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Abstract. We provide a graphical representation of proofs in the pcofhee
Lambek calculus, called term graphs, that is related toraéweher proof net
presentations. The advantage of term graphs is that theyparsimple compared
to the others. We use this advantage to provide an NP-coemgss$ proof of the
product-free Lambek Calculus that uses the reduction of@8f proof is more
intuitive due to the fact that term graphs allow argumeng tire graphical in
nature rather than using the algebraic arguments of [8].

1 Introduction

The Lambek calculus [4], is a variant of categorial gramrhat is of interest to compu-
tational linguists because of its ability to capture a wigigge of the semantics of natural
language. In this paper we will only be concerned with thedpot-free fragment be-
cause of its simplicity and the paucity of linguistic usesha product connective. The
product-free Lambek calculus has a number of interestimgpetational properties.
First, it is weakly equivalent to context-free grammarskjéi not strongly equivalent
[9]. Second, it has recently been proven to have an NP-campérjuent derivability
problem [8]. Finally, recent research has shown that as é&sntipe order of categories
is bounded, polynomial time parsing is possible [2, 3].

With these latter two results, we have precisely determimiegre the intractability
of the Lambek calculus lies, but the NP-completeness prbf#@nd the polynomial
time algorithm of [3] seem to use entirely different methdoisproving correctness.
The former uses a primarily algebraic approach whereasdtter luses a graphical
approach based on the graphical LC-Graphs of [5].

The purpose of this paper will be to introduce a new represiemt of proof nets,
calledterm graphsthat are similar to the LC-Graphs of [5] but simpler in thiagy
require two less correctness conditions and they avoidrtfieduction of terms from
the lambda calculus. Term graphs are important becausebtigge the gap between
the methods of [8] and [3]. That is, despite being superficiary different from the
structures of [8], they are fundamentally quite similarywaswill see. In addition, the
abstract term graphsf [3] are an abstraction over graphical structures thatasen-
tially identical to our term graphs. Once we have introdutegcth graphs, we will use
them to provide a proof of the NP-completeness of the seqlegivability problem for
the product-free Lambek calculus that is more intuitiventtieat of [8] giving us insight
into his reduction. This NP-completeness proof also alloedo consider these two
results in the same language which will help future resegrthe area.



This paper will proceed as follows: In section 2, we will oduce the Lambek
calculus and term graphs and prove the correctness of teaphgr Then, in section
3 we will introduce the polynomial reduction of [8] and prdeian NP-completeness
proof that is graphical in nature.

2 The Lambek Calculus and Term Graphs

In this section, we introduce the Lambek calculus in its safpresentation and then
quickly ignore the sequent presentation in favour of terapgs. Term graphs, like
other proof net methods, allow easier analysis of compmurtatiproblems pertaining to
these sorts of logics. We prove the correctness of term graplthe LC-graphs of [5].

2.1 The Lambek Calculus

The sequent derivability problem for the Lambek calculéss$aas input a sequent made
up of categories The categories for the product-free fragment are builtropfa set
of atomsand the two binary connectivg¢sand\. A sequent is a sequence of categories
known as the antecedent together withth&ymbol and one additional category called
the succedent. The sequent derivability problem asks wehethinput sequent is logi-
cally derivable from the axioms and rules shown in figure 1.

We will be considering two closely related variants of therlbeek calculus: The
original Lambek calculuslf) and the Lambek calculus allowing empty premisks)(
A sequent isderivable in L* if and only if it has a proof according to the sequent
calculus in figure 1. In addition, we say that the sequentiivalele in L if and only if
it is derivable inL* such thatl” is non-empty when applying the rule® and/R.
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Fig. 1. Axioms and rules of the Lambek calculus (from [4]).

In figure 1, lowercase Greek letters represent categoribappercase Greek letters
represent sequences of categories.

2.2 Term Graphs

In this section, we will introducéerm graphs which are a simplification of the LC-
Graphs of [5], which in turn are based on the proof nets of THe advantage of

1 We call them term graphs because they are a graphical repaéise of the semantic term.



term graphs over LC-Graphs is that we have only two corresteenditions instead
of four and the fact that we avoid the introduction of lambelarts. Furthermore, both
of the term graph correctness conditions are conditionk@existence of certain paths
whereas the LC-Graph correctness conditions are conditiarthe existencand ab-
sence of certain paths.

