
Prior Knowledge in Learning Finite Parameter
Spaces

Dorota G lowacka, Louis Dorard, Alan Medlar and John Shawe-Taylor

Department of Computer Science, University College London

Abstract. We propose a new framework for computational analysis of
language acquisition in a finite parameter space, for instance, in the
“principles and parameters” approach to language. The prior knowledge
multi-armed bandit algorithm abstracts the idea of a casino of slot ma-
chines in which a player has to play machines in order to find out how
good they are, but where he has some prior knowledge that some ma-
chines are likely to have similar rates of reward. Each grammar is rep-
resented as an arm of a bandit machine with the mean-reward function
drawn from a Gaussian Process specified by a covariance function be-
tween grammars. We test our algorithm on a ten-parameter space and
show that the number of iterations required to identify the target gram-
mar is much smaller than the number of all the possible grammars that
the learner would have to explore if he was searching exhaustively the
entire parameter space.

1 Introduction

A major aspect of linguistic theory is to provide an explanation as to how chil-
dren, after being exposed to limited data, acquire the language of their environ-
ment. The rise of “principles and parameters” [4] provided a new context for
the study of language acquisition. In this approach, a class of languages can be
viewed as fixed by parametric variation of a finite number of variables. Thus,
acquisition of language (grammar)1 amounts to fixing correctly the parameters
of the grammar that the child is trying to learn. The notion of finite parametri-
sation of grammar can be applied to syntax [4], phonological stress systems [6]
or even lexical knowledge [9]. In this paper, we will concentrate on the analysis
of the “principles and parameters” framework as applied to stress systems [6].
This choice has been prompted mainly by two considerations. First, stress sys-
tems can be studied in relative independence of other aspects of grammars, i.e.
syntax or semantics. Second, the parameters of metrical theory exhibit intricate
interactions that exceed in complexity the syntactic parameters.

Starting with Gold’s seminal paper [8], most research on learnability concen-
trates on the issue of convergence in the limit. The learner receives a sequence of
positive examples from the target language. After each example the learner ei-
ther stays in the same state (does not change any of the parameters) or moves to
1 In the remainder of this paper we will use the terms language and grammar inter-

changeably



a new state (changes its parameter setting). If, after a finite number of examples
the learner converges to the target language and never changes his guess, then
the target language has been identified in the limit. In the Triggering Learn-
ing Algorithm (TLA) [7] two additional constraints were added: the single-value
constraint, i.e. the learner can change only one parameter value at a time, and
the greediness constraint, i.e. if, after receiving an example he cannot recognise,
the learner changes one parameter and now can accept the new data, the learner
retains the new parameter setting. The TLA is an online learning algorithm that
performs local hill climbing. This algorithm, however, is problematic as positive-
only examples can lead to local maxima, i.e. an incorrect hypothesis from which
the learner cannot move, thus rendering the parameter space under consider-
ation unlearnable. In order to acquire the target grammar, the learner has to
start from very specific points in the parameter space.

[12], [13] model the TLA as a Markov chain and modify the TLA by replacing
the local single-step hill climbing procedure with a simple Random Walk Algo-
rithm (RWA). RWA renders the learning process faster and always converges
to the correct target language irrespective of the initialisation of the algorithm.
[12], [13] tested the system tested on a very small three-parameter system that
produced 8 grammars, where each grammar consisted of only up to 18 accept-
able examples. Following [12], [13]’s observation that a RWA greatly improves
the accuracy and speed of the learning process, we propose a new way for compu-
tational analysis of language acquisition within the “principles and parameters”
setting. Our algorithm is set within the general framework of multi-armed bandit
problems. The prior knowledge multi-armed bandit problem abstracts the idea
of a casino of slot machines in which a player has to play machines in order to
find out how good they are, but where he has some prior knowledge that some
machines are likely to have similar rates of reward. Each grammar is represented
as “an arm of a bandit machine” with the mean-reward function drawn from a
Gaussian Process specified by a covariance function between grammars. We test
our algorithm on the metrical stress ten-parameter space [6], which gives rise
to 216 possible stress systems (as not all parameters are independent). The use
of the algorithm, however, can be easily extended to much larger systems. We
also compare the performance our algorithm to that of TLA and RWA and show
that it ”learns” the correct grammar faster than both TLA and RWA.

