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Abstract. Measures for the degree of non-projectivity of dependency
grammar have received attention both on the formal and on the empirical
side. The empirical characterization of discontinuity in constituent tree-
banks annotated with crossing branches has nevertheless been neglected
so far. In this paper, we present two measures for the characterization of
both the discontinuity of constituent structures and the non-projectivity
of dependency structures. An empirical evaluation on German data as
well as an investigation of the relation between our measures and gram-
mars extracted from treebanks shows their relevance.

1 Introduction

Discontinuous phrases are common in natural language. They occur particularly
frequently in languages with a relatively free word order like German, but also in
fixed word order languages, like English or Chinese. Treebank annotation must
account for sentences containing such phrases. In constituent treebanks, however,
a direct annotation of discontinuities which would require crossing branches is
generally not allowed. Instead, an annotation backbone based on context-free
grammar is extended by a labeling mechanism, sometimes in combination with
traces, which accounts for discontinuous phrases. Examples for such treebanks
include the Penn Treebank (PTB) [1], the Spanish 3LB [2], and the German
TüBa-D/Z [3].

The German NeGra [4] and TIGER [5] treebanks are among the few no-
table exceptions to this kind of annotation, where crossing branches are allowed
and discontinuous constituents are annotated directly. As an illustration, Fig. 1
shows the constituent annotation of (1), a sentence from NeGra involving two
discontinuous VPs. The discontinuity is due to the leftward extraposition of the
PP object Darüber.

(1) Darüber
Thereof

muß
must

nachgedacht
thought

werden.
be.

“Thereof must be thought.”

Measures for the degree of discontinuity of constituent trees with crossing
branches in these treebanks have not been subject to research, but would war-
rant an investigation. First, linguistic phenomena like long-distance dependen-
cies, which give rise to discontinuous structures, are often assumed not being



r Darüber muß nachgedacht werden

root

pp

aux

aux

Fig. 1. Constituent and dependency analysis for a NeGra sentence

totally unrestricted as are the crossing edges in treebank annotation. Further-
more, in application contexts like statistical parsing, where treebank trees are
interpreted as derivation structures of a grammar formalism, the information
encoded by the crossing branches is simply discarded in order to avoid process-
ing difficulties: Commonly the trees are transformed into non-crossing structures
and a (probabilistic) context-free grammar is read off the resulting trees [6, 7].

The situation for dependency grammar is different. Dependency treebanks
generally contain non-projective graphs which, in contrast to projective graphs,
contain nodes with an discontinuous yield (see Fig. 1 for a dependency analysis
of (1)). In recent years, motivated by processing concerns, particularly the formal
characterization of non-projectivity has received attention, see [8] for a survey.
Among other measures, gap degree [9] and well-nestedness [10] have emerged.
Both of them were shown to empirically describe non-projective dependency
data well. They can furthermore be exploited for parsing [11].

The contribution of this paper is to give a characterization of gap degree
and well-nestedness of constituent trees with the same descriptive and practical
relevance as the corresponding concepts in dependency grammar. For this pur-
pose, we show that both gap degree and well-nestedness can be formulated as
equivalent properties of different kinds of graphs, more precisely, of dependency
graphs and constituent trees. We explore the relation between our measures and
grammars extracted from dependency and constituent treebanks and conduct
an empirical investigation on German data shows the practical relevance of our
measures.

In the following section, we introduce our new definitions of gap degree and
well-nestedness. In Sect. 3 we investigate relation between our measure and gram-
mars extracted from treebanks. In Sect. 4, we empirically review the measures
for non-projectivity of dependency graphs and discontinuity of constituent trees
on German data. Sect. 5 summarizes the article and presents future work.

2 Discontinuity Measures

In the following, we define both dependency structures and constituent structures
in terms of trees, followed by the definitions of gap degree and well-nestedness.



2.1 Syntactic Structures

Definition 1 (Tree). Let D = (V,E, r) be a directed graph with V a set of
nodes, E : V × V a set of arcs and r ∈ V the root node. D is a labeled tree iff

1. D acyclic and connected;
2. All nodes V \ {r} have in-degree 1, r has in-degree 0;
3. D disposes of two disjoint alphabets LV , LE of node and edge labels and the

corresponding labeling functions lV : V → LV and lE : E → LE.

The nodes with out-degree 0 are called leaves. We write v1 → v2 for 〈v1, v2〉 ∈

E.
∗

→ is the reflexive transitive closure of E. We say that v1 dominates v2 iff
v1

∗

→ v2.