Definition 1. A term graphfor a sequent is a directed graph whose vertices are cate-
gory occurrences and whose edges are introduced in fourpgrolike other proof net
presentations, we will proceed with a deterministic stegt fand a non-deterministic
step second.

First, we assign polarities to category occurrences by @gssig negative polarity
to occurrences in the antecedent and positive polarity diccedent. Then, the first
two groups of edges are introduced by decomposing the aategourrences via the
following vertex rewrite rules:

(@/B)” =a” —p" 1)
(B\a)” = BT —a” )
(@/B)" =B~ «--a” 3)
(B\a)" = a --> 57 (4)

Each vertex rewrite rule specifies how to rewrite a singldasepn the left side to two
vertices on the right side. The neighbourhood of the ventethe left side of each rule
is assigned tax on the right side. Dashed edges are referred td.ambek edgeand
non-dashed edges are referred toragular edgesThese two groups of edges will also
be referred to asewriteedges.

After decomposition via the rewrite rules, we have an ordeset of polarized ver-
tices, with edges between some of them. We say that a \omtexgsto a category
occurrence in the sequent if there is a chain of rewrites gdiack from the one that
introduced this vertex to the one that rewrote the categoouaence.

Lemmal. After decomposition via the rewrite rules has terminatbeyé is a unique
vertex with in-degreé belonging to each category occurrence in the sequent.

Proof. By induction over the rewrite rules.

A third group of edges is introduced such that there is onehalnedge from the
unique vertex with in-degre@in the succedent to each unique vertex with in-de@ree
in each of the antecedent category occurrences. These adgesferred to asooted
Lambek edgesThis completes the deterministic portion of term grapinfation.

A matchingis a planar matching of these vertices in the half plane whstmm
occurrences arenatchedo atoms occurrences with the same atom but with opposite
polarity. The fourth group of edges are introduced as regeldges from the positive
vertices to the negative vertices they are matched toalfid 5 are matched in a match-
ing M then we writeM («, 3). See figures 2 and 3 for an example.

The two edge types of a term graph induce two distinct graihles;egular term
graph and theLambek term graphWe will prefix the usual graph theory terms with
regularandLambekto distinguish paths and edges in these graphs.
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Fig. 2. Two depictions of an integral term graph for the sequeénty)/(N/N), N/N,N + S.

(bottom) for the sequer(tS/N)/(N/N), N/N,N + S.

Lemma 2. In aterm graph, there is a unique vertex with in-degbee

Proof. By lemma 1, each category in the antecedent and succedeatimégue vertex
with in-degree before the introduction of the rooted Lambek edges. Howefear the
introduction of those edges, the only vertex with in-de@riesthe one in the succedent.

Definition 2. In a term graph, the unique vertex of in-degfeis denoted by

Lemma 3. The vertices in a term graph have the following restricti@msincident
edges:

Negative verticg®ositive verticest T T
regular in-degree 1 1 0
regular out-degre¢  Arbitrary 1 1
Lambek in-degree 1 0 0
Lambek out-degree 0 Arbitrary Arbitrary

Proof. By induction on the term graph formation process.

Because of this result, we can determine the polarity of &exdny its incident
edges. Therefore, we will often simplify our diagrams by timg polarities.

Definition 3. We define two conditions on term graphs:

T: For all Lambek edgess, t) there is a regular path from to ¢.

T(CT): For each Lambek edds, t), there exists a negative vertexsuch that there
is a regular path froms to = and there is no rewrite Lambek edg€, ) such that
there is a regular path froma to s’.2.

2T(CT) requires that we distinguish rewrite Lambek edgesnfrooted Lambek edges in the
representation. To avoid clutter, we will not mark this effnce in our figures.



A matching and its corresponding term graph dré-integraliff they satisfyT. A
matching and its corresponding term graph améegraliff they satisfyT andT(CT).