As emphasised by [7] and [12], [13], arriving at the correct parameter set-
ting is only one aspect of the language acquisition problem. As noted by [3], an
equally important point is how the space of possible grammars is “scattered”
with respect to the primary language data. It is possible for two grammars to
be so close to each other that it is almost impossible to separate them by psy-
chologically realistic input data. This leads to the question of sample complexity
[12], i.e. how many examples it will take to identify the target grammar. It is of
not much use to the learner to be able to arrive at the correct target grammar
within the limit if the time required to do so is exponentially long, which ren-
ders the learning process psychologically implausible. Thus, rather than concern
ourselves with identifying the correct grammar, we will measure the number of



errors made by the learner in acquiring the correct grammar. We will give exper-
imental evidence that the number of iterations required to reach a state where
the learner makes virtually no mistakes is smaller than the number of grammars
to be explored. We will also consider the impact of variations in data distribution
and the presence of noise in the data on the performance of the algorithm.

The remainder of the paper is organised as follows: first we briefly describe
the basic tenets of metrical stress theory followed by a short description of the
multi-armed bandit problem, where we introduce in more detail our arm selec-
tion procedure. Next, we describe how the procedure can be applied to learning
parametrised grammars. Finally, we present experimental results on learning the
ten-parameter space addressing a set of specific questions.

2 Metrical Stress Parameters and the Learning Problem

In this section, we describe the syllable structure and its relevance to stress
assignment. Further, we present the stress parameters that we make reference to
throughout the rest of this paper. Lastly, we discuss how the data is presented
to and assessed by the learner in our system.

2.1 Syllable Structure and Stress Assignment

We assume that the input to the learning process are words. One of the prin-
ciples shared by most theories of stress systems is that stress is sensitive to
representations built on projections from syllable structure. In many languages,
stress is sensitive to syllable weight, or quantity. Thus, we also assume the prior
operation of rules that convert the speech signal into words and smaller word
segments, such as syllables.

In general, syllables can be divided into two parts: an onset (O) and a rhyme
(R). The onset consists of the consonant(s) before the syllable peak, which is
usually a vowel. The rhyme consists of the vowel and the consonant(s) follow-
ing it. The rhyme can be further divided into two parts: the nucleus (N), i.e.
the vowel, and the coda (C), i.e. the consonant(s) following it. It is generally
agreed that the onset plays no part in stress assignment. However, in quantity-
sensitive languages, the structure of the rhyme plays an important role in stress
assignment (see [5] for possible counter examples). Syllables that have only one
element in the nucleus position and no coda are classified as light (Fig. 1a) and
as such do not attract stress. Syllables with two elements in the nucleus position
count as heavy (Fig. 1c, d) and attract stress, while syllables with one element
in the nucleus and at least one element in the coda position can count as either
light or heavy (depending on the setting of parameter 6 below) (Fig. 1b).

Furthermore, we also assume that various acoustic cues that indicate phono-
logical stress are mapped into one of three degrees of stress. The three levels of
stress are primary stress (marked as 2), secondary stress (marked as 1), and lack
of stress (marked as 0). For the purpose of our analysis, we assume that every
word must have a primary stress.



(a) /ta/ (b) /tat/ (c) /taa/ (d) /taat/

Fig. 1: Four examples of syllable with different rhyme structure (after [10]). δ signifies
a syllable node; O, R, N and C represent the constituents of the syllable to which the
segmental material is attached.

2.2 The Stress System Parameters

In metrical theory, stress patterns, and the corresponding differences between
languages, are due to metrical structures built on the rhyme. The various pos-
sibilities of metrical structure construction can be expressed in terms of a series
of binary parameters. In our analysis, we consider a 10-parameter model with
the following parameters [6]:

– P1: The word-tree is strong on the left/right;
– P2: Feet are binary/unbounded;
– P3: Feet are built from left/right;
– P4: Feet are strong on the left/right;
– P5: Feet are quantity sensitive/insensitive;
– P6: Feet are quantity sensitive to the rhyme/nucleus;
– P7: A strong branch of the foot must/must not itself branch;
– P8: There is/is not an extrametrical syllable;
– P9: It is extrametrical on the left/right;
– P10: Feet are/are not non-iterative.