On the basis of trees, we define dependency structures and constituent structures.

Definition 2 (Dependency structure1). A dependency structure for a sen-
tence s = w1 · · ·wn is a labeled tree Ddep = (V,E, r) with the labeling functions
lV and lE, such that

– lV : V → {0, . . . , n}, lV (v) 6= 0 for all v ∈ V \ {r}, lV (r) = 0,
– lE : E → LE, LE being a set of dependency edge labels.

Note that the root node in dependency structures is mapped to 0, which is no
terminal position and is therefore not included in its yield (see below).

Definition 3 (Constituent structure). A constituent structure for a sen-
tence s = w1 · · ·wn is a labeled tree Dcon = (V,E, r) with the labeling functions
lV and lE, such that

– lV : V → {1, . . . , n} ∪N , N being a set of syntactic category labels disjoint
from {1, . . . , n}, such that for a v ∈ V , l(v) ∈ {1, . . . n} if v is a leaf and
l(v) ∈ N otherwise,

– lE : E → LE, LE being a set of grammatical function labels.

Definition 4 (Syntactic structure). We call D = (V,E, r) a syntactic struc-
ture if it is either a dependency structure or a constituent structure. The yield
πv of a v ∈ V is the set {i ∈ N

+ | there is a v′ ∈ V such that v
∗

→ v′ and
l(v′) = i}.

2.2 Discontinuity Measures

Both gap degree and well-nestedness can be defined on the yields of syntactic
structures. Intuitively, gap degree is a measure for the amount of discontinuity
in syntactic structures and a gap is a discontinuity in the yield of a node.

Definition 5 (Gap degree). Let Dsyn = (D, l) be a syntactic structure with
D = (V,E, r).

1 Our definition follows the definition of Abhängigkeitsbäumen (dependency trees) in
[12].



1. Let πv be the yield of a v ∈ V . A gap is a pair (in, im) with in, im ∈ πv and
in + 2 ≤ im such that there is no ik ∈ πv with in < ik < im. The gap degree
d of a node v in a syntactic structure is the number of gaps in πv,

2. The gap degree d of a syntactic structure Dsyn is the maximal gap degree of
any of its nodes.

A dependency structure with gap degree > 0 is called non-projective; a con-
stituent structure with gap degree > 0 is called discontinuous.

In other words, the gap degree corresponds to the maximal number of times the
yield of a node is interrupted. n gaps of a node entail n+ 1 uninterrupted yield
intervals. This is reflected in the measure of block degree [8, pp. 35], which is in
fact the gap degree plus 1. Fig. 2 shows an example. Both syntactic structures
in Ddep−g and Dcon−g have gap degree 1. In Ddep−g both yields πv4

and πv5

have the maximal gap degree 1 due to the fact that they do not contain 3. In
Dcon−g, v1 has gap degree 1 because 2 is not included in its yield. Ddep and Dcon

in Fig. 3 both have gap degree 0.

r v1 v2 v3 v4 v5

0 1 2 3 4 5
Ddep−g

v0

v1 v2

v11 v21 v12

1 2 3

Dcon−g

Fig. 2. Gap degree in syntactic structures

We now define well-nestedness (as opposed to ill-nestedness) as another prop-
erty of syntactic structures. Intuitively, in a well-nested structure, it holds for
all nodes which do not stand in a dominance relation that their yields do not
interleave.

Definition 6 (Well-Nestedness2). Let Dsyn = (D, l) be a syntactic structure.
Dsyn is well-nested iff there are no disjoint yields πv1

, πv2
of nodes v1, v2 ∈ V

such that for some i1, i2 ∈ πv1
and j1, j2 ∈ πv2

it holds that i1 < j1 < i2 < j2.

It is easy to see that an ill-nested syntactic structure must necessarily have a
gap degree ≥ 1. Fig. 3 shows well-nested and ill-nested constituent structures
and dependency structures. Dcon and Ddep are well-nested, while Dcon−n and
Ddep−n are not. Note that, while Dcon and Ddep have gap degree 0 in addition
to being well-nested, both Dcon−g and Ddep−g in Fig. 2 are well-nested but have
a gap degree greater than 1.