A partial matching is a matching which matches a subset optiarized vertices
and a partial term graph is the term graph of a partial matchive will extend the
notions of integrity to partial matchings by requiring thlagé integrity conditions are
true of Lambek edges whose source and target are matcheel inatching. Then, we
can prove that the union of two integral partial matchingmisntegral partial matching
by considering those Lambek edges with a source matchedeéoyatching and a target
matched by the other do not violate the integrity conditions

We will prove that integrity corresponds to sequent deiifitgtin section 2.3. As
discussed in the introduction, there are a number of coromecbetween term graphs
and the structures of [8]. For example:

— The set of negative vertices in a term graph correspondsteetiVyy of [8].

— A matched edge from to ¢ in a term graph corresponds#¢t) = s for t € Ny of
(8]

— A rewrite edge froms to ¢ in a term graph corresponds¢dt) = s of [8].

— Aregular edge froms to ¢ in a term graph correspondsddt) = s of [8].

— The requirement that that matchings be planar and be betlikeatoms of op-
posite polarity correspond to the first three correctnesslitions of [8]. T corre-
sponds to the fourth correctness condition &8 T) corresponds to the fifth.

2.3 Term Graph Correctness

We will prove the correctness of term graphs with respechéoltambek calculus via
the LC-Graphs of [5]. Since LC-Graphs and term graphs arstoacted using similar
algorithms, we will define LC-Graphs in terms of how they éiffrom term graphs
rather than from scratch.

LC-Graphs are graphs whose vertex Bets a set of lambda calculus variables,
which are introduced during the equivalent of the rewrile process. During this pro-
cess, atom occurrences are associated with lambda termefiihost variable in each
lambda term is a unique identifier for the atom. This corresiamce between lambda
variables and atoms establishes a correspondence bet@e&ndphs and term graphs.
In addition to this superficial difference, LC-Graphs difieom term graphs structurally
in the following three ways:

1. The lambda variables in an LC-Graph are locally rearrdmghative to the corre-
sponding atom occurrences in a term graph as seen in the ngapdigures 4 and
5.

2. LC-Graphs do not distinguish between Lambek edges andaregdges.

3. LC-Graphs do not introduce any equivalent to the rootedlek edges.

The first of these three differences is required for term lgsap avoid the intro-
duction of lambda terms. The second difference allows uxpoess our correctness
conditions more concisely and simplifies the presentatioaun proofs. This is ac-
complished by no longer needing to identify the edges in arQr@ph that are the



Fig. 4. The mapping between term graphs and LC-Graphs for neighbods of negative ver-
tices. The lambda variable; corresponds to the atom occurrentefor 1 < i < 6.
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Fig. 5. The mapping between term graphs and LC-Graphs for neighbods of positive vertices.
The positive vertexds in a term graph is represented by the vertiBess., 83 andas in an LC-
Graph. The lambda variabte; corresponds to the atom occurrentgfor 1 <4 < 7.

equivalent of Lambek edges by their endpoint vertices. @kedifference will allow us
to eliminate one of the correctness conditions.
[5] defines the following terms, necessary to understandehectness conditions:

Definition 4. Alambda-nodés a positive vertex in an LC-Graph with two regular out-
neighbours, one of which is positive and one of which is rnegathe positive one is
its plus-daughteand the negative one is itainus-daughter

For example,B;, B, and Bs in figure 5 are lambda-nodes. The intuition is that
they correspond to Lambek edges. We can now define the aoessctonditions on
LC-Graphs and state theorem 1 (proven in [5]):

[(1): There is a unique node @@ with in-degred), from which all other nodes are
path-accessible.

[(2): G is acyclic.

[(3): For every lambda-node € V, there is a path from its plus-daughteto its
minus-daughtew

[(CT): For every lambda-node € V, there is a path 7, v ~ x wherex is a
terminal node and there is no lambda-netie V such that) ~ v' — z.



Theorem 1. A sequent is derivable ih* iff it has an LC-Graph satisfying conditions
1(1-3). A sequent is derivable ih iff it has an LC-Graph satisfying conditiori§l-3)
and|(CT).

The equivalence between theconditions and th& conditions begins with the
following two lemmas.