If all the parameters were independent, then we would have 210 = 1024 pos-
sible grammars. However, due to built-in dependencies, there only 216 distinct
stress systems (see [6] for more details).

Let us consider the effect that different parameter settings can have on lan-
guage structure. For example, P1 tells us where in the word the main stress
should fall. If P1 is set to left, then the main stress will fall on the initial syl-
lable, as in Latvian or Hungarian, if, however, we set P1 to right, then the
main stress will fall on the final syllable, as in French or Farsi. In many lan-
guages, secondary stress can also be observed. In such languages, syllables are
first grouped together into feet and every foot receives a stress. If a language has
feet, a number of other parameters come into play. P2 allows feet to be at most
binary or else unbounded. Selecting binary feet will give an alternating pattern
of weak (with stress level 0) and strong (stress level 1 or 2) syllables. We must
also set P3, which will trigger the direction of construction from left to right or



from right to left. Further, we must also set P4, which allows each foot to be
left dominated or right dominated. For example, Maranungku, spoken in Aus-
tralia, [10] has the following setting P1[left], P2[binary], P3[left], P4[left], which
gives rise to the following alternating pattern of stresses: 201, 2010, etc. On the
other hand, Warao, spoken in Venezuela, [10] has the following setting: P1[right],
P2[binary], P3[right], P4[left], which results in the following stress pattern: 020,
01020, 10101020, 010101020.

2.3 Inclusion of Prior Knowledge

In [7] and [12], [13], the transition probabilities from one parameter setting state
to another are calculated by counting the number of overlapping input data
between each grammar corresponding to each parameter setting. We consider
this to be an unrealistic model in that it is not clear how the learner would be
able to assess this overlap without knowledge of the grammars and the sentence
frequencies. We prefer to work with a weaker assumption of the prior knowledge
that learners are equipped with, namely that learners are able to assess similarity
of grammars by the Hamming distance between their parameter vectors. This
accords with the expectation that the entries in the parameter vector control
aspects of the production of sentences that involve varying levels of processing
by the learner. Hence, our conjecture is that the parameter settings described
above have cognitive correlates that enable the learner to compute the Ham-
ming distance between the grammars. One of the questions addressed by the
experiments in this paper (and answered in the affirmative) is whether this prior
knowledge will be sufficient to enable subjects to learn to identify the correct
grammar.

2.4 The Learning Algorithm

Our learning procedure is partly inspired by the TLA [7]. However, contrary to
[7], we do not obey the single-value constraint or the greediness constraint. Our
learning algorithm can be summarised as follows:

– Step 1 [Initialise]: Start at some random point in the finite space of possible
parameter settings and specify a grammar hypothesis.

– Step 2 [Process input data]: Receive n number of positive example words
from the target grammar (gt). The words are drawn at random from a fixed
probability distribution.

– Step 3 [Learnability on error detection]: Check if the currently hypothesised
grammar (gh) can generate the input data and receive a reward r ranging
from 0 to 1. r = 0 corresponds to a situation, where none of the n words
can be found in the hypothesis grammar, while if r = 1, all the n words are
analysable in the currently hypothesised grammar. The reward function is
calculated as follows:

r =

∑n
wi∈gh

prh(wi)∑n
wi∈gh

prh(wi) +
∑n

wi /∈gh∩wi∈gt
prt(wi)

(1)



where pr(wi) is the probability of the ith word.
– Step 4 [Update] Update distributions over possible grammars based on re-

ward.
– Step 5 [Grammar selection]: Stay in the current hypothesis state or ’jump’ to

a new parameter setting (the new grammar selection procedure is described
in detail in Sec. 4). The newly hypothesised grammar does not necessarily
have to allow the learner to analyse all or any of the n input examples.

The learning process is completed when after some iteration m, the learner
ceases to make any errors, i.e. at virtually every iteration after iteration m the
reward at step 3 is always r = 1, and the grammar selected at step 5 is always
the target grammar.

