Proceedings

of SIGDIAL’04, Boston (2004) 127–135
14. Danlos, L.: Strong generative capacity of RST, SDRT and discourse dependency

DAGs. In Benz, A., Kühnlein, P., eds.: Constraints in Discourse. Benjamins (2007)
69–95

15. Lee, A., Prasad, R., Joshi, A., Webber, B.: Departures from tree structures in
discourse: Shared arguments in the Penn Discourse Tree Bank. In: Proceedings of
the Constraints in Discourse Workshop (CID’08), Postdam, Germany (2008)

16. PDTB Group: The Penn Discourse Treebank 2.0 annotation manual. Technical
report, Institute for Research in Cognitive Science, University of Philadelphia (2008)

17. Marcu, D.: The Theory and Practice of Discourse Parsing and Summarization. The
MIT Press (2000)

18. Asher, N., Vieu, L.: Subordinating and coordinating discourse relations. Lingua
115(4) (2005) 591–610

19. Charolles, M.: Framing adverbials and their role in discourse cohesion. In: Proceed-
ings of SEM-05, Biarritz (2005) 194–201

20. Schabes, Y., Waters, R.: Tree Insertion Grammar. Computational Intelligence 21
(1995) 479–514

21. Webber, B., Joshi, A., Stone, M., Knott, A.: Anaphora and discourse structure.
Computational Linguistics 29(4) (2003) 545–587

22. Danlos, L.: D-STAG : un formalisme d’analyse automatique de discours basé sur
les TAG synchrones. Revue TAL 50 (2009) 1–31

23. Péry-Woodley, M.P., Asher, N., Enjalbert, P.: ANNODIS: une approche outillée de
l’annotation de structures discursives. In: Proceedings of TALN’09, Senlis, France
(2009) 190–196