Lemma 4. In aterm graph, the rewrite edges and the rooted Lambek efdgesa tree
with 7 as its root.

Proof. By induction on the rewrite rules together with the way tlet tooted Lambek
edges are introduced.
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Fig. 6. The tree of rewrite and rooted Lambek edges(ffN)/(N/N), N/N,N + S

Lemma 5. In an L*-integral term graph, if there is a path fromto b, then there is a
regular path froma to b.

Proof. The path froma to b may contain a Lambek edgs, ¢), but by T, there is a
regular path frons to ¢. Replacing the Lambek edge with the regular path and reqgeati
gives us a regular path fromto b.

We next define a new condition on term graphs that is a couentieigl (2).

T(C): The term graph is acyclic.

We now prove that any. *-integral term graph is necessarily acyclic.
Proposition 1. T = T(C)

Proof. Suppose there is a cycle. Then, by lemma 5, there is a requdlr. @hat cycle
cannot contain sincer has no in-edges. However, by lemma 4, there is a path from
to every vertex and by lemma 5 that path is regular. But, bymen3 all vertices have
regular in-degree at most one. Therefore, no cycles cah exis

Proposition 2. T = 1(1)

Proof. By lemma 4, there is a path fromto every node in the term graph and by
lemma 5 there is a regular path fromo every node. Then, by the mapping of term
graphs to LC-Graphs, these paths have equivalents in théraph.

Proposition 3. T = 1(2)



Proof. By proposition 1,;T = T(C) and by inspection of the mapping from term graphs
to LC-Graphs, no new cycles can be introduced.

Proposition 4. T = 1(3)
Proof. By the mapping.
Proposition 5. 1(1),1(3)=T

Proof. 1(3) requires that all nodes be accessible from the root,hwimeans that for the
rooted Lambek edg€s, ¢), there is a regular path fromto ¢. Then, because of the way
that positive vertices in a term graph are mapped from tiggiivalents in LC-Graphs,
enforcingl (3) requires that for rewrite Lambek edgest), there be a regular path from
stot.

Proposition 6. T(CT) < I(CT)

Proof. The only point of interest is the fact that the Lambek edgessehsource is
7 could rule out some term graphs when are provablg*inHowever, such Lambek
edges are specifically ruled out BYCT).

Theorem 2. A sequent is derivable if iff it has a term graph satisfying. A sequent
is derivable inL* iff it has a term graph satisfying conditiofisand T(CT).

3 NP-Completeness Proof

Now that we have defined a simple graphical representatigunaxifs in the Lambek
calculus, we can proceed with a graphical proof of NP-Cotepless that in some ways
mirrors the proof of [8]. We begin with the same reductiomfr§ AT as [8].

Definition 5. Lete; A ... A ¢y, be a SAT instance with variables, . . ., x,,. We define
the sequent’ as in figure 7 (from [8]).

The space of matchings is analyzed via two partial matchiigsand N, based
on a truth assignment (where truth assignments are sequences of booleans). First
we prove that the partial matchiny; is always integral and then we prove that the
partial matchingV; is integral if and only if theS AT instance is satisfiable. Finally,
in proposition 9, we prove that any*-integral matching must partition into two such
partial matchings. S

The atoms of arep’, ¢, al, b]

[

¢l andd’ for1 <i <nandl < j < m.
Lemma 6. X hasdm + 2 atoms forX € {A;, B;,C;, D;, E;(t), G, H; }.
Proof. By induction.

Definition 6. For X € {A;, B;,C;, D;, E;(t), G, H;}, X is the leftmosm + 1
atoms andX ~ is the rightmos®2m + 1 atoms. We refer to these hils.
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Fig. 7. The sequent’ for the SAT instance; A ... A ¢,. Note that-gz = -~z and— 1z = z.