3 The Multi-armed Bandit Problem

The multi-armed bandit problem is an analogy with a traditional slot machine,
known as a one-armed bandit, but with multiple arms. In the classical bandit
scenario, the player, after playing an arm selected from a finite number of arms,
receives a reward. The player has no initial knowledge about the arms, and at-
tempts to maximise the cumulative reward through repeated plays. It is assumed
that the reward obtained when playing an arm i is a sample from an unknown
distribution Ri with mean µi. The optimal playing strategy S∗, i.e. the strat-
egy that yields maximum cumulative reward, consists in always playing an arm
i∗ such that i∗ = argmaxiµi. The expected cumulative reward of S∗ at time t
would then be tµi∗ . The performance of a strategy S is assessed by the analysis
of its expected regret at time t, defined as the difference between the expected
cumulative reward of S∗ and S at time t.

A good strategy requires to optimally balance the learning of the distribu-
tions Ri and the exploitation of arms which have been learnt as having high
expected rewards. Even if the number of arms is finite and smaller than the
number of experiments allowed so that it is possible to explore all the arms
a certain number of times, this only gives probabilistic information about the
best performing arms. The multi-armed bandit problem is concerned with the
design and analysis of algorithms that can trade exploration and exploitation
to achieve only a small regret for a finite set of independent arms. In our prior
knowledge multi-armed bandit problem, we are interested in learning with many
fewer trials through exploiting knowledge about similarities between different
arms or, in our case, grammars. We will encode this information in a covariance
function, hence assuming a prior Gaussian Process over reward functions. We
now describe our learning algorithm.

3.1 The Prior Knowledge Multi-armed Bandit Algorithm

We consider space X , whose elements will be referred to as arms. κ denotes a
kernel between elements of X . The reward after playing arm x ∈ X is given by



f(x) + ε, where ε ∼ N (0, σ2
noise) and f ∼ GP(0, κ(x,x′)) is chosen once and

for all but is unknown. Arms played up to time t are x1, . . . ,xt with rewards
y1, . . . , yt. The GP posterior at time t after seeing data (x1, y1), . . . , (xt, yt) has
mean µt(x) with variance σ2

t (x).
Matrix Ct and vector kt(x) are defined as follows:

(Ct)i,j = κ(xi,xj) + σ2
noiseδi,j (2)

(kt(x))i = κ(x,xi) (3)

µt(x) and σ2
t (x) are then given by the following equations (see [14]):

µt(x) = kt(x)T C−1
t yt (4)

σ2
t (x) = κ(x,x)− kt(x)T C−1

t kt(x) (5)

As noted by [15], if no assumption is made on the nature of the reward
function it may be arbitrarily hard to find an optimal arm. In their work, they
assume that the mean-reward µk of a newly played arm k is a sample of a fixed
distribution, and they characterise the probability of playing near-optimal arms.
Others such as [11] and [2] assume that there exists a mean-reward function f
and make further assumptions on the regularity of f . In the work of [11], arms
are indexed in a metric space and the mean-reward is a Lipschitz function in
this space. In the model of [2], arms lie in a generic topological space and f has
a finite number of global maxima around which the function is locally Hoelder.

We assume in our model that the reward of an arm x is determined by a
function f applied at point x to which Gaussian noise is added. The variance of
the noise corresponds to the variability of the reward when always playing the
same arm. In order to cope with large numbers of arms, our assumption will be
that the rewards of arms are correlated. Thus, playing an arm ‘close’ to x gives
information on the expected gain of playing x. This can be modelled with a
Gaussian Process: by default, we take the mean of the Gaussian Process prior to
be 0, and we can incorporate prior knowledge on how correlated the arms are in
the covariance function between arms. The covariance function can be seen as a
kernel function, and specifies how ‘close’ or ‘similar’ two given arms are. Hence,
we assume in our model that f is a function drawn from a Gaussian Process
(GP).

If arms are indexed in Rd, for example, the covariance function can be chosen
to be a Gaussian kernel κ(x,x′) = exp

(
−‖x−x′‖2

2σ2

)
, whose smoothness σ is

adjusted to fit the characteristic length scale which is assumed for f . In our
framework, we are not limited to problems where arms are indexed in Rd, but
we can also consider arms indexed by any type of structured data as long as a
kernel can be defined between the data points. For instance, in the parametric
grammar learning problem, each grammar can be associated with an arm, so
that looking for the optimal arm corresponds to looking for the optimal grammar
given a certain criterion which is incorporated into the reward function.