2 If the considered yields are not restricted to be disjoint, the syntactic structures are
called planar or weak non-projective (see [13, 14]).



r v1 v2 v3 v4 v5

0 1 2 3 4 5
Ddep

r v1 v2 v3 v4 v5

0 1 2 3 4 5
Ddep−n

v0

v1 v2

v11 v21 v12 v22

1 2 3 4

Dcon

v0

v1 v2

v11 v21 v12 v22

1 2 3 4

Dcon−n

Fig. 3. Well-nestedness and ill-nestedness in syntactic structures

Gap degree and well-nestedness had not been defined for constituent trees
before. However, with respect to dependency structures our definitions do cor-
respond to the definitions of gap degree and well-nestedness from the literature
[9, 10, 14].

The definition of well-nestedness (resp. ill-nestedness) does not provide a no-
tion of a degree. For this purpose, to our knowledge, two measure have been
introduced so far in the context of dependency structures. [13] introduces level
types and [15] introduce strongly ill-nested structures. While both measures do
characterize well the data considered in the resp. articles, the first measure is
exclusively motivated by dependency grammar and the second one only dis-
criminates very complex dependency structures which are unlikely to occur in
a natural language context due to their sheer complexity. In the following, we
define a new measure called k-ill-nestedness which we intend to intuitively cap-
ture the degree of interleaving of yields in constituent structures and dependency
structures. k stands for the number of disjoint yields that interleave with some
other single yield which is disjoint from them.

Definition 7 (k-Ill-Nestedness). Let Dsyn = (D, l) be an ill-nested syntactic
structure. D is said to be k-ill-nested iff there exist disjoint yields πv, πv1

, . . . , πvk

of nodes v, v1, . . . , vk in D such that for some i1, i2 ∈ πv and j
(m)
1 , j

(m)
2 ∈ πm,

1 ≤ m ≤ k, it holds that i1 < j
(m)
1 < i2 < j

(m)
2 or j

(m)
1 < i1 < j

(m)
2 < i2.

Note that well-nestedness as defined above is equivalent to 0-ill-nestedness. The
dependency structure Ddep−n and the constituent structure Dcon−n in Fig. 3 are
1-ill-nested. An example for 2-ill-nested syntactic structures is Dcon−lr in Fig. 4.

2.3 Further properties of constituent structures

We now give a further formal characterization of constituent structures. We first
define the maximal nodes of a gap. Informally speaking, the entire yield of a
maximal node lies in the gap, but the yield of its parent node does not.



Definition 8 (Maximal node). Let Dcon = (V,E, r) be a constituent struc-
ture, πv the yield of a v ∈ V and (i1, i2) a gap in πv. Then vmax ∈ V is a
maximal node of (i1, i2) iff

1. for all j ∈ πvmax
, it holds that i1 < j < i2,

2. there is a node u ∈ V with the yield πu such that u → vmax, and there is a
k ∈ πu with k ≤ i1 or k ≥ i2.

The node u is called gap filler.

A gap (i1, i2) can have more than one maximal node, and the combined yield of
all maximal nodes is the set {i | i1 < i < i2}. As an example, consider Dcon−n

in Fig. 3. The only maximal node of the gap (1, 3) of v1 is v21.
Intuitively, in a well-nested constituent structure Dcon = (V,E, r), all gaps

are filled from “above”. That means that all gap fillers (i.e., the parent nodes
of all maximal nodes) of all gaps (i1, i2) in the yield of a v ∈ V immediately
dominate v itself. As an example, compare the well-nested structure Dcon−g

(Fig. 2) with the ill-nested structure Dcon−n (Fig. 3): In the first, v0 is the
maximal node of the gap of v1 and v0 → v1, while in Dcon−n, v2 is the maximal

node of the gap of v1 and v2 6
+
→ v1. We formalize this intuition in Lemma 1.

Lemma 1. Let Dcon = (V,E, r) be a well-nested constituent structure, v ∈ V
a node with gap degree ≥ 1, (i1, i2) a gap in πv and vmax a maximal node of

(i1, i2). There is no node v′ with v′ → vmax and v′ 6
+
→ v.