‘ | | | | ]

E;(0)t E; (00 Af A Bf B Hf HS Ccf ¢ Df D7 E1)t E(1)”

k3 7 7 7 7

FIgSMt for I1; andt = <t1, ey ticn, Lty .. ,tn>

m m m—1 m—1 1 1 0 _____ 0
pi - >~q; — ™ D; g D 2/ /A AN R e
A ~ b 2 2 - 1 1
\ m m
it —= ai —f o, — 05
.
\\
.
m m 2 2 1 1
Qg oo =~ 5 Qg " -3 o~ =B
. ! ' f ' f '
m—1 m—1 1 1 0 0
Pity —= gy D Qi1 ™ P qi—1 ~~ "™ Pi—1 o3

Fig. 9. Term graph ford;\ B; (for & = a andg = b) andC;\D; (for « = candg = d)
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Fig. 10. Term graph for(A;\ B;) ™ whereB; has been matched t#; (or (C;\D;)" whereD;
has been matched tG;") and all paths have been contracted. The angled edges btrette
first are abstracted edges similar to those in [3].



Proposition 7. Lett = (¢4, ...,t,) be atruth assignment and 181, be the following

partial matching (depicted in figure 8). Far< i < n, M,(B;", A7) andM,(D;",C;").

If t; = 0 then M, (E;(1)", B;), My(Al, E:(1)7), My(H;", D;) and M, (C;t, H,").

If t; = 1thenM,(E;(0)T,D; ), My(C;*, E;(0)7), My(H;", B ) and M (A, H,).
Then,M, is integral.

Proof. Figure 9 shows the partial term graph consisting of the eestfromB;\ A; (or
equivalently fromD;\ C; which are identical under renaming®fand). However, by
introducing the edges from, for A;, B;, C; and D;, contracting paths regular path
longer thanl and removing Lambek edgés, t) which have a regular path fromto

t, we get the abstraction of a term graph shown in figure 10. @b&raction over a
term graph is essentially identical to a term graph excegitttie Lambek in-degree of
negative vertices is now unbounded due to path contraction.

Then, regardless of whether = 0 or t; = 1, this partial abstract term graph is
combined with the partial term graph féf; (shown in figure 11) by inserting edges
between identical atoms from the positive vertices to riegatrtices. It can be seen
that the combined term graph is‘-integral by observing that each Lambek edge is in
fact overlaid by a regular path.

In a parallel process, the abstract term graph for eifhgr; or D;\C; is combined
with the term graph foE; (¢;), which is constructed out of components shown in figure
12. However, like the combination with;, the result is a term graph where all Lambek
edges are forward edges despite the variatioh;0f;) as exemplified in figure 13.

T(CT) is straightforward to check because for each Lambele édg) in these
partial term graphs, the vertexhas a regular edge to a vertexwith a Lambek in-
neighbour which does not have a regular path from

Therefore M, is integral.

\ m‘\>pzn | »m’p%\ q3\<p?\
Pty gty Pt gyt Pl g Py

Fig. 11.Term graph forH,

Tt Td € ¢y 1, Ti ¢Cj
N A NN
v / e '\ \ o~ “a
Pl =ql, R ) j

Fig. 12. Term graph components fd;(¢;). The round nodes are place holders used to indicate
the source and target of some edges. They can be ignored lvaderin graph foZ;(¢;) is
complete.
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Fig. 15. The term graphV; (with Lambek edges omitted). Each vertex{ipﬁ_, qul} has two
out-edges Iabelleﬂff ande forl <j<m,1 <4< nlf -, x; appears ir; then we keep
only theTij edges and otherwise, we keep only H’ﬂéedges. The angled edges, which appear to
have no target, have a target which is dependant on whether, appears ir; for I < j. Their
target is always the lowest positive vertex which does neéfznother in-edge.



Proposition 8. Lett = (¢1,...,t,) be a truth assignment and I&f; be the following
partial matching (depicted in figure 14). Far< i < n, Ne(E;(t;)", Ei—1(ti—1)7),

Ny(Ey(t1)",G7) and N (GT, E,,(t,) ). Then,N; is integral iff N; is L*-integral iff

t is a satisfying truth assignment for A ... A ¢,

Proof. The relevant subgraph of the term graph féris shown in figure 15 for the
general case and in figure 16 for a specific example.