Arm selection. The algorithm plays a sequence of arms and aims at optimally
balancing exploration and exploitation. For this, arms are selected iteratively
according to a UCB-inspired formula (see [1] for more details on UCB):

xt+1 = argmaxx∈X
{
ft(x) = µt(x) + B(t)σt(x)

}
(6)

This can be interpreted as active learning where we want to learn accurately
in regions where the function looks good, while ignoring inaccurate predictions
elsewhere. The B(t) term balances exploration and exploitation: the bigger it
gets, the more it favours points with high σt(x) (exploration), while if B(t) = 0,
the algorithm is greedy. In the original UCB formula, B(t) ∼

√
log t.

Although this arm selection method seems quite natural, in some cases, find-
ing the maximum of the “upper confidence function” ft may prove costly, partic-
ularly as we would expect the function to become flatter as iterations proceed, as
the algorithm aims to explore regions only as our uncertainty about their reward
offsets the difference in our estimated reward. For this reason we will consider
an alternative arm selection method based on the sampling of functions from
the GP posterior.

3.2 Application to the Grammar Learning Problem

As suggested above, the problem of grammar learning can be considered as a
many-armed bandit problem and the Gaussian Process approach can be used
with a covariance function/kernel which applies to different grammars. Learning
consists in looking for the ‘best’ grammar, i.e. the one that maximises the reward
function.

Let us denote by X the set of parametrised grammars. In the ’principles
and parameters’ framework, a grammar x is a binary vector of length d, where
d is the number of parameters under consideration. In our case, d = 10. We
need to define a kernel κ(x,x′)/covariance function between grammars. In our
experiments, we consider a Gaussian kernel that takes the form:

κ(x,x′) = exp
(
−‖ x− x′ ‖2

2σ2

)
(7)

where ‖ x− x′ ‖2 is the Hamming distance between two grammars2.

4 The Arm Selection Problem

The objective of the bandit algorithm is to minimise the regret over time, or in
other words, to find as quickly as possible a good approximation of the maximum
of f , f(x∗).
2 Note that in this formulation, all parameters have equal effect on the produced data.

As [6, p. 155, ft. 11] point out, theoretically, it is possible for a small change in the
parameter setting to have large effects on the produced data and small changes to
have small effects. This problem is not studied in [6]. However, if the parameters
have a nonuniform effect on the output data, we can incorporate this information in
the covariance function.



Let us define ft(x) by:

ft(x) = µt(x) + B(t)σt(x)

= kt(x)T C−1
t yt + B(t)

√
κ(x,x)− kt(x)T C−1

t kt(x)
(8)

Our approximation of f(x∗) at time t is f(xt+1) where xt+1 = argmaxx∈X
{
ft(x)

}
.

Here we replace the problem of finding the maximum of the function f by
iterations of a simpler problem, which is to maximise the function ft whose
form is known. At each iteration we learn new information which enables us to
improve our approximation of f(x∗) over time. In the case where κ(x,x) = 1 for
all x (e.g. Gaussian kernel and cosine kernel), ft(x) can be written as a function
of kt(x) = k:

ft(x) = g(k) = kT C−1
t yt + B(t)

√
1− kT C−1

t k (9)

4.1 Sampling Arm Selection

As we noted earlier, we would expect the upper confidence function to become
flatter as iterations proceed, which would make it difficult to find its maxi-
mum. For this reason, we propose an alternative method for selecting the next
arm rather than choosing the point that maximises the upper confidence func-
tion. Our strategy for selecting arms is to sample a function g from the pos-
terior distribution and then select xt+1 = argmaxx∈X g(x). This implements
sampling an arm with the probability that it is the maximum in the pos-
terior distribution, and so implements a Bayesian approach to trading explo-
ration and exploitation. We can interpolate between these methods by sampling
a variable number K of functions g1, . . . ,gK from the posterior and selecting
xt+1 = argmax x∈X

1≤k≤K

{
gk(x)

}
.

A naive sampling from the posterior distribution would require inverting
a matrix indexed by the full grid. We avoid this by iteratively unveiling the
posterior sample g(x) only sampling points that are likely to lead to a maximal
value. Since the function g(x) is not expected to be flat, only a small number
of samples should be required in practice. We would envisage selecting these
samples by simple hill climbing heuristics that could work efficiently on the non-
flat g, but in our experiments, we simply consider the enumeration of all 216
grammars.