Proof. By contradiction. Assume that there is a node v′ with v′ → vmax and

v′ 6
+
→ v. According to the definition of maximal nodes, there must be a ki ∈ πv′

with ki < i1 or ki > i2 and a kj with i1 < kj < i2. That means that it is either
the case that ki < i1 < kj < i2 or i1 < kj < i2 < ki, both of which contradict
the definition of well-nestedness. ⊓⊔

Ill-nested constituent structures are thus constituent structures in which some
gap is filled from a direction other than “above”, in other words, in which the
gap filler does not dominate the node with the gap. Gaps in such structures can
intuitively be filled from the left, from the right, or from both sides. If we assume
an implicit ordering of the nodes based on the smallest number in their yield,
this intuition holds even though we deal with unordered trees. Such an ordering
is in fact the basis for all visual representations of constituent structures in this
paper. Note that if a gap is filled from the left or the right and additionally from
above, we are still dealing with an ill-nested structure (cf. Lemma 1).

Definition 9 (Gap filler locations). Let Dcon = (V,E, r) be an ill-nested
constituent structure, v ∈ V a node with gap degree ≥ 1, (i1, i2) a gap in πv and
vmax a maximal node of (i1, i2). We say that

1. (i1, i2) is filled from the left iff there is a node v′ with the yield πv′ and
v′ → vmax such that there is an il ∈ πv′ with il < i1 and

2. (i1, i2) is filled from the right iff there is a node v′ with the yield πv′ and
v′ → vmax such that there is an il ∈ πv′ with il > i1.

Fig. 4 shows three example trees with different gap filler locations.



v0

v1 v2

v11 v21 v12 v22

1 2 3 4

Dcon−r :
(1, 3): right

v0

v1 v2

v11 v21 v12 v22

1 2 3 4

Dcon−l :
(2, 4): left

v0

v1 v2 v3

v11 v21 v12 v31 v22 v32

1 2 3 4 5 6

Dcon−lr :
(2, 5): left and right

Fig. 4. Gap filler position in ill-nested constituent structures

3 Properties of Extracted Grammars

Both non-projective dependency structures and discontinuous constituent struc-
tures, as occurring in treebanks, can be interpreted as derivation structures
of linear context-free rewriting systems (LCFRS) [16], resp. of the equivalent
formalism of simple range concatenation grammar (sRCG) [17]. [18] present a
grammar extraction algorithm for constituent structures and [11] presents an
extraction algorithm for dependency structures. In the following we resume pre-
vious work by presenting simple RCG together with an extraction algorithm for
this formalism on syntactic structures.

3.1 Simple Range Concatenation Grammar

Definition 10 (Ordered simple k-RCG [17]). A simple RCG is a tuple G =
(N,T, V, P, S) where N is a finite set of predicate names with an arity function
dim: N → N, T and V are disjoint finite sets of terminals and variables, P is a
finite set of clauses of the form

A(α1, . . . , αdim(A)) → A1(X
(1)
1 , . . . , X

(1)
dim(A1)) · · ·Am(X

(m)
1 , . . . , X

(m)
dim(Am))

for m ≥ 0 where A,A1, . . . , Am ∈ N , X
(i)
j ∈ V for 1 ≤ i ≤ m, 1 ≤ j ≤ dim(Ai)

and αi ∈ (T ∪ V )∗ for 1 ≤ i ≤ dim(A), and S ∈ N is the start predicate
name with dim(S) = 1. For all p ∈ P , it holds that every variable X occurring
in c occurs exactly once in the left-hand side (LHS) and exactly once in the
RHS. A simple RCG is ordered if for all p ∈ P , it holds that if a variable
X1 precedes a variable X2 in some RHS predicate, then X1 also precedes X2

in the LHS predicate. A simple RCG G = (N,T, V, P, S) is a k-RCG if for all
A ∈ N, dim(A) ≤ k. k is called the fan-out of G. The rank of G is the maximal
number of predicates on the RHS of one of its clauses.

For the definition of the language of a simple RCG, we borrow the LCFRS
definitions.

Definition 11 (Language of a simple RCG). Let G = 〈N,T, V, P, S〉 be a
simple RCG. For every A ∈ N , we define the yield of A, yield(A) as follows:



1. For every A(α) → ε, α ∈ yield(A);
2. For every clause

A(α1, . . . , αdim(A)) → A1(X
(1)
1 , . . . , X

(1)
dim(A1)

) · · ·Am(X
(m)
1 , . . . , X

(m)
dim(Am))

and all τi ∈ yield(Ai) for 1 ≤ i ≤ m, 〈f(α1), . . . , f(αdim(A))〉 ∈ yield(A)
where f is defined as follows:
(a) f(t) = t for all t ∈ T ,

(b) f(X
(i)
j ) = τi(j) for all 1 ≤ i ≤