There are several types of Lambek pairs. Consjder) such thaw, v € E;(t;) for
somei. Then, ifu = p]_, andv = ¢/_, for j > 1, the path leaves to the right but
must eventually return to since any rightward movement due to Aredge is mirrored
by a leftward movement due its paired edge resulting iff ndolation. If u = ¢/ and
v = p{’l for j > 1, either the link is completed immediately or it is completéal an
angled edge whose targetisThe case where,v € G whereu = pJ, andv = ¢J is
similar to the first case. ‘

Next, consideKu, v) such that: = p/~! andv = p, for somej > 1. v is reached
beforeu iff no edgeTij is present foll < i < niff ¢,, does not contair, z; for any
1<i¢<niff e A...Ac,, iS unsatisfiable.

Finally, consider the rooted Lambek edgesv) whereu = p* andv = p!" for
somei. u is the leftmost atom in the bottom row an@ppears somewhere to its right in
the bottom row. Then, there must be a regular path frotm v since the angled edges
target the lowest vertex without an in-edge.

Checking thatT (CT) is never violated is straightforward via the same cases
above.

Gt E»(0)” E2(0)" Ei(1)” Ei(1)* G~
Pyt Py - p* -py~ Pyt = py
qg ~ %" = o e "
I
p? —=p; -p" -pr- p?{ —=py
% %" 4~ (I? G - qi*
p%* —=p3 pf{ =i p(? =
G - qa? ¢ - q?+ e qi*
Pyt ———=pi~ Pt ————=p" P = py

Fig. 16. The term graphV; for the SAT instancd = (—xz1 V z2) A (21 V x2) A (21 V —22) and
the truth assignment=< 0,1 >. The fact that is not a satisfying assignment féicorresponds
to the fact thap)~ appears beforgd™ in N;
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Fig. 17. A close-up of the boundary betwedf) (0)~ and A;". The edges between the atoms of
E;(0)~ have been omitted because they vary according to the SAdniost
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Fig. 18.A close-up of the boundary betweél andE;(1)". The edges itF; (1) vary depending
on the SAT instance, but alternate regular and Lambek edgeg£” to pi” ;.

Definition 7. Given a matching/, we denote the match of the occurrencg’oin X
top! inY?asM(p!, XP,Y1).

Lemma 7. M (p, E;(0)~, A;") cannot belong to ai*-integral matching.

Proof. Because there is a regular edge frpfhin £;(0)~ to pi* in A;" the matched
edge would violatd'(C), as seen in figure 17.

Lemma 8. M(p!,,D; , E;(1)*) cannot belong to aiL*-integral matching.

Proof. Consider figure 18. If such an edge were to exist, then thewsayyfor a regular
path fromp?™ in C;" to p, in D; to exist is for their to be a regular path between
p™ in C;" and some vertex ik; (1). However, the first vertex of that path among the
vertices ofE;(1) is the target of a Lambek edde, t) and a regular path fromto ¢
would need to include?” in E;(1)~. However, that would violat&'(C).

E;(0)t E; (00" Af A7 BY By HY HS C C; Df D;E0)" E;0)”

Fig. 19. The 14 hills ofI7;. The matches shown are obligatory because the atoms in hiitsse
occur exactly twice in the term graph.
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E;(0)-  Af H Cr E;(0)” Ei1(0)T B, HfYy Di; Ei1(0)"

Fig. 20. The 10 hills containing? for i < n.



Proposition 9. Any matching which does not exteif] for some truth assignmenis
not L*-integral.

Proof. Let M be anL*-integral matching and let < ¢ < n be maximal such that
neither of the following matchings are submatchings:

—

Ei(0)* E(0)-  AY Bf Hf Hf CF Dy E(0)T Ei(0)”
T 1 ]
E(0)* E(0)- A7 By Hf Hf G Dy E((0)* Ef(0)”

Let0 < j < m. Then, fori = n, p{ appears ir6 hills (from left to right):
E1(0)77 Aj_v Hz_a Cz+7 E1(1)77 GJF

Fori < n,pf appears ino hills:

Eﬂ(o)ia Aj_a Hi_v Cz+a El(l)ia Ei+1(0)+7 Bi_-q—lv H{:—la Di_—{-la EjiJrl(l)+

However, because of our maximality assumption and the ptgmaquirement, we
know that of the rightmosi, only E;; ()™ does not match another of the rightmost
5.1f i = n, let ET = G and otherwise, leE™ = E;1(t)". In either caseE™
represents the rightmost unconstrained hill.