Arm selection method:

1. Initialisation (t=1): x1 chosen randomly in X . y1 is the reward obtained when
“playing” x1. The GP posterior after seeing the data (x1, y1) is sampled (f1)
to give iteration at time t + 1 and x2 = argmax

{
ft(x)

}
.

2. Iteration at time t+ 1: we have played x1, . . . ,xt and have obtained rewards
y1, . . . , yt. The GP posterior is sampled to give ft and xt+1 = argmax

{
f1(x)

}
.

We now describe the sampling method in detail, which returns the next
selected arm xt+1. After seeing only the data ((x1, y1)) , . . . , (xt, yt), the posterior
has mean µ

(1)
t and variance σ

(1)2

t .



Algorithm 1 Sampling method
1: set V = {} and k = 1
2: for gi ∈ G do
3: if µ

(k)
t (gi) + B(t)σ

(k)
t (gi) ≥ max({yt} ∪ V ) then

4: sample from N (µ
(k)
t (gi), σ

(k)2

t (gi)) and get vk

5: set sk = gi, V = V ∪ {vk} and k = k + 1
6: the GP posterior after seeing the data (x1, y1), . . . , (xt, yt) with observation

noise σ2
noise and (s1, v1), . . . , (sk, vk) without noise has mean µ

(k+1)
t and vari-

ance σ
(k+1)
t

7: end if
8: end for
9: return sj , where vj = max(v1, . . . , vk−1)

5 Experiments

The aim of the experiments is to investigate the following issues:

1. The learning process is completed in fewer iterations than the number of
grammars under consideration.

2. The learning process is successful irrespective of the initial grammar selected
in Step 1 of the learning algorithm.

3. The learning takes place in an on-line fashion, i.e. the number of errors made
as the learning process progresses is gradually being reduced until it reaches
0.

4. The algorithm is robust with respect to the presence of noise and the input
data distribution.

5.1 The Data

In our experiments, every input word consists of two parts: syllable representa-
tion followed by its stress assignment. In our analysis, we represent light syllables
as L, syllables with a branching nucleus as N, and syllables with a branching
rhyme as R. For example, a string of the form RLRL2010 represents a four-
syllable word with primary stress on the initial syllable and secondary stress on
the penultimate syllable. We consider words of up to a length of 7 syllables. This
results from 2901 to 3279 words for each of the 216 possible grammars. Needless
to say, a given word can belong to more than one grammar. The number of over-
lapping words between grammars ranges from 3 to 3189. The average number
of overlapping words is 262.

5.2 The Experiment Design and General Results

All the experiments reported below are averaged over 600 runs with a random
starting point. This random initialisation allowed us to study the influence of the
initialisation step of the learning process. Each run consisted of 400 iterations



of the algorithm which we described in detail in Sec. 4.1. At each iteration
the learner is presented with 5 words selected from the target grammar. The
frequency with which each word is presented to the learner corresponds to the
probability distribution of this word. Note that the learner is not allowed to use
the particular words to inform his learning but only the average error of the
currently hypothesised grammar on these words.

Below, we report results for the target grammar with the following parame-
ter setting: P1[right], P2[binary], P3[right], P4[left], P5[QI], P6[rhyme], P7[no],
P8[yes], P9[right], P10[yes], although similar results can be reported for the
remaining 215 grammars. The data is drawn from a uniform distribution. As
mentioned in the introduction, the error convergence to 0 corresponds to iden-
tifying the target grammar. As illustrated in Fig. 2a, the target grammar is
identified within 30 - 50 iterations, irrespective of the initialisation step. Note
that an exhaustive search would require “trying” all the 216 possible grammars,
thus lengthening the learning process. The faster error convergence results from
online nature of our learning algorithm and the incorporation of prior knowledge
in our learning scenario. The algorithm is more efficient than one, where at each
iteration a new grammar was selected completely at random, thus resulting in a
larger number of errors and a slower convergence rate.

−50 0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

Number of iterations

C
um

ul
at

iv
e 

er
ro

rs

(a) Uniform distribution

−50 0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

Number of iterations

C
um

ul
at

iv
e 

er
ro

rs

 

 

uniform distribution
non−uniform distribution

(b) Uniform and non-uniform distribu-
tion

Fig. 2: Error convergence rate (with standard deviation) of the Prior Knowledge Multi-
armed Bandit algorithm when the data is drawn from (a) a uniform distribution; (b)
the probability distribution is correlated with the word length and compared to the
uniform probability distribution.