We now wish to consider the possible matching€ef0)~, A", H, ,C;", E; (1)~
and ET, but only for the occurrences of the atqﬁl For this section only, we will
denote these matches by matching the hills they belong tayéumust remember that
these matches are only for theatoms and not the whole hill.

1
- Casel: E;(0)-  Af
Due to planarityM (p!, E;(0)~, A]") forcesM (pi*, E;(0)~, A) and by lemma 7
this matching is noL*-integral.

— Case 2: oA E(1)~

Due to planarityM (p/, C;", E;(1)~) forcesM (py* ,, D;, E;(1)*) and by lemma
8 this matching is noL*-integral.

— Case 3: H- Et

3

Due to planarityM (p!, H;”, E*) forcesM (p!, C;", E;(1)~) which cannot be.*-
integral according to case 2.

This leaves us with only two possible matchings;igf)r



| 1 |
- Casel: E;(0)- A HS ci  E/()- Et
We will now shift from analyzing the matches for a generaland focus on one
important atom. Consider the possible matches for the afdmin D", the right-
most atom inD; . There are five, as can be seen in figure 20 (from left to right)
which we will rule out:
1opftyin A,
Such a match is between the rightmost atonJp and the leftmost atom
in A | as can be seen in figures 17 and 18. Then, we can see that no atom
between these two has a regular out-edge to any atom not éretivese two.
But, the regular in-neighbour of* ; in D; is pi"; in A, because of the
match and the regular in-neighboungf , in A | isp™ in E;_1(0)~ because
of the regular rewrite edge in figure 17. But, there is a Lambegle whose
targetisp!™ , in D; and whose source j§" in C;" as seen in figure 18. Then,
there cannot possibly be a regular path figthin C;" topi™ , in D;, resulting
inaT violation.
2.pm,inCHy
Because of planarity, the atoms In,_; would need to match the atoms in
E;_1(1)". However, by lemma 8}/ would not bel.*-integral.
3. P?il in Ez(0)+
Contradicts our assumption th&f does not have this submatching.
4. pm,in H;
Such a match would violate planarity singkin E;(0)~ matcheg] in C;".
5. p?il in Ez(1)+
Then,M would not beL*-integral by lemma 8.

T — 1]
- Case2: E;(0)-  Af H; ct  E()” Et
As in the previous case, we will focus on one important atohis Time, that atom
will be pI"t | in A7, the leftmost atom inl;". Again, there are five possible matches:
1. pit, in E;(0)”
Then,M would not beL*-integral by lemma 7.
2. pity in H
Such a match would violate planarity, singein A" matcheg? in E;(1)~.
3. pityin E5(1)~
Contradicts our assumption th&f does not have this submatching.
4. pyin By,
Contradicts the maximality assumption (becabisg, is part ofI7; ;).
5. pit,inD;
Contradicts the maximality assumption (becalisg, is part ofI7; ).

Therefore M must extendV/; for some truth assignment



Theorem 3. ¢; A ... A ¢y, is satisfiable iffY is derivable inL iff X is derivable inL*.

Proof. Propositions 7, 8 and 9 prove that any matching must panrtitito A/, and V,
for some truth assignmeit We need only consider the Lambek edges with a source

in M, and a target inV; or vice versa but the only such edges are the rooted Lam-

bek edges. It is tedious, but not difficult, to check that emoth Lambek edge has an
accompanying regular path and tA4CT) is not violated.

4 Conclusion

We have introduced a graphical representation of proof thetisis closely linked to
both the structures of [8] and the abstract term graphs ofif}jether these two results
describe the boundary between tractability and intralitabi

Our representation is very simple, requiring just two ctiods (other than the
matching conditions) to characterize correctness in thelek calculus. Furthermore,
term graphs avoid the introduction of unneeded complexithss the lambda terms of
[5] and the algebraic terms of [1]. This has allowed us to jgfea more intuitive proof
of the NP-completeness result of [8], which allows us to nmobearly see the boundary
of tractability for the product-free Lambek calculus.
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