5.3 Varying the Probability Distributions

In the second set of experiments, we test the convergence time in two scenarios:
(1) when the input data is presented to the learner from a uniform distribution,
i.e. the probability to see every word is 1/n, where n is the number of possible



words produced by a given grammar; (2) certain words are more likely to oc-
cur than others. In case (2), the probability distribution is correlated with the
word-length, i.e. the shorter a given word is, the higher its probability of occur-
rence. As can be seen in Fig. 2b, varying the probability distribution affects the
convergence rate. When the data is drawn from a non-uniform distribution, the
convergence rate is slower, i.e. the target grammar is identified within 80 - 150
iterations, which is still lower than the number of all the 216 possible grammars.

5.4 The Impact of Noise

In the third set of experiments, we added noise (ω) to the input data, or, to
be more precise to the reward function. Thus, the reward was r + ω, where
ω = randn ∗ 0.05. randn is a random value drawn from a normal distribution
with mean zero and standard deviation one. We tested the influence of noise when
the noise was added to varying percentage of data ranging from 0% to 100%.
Fig. 3 compares the error rate convergence for cases where noise was added
to 0%, 50% and 100% of data, where the data was drawn from a non-uniform
distribution. The algorithm performs best with no noise present. However, even
with the addition of noise, the correct grammar is identified within 110 – 170
iterations.

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

Number of iterations

Cu
m

ul
at

ive
 e

rro
rs

(a)

60 80 100 120 140 160 180 200 220 240
35

40

45

50

55

60

65

70

Number of iterations

Cu
m

ul
at

ive
 e

rro
rs

 

 

noise added to 100% of the data
noise added to 50% of the data
no noise added

(b)

Fig. 3: (a) Error convergence rates with noise added to 0%, 50% and 100% of data. (b)
expansion of Figure 3a in the critical region.

5.5 Comparison with TLA and RWA

In the last set of experiments, we compared the performance of the ’prior knowl-
edge multi-armed bandit” algorithm with that of TLA and RWA. Following [13],
we implemented TLA as a Markov chain. Both in TLA and RWA, the words are
drawn from a uniform distribution. The target grammar is the same as the one
used in the previous experiments. As discussed earlier, it takes on average 30 - 50



iterations to learn the correct grammar with the prior knowledge multi-arm ban-
dit algorithm. As can be seen in Fig. 4a, it takes 311 iterations of TLA and 1071
iterations of RWA to learn the target grammar. It must be noted that at each
iteration of our algorithm the learner is given a set of 5 words, while in the case
of TLA and RWA the learner is given only one word at a time. However, even
if we assume the worst-case scenario, where the learner needs 50 iterations of
the prior knowledge multi-arm bandit algorithm to acquire the target grammar,
we still require only 250 words to learn the language. Learning with TLA and
RWA requires 311 and 1071 words, respectively. The prior knowledge multi-arm
bandit algorithm converges faster than TLA and RWA in spite of the fact that
TLA and RWA provide the learner with additional information of transition
probabilities. Note that the prior knowledge multi-arm bandit algorithm does
not take into account this type of extensional information.

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations

Pr
ob

ab
ilit

y 
of

 c
on

ve
rg

en
ce

 

 

TLA
RWA

(a)

0 50 100 150 200 250
10

15

20

25

30

35

40

45

Number of grammars

Av
er

ag
e 

nu
m

be
r o

f i
te

ra
tio

ns
 to

 le
ar

n

(b)

Fig. 4: (a) Probability of convergence of the Triggering Learning Algorithm (TLA) and
the Random Walk Algorithm. (b) Average number of iterations required to learn the
correct grammar with the prior knowledge multi-armed bandit algorithm as the size of
the learning space increases.

[12] and[13] showed that in a three-parameter setting with 8 grammars, RWA
converges faster than TLA. However, our experiments on a 10-parameter space
show that the convergence rate of RWA is much slower than that of TLA. We
further compared the convergence rate of the three algorithms as the size of
the parameter space, and consequently the number of grammars, increases. We
looked at a scenario, where the number of possible grammars was: 8, 24, 72,
108, 144 and 216. As can be seen in Figs. 4b and 5b, in the case of the prior
knowledge multi-arm bandit algorithm and RWA, the complexity of the learning
error is affected by the size of the learning space, i.e. the smaller the number
of grammars the faster the learning process. The size of the learning space does
not have the same effect on the TLA, i.e. there is no correlation between the
number of parameters/grammars and the probability of convergence (Fig. 5a).



0 50 100 150 200 250
200

300

400

500

600

700

800

Number of grammars

Nu
m

be
r o

f i
te

ra
tio

ns
 to

 le
ar

n

(a)

0 50 100 150 200 250
0

200

400

600

800

1000

1200

Number of grammars

Nu
m

be
r o

f i
te

ra
tio

ns
 to

 le
ar

n

(b)

Fig. 5: (a) Number of iterations required to learn the correct grammar with TLA as
the size of the learning space increases. (b) Number of iterations required to learn the
correct grammar with RWA as the size of the learning space increases.

6 Discussion and Future Directions

The problem of learning parametrised grammars can be approached from many
different perspectives. In this paper, we concentrated on the problem of error
convergence, i.e. how many examples it will take the learner to reach a stage
where he can parse correctly all the incoming words. We have presented a new
algorithm “prior knowledge multi-armed bandit” and have shown that the algo-
rithm can successfully tackle the problem of sample complexity. The algorithm
enables the learner to acquire the target language in an online fashion without
the need to resort to searching the entire parameter space and without the dan-
ger of getting stuck in a local maximum. We have also shown that the learner can
“discover” the parameter setting of the target grammar without direct access to
the set difference of words belonging to the different grammars, but from the
more cognitively realistic access to the Hamming distance between the grammars
parameter vectors.

A number of directions for future research arise. As the number of param-
eters increases, so does the complexity of the learning process. It is worth in-
vestigating how the error convergence rate will change as the parameter space
grows/decreases. Further, we also need to conduct a more extensive empirical
analysis of the impact of noise and data distribution on the convergence rate,
i.e. how increasing the level of noise or a very unfavourable data distribution will
affect the learning process.

Another possible direction is the derivation of a language change model from
the current language acquisition model as well as a language acquisition model
where the learner is exposed to data coming from different languages or dialects.
The procedure discussed in this article concentrates on modelling the language
acquisition process of a single child. Needless to say, a language change model
would require scaling up the present model to an entire population.



References

1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Machine Learning (47), 235–256 (2002)

2. Bubeck, S., Munos, R., Stoltz, G., Szepesvari, S.: Online optimization in x-armed
bandits. In: Proceedings of NIPS (2008)

3. Chomsky, N.: Aspects of the Theory of Syntax. MIT Press, Cambridge MA (1965)
4. Chomsky, N.: Lectures on government and binding. Foris, Dordrecht (1981)
5. Davis, S. M.: Syllable onsets as a factor in stress rules. Phonology (5), 1–19 (1988)
6. Dresher, B. E., Kaye, J. D.: A computational learning model for metrical phonol-

ogy. Cognition 34, 137-195 (1990)
7. Gibson, T., Wexler, K.: Triggers. Linguistic Inguiry 25(4), 407–474 (1994)
8. Gold, E. M.: Language identification in the limit. Information and Control 10(4),

407–454 (1967)
9. Hale, K., Keyser, J.: On argument structure and the lexical expression of syntactic

relations. In: Hale, K., Keyser, J. (eds.): The view from building 20. pp. 53–110.
MIT Press, Cambridge MA (1993)

10. Hayes, B.: Metrical Stress Theory: Principles and Case Studies. The University of
Chicago Press, Chicago (1995)

11. Kleinberg, R.,Slivkins, A. Upfal, E.: Multi-Armed Bandits in Metric Spaces. In:
Proceedings of STOC (2008)

12. Niyogi, P., Berwick, R. C.: A language learning model for finite parameter spaces.
Cognition 61, 161–193 (1996)

13. Niyogi, P.: The Computational Nature of Language Learning and Evolution. MIT
Press, Cambridge MA (2006)

14. Rasmussen, C. E., Williams, C. K. I.: Gaussian Processes for Machine Learning.
MIT Press, Cambridge MA (2006)

15. Wang, Y., Audibert, J., Munos, R.: Algorithms for infinitely many-armed bandits.
In: Proceedings of NIPS (2008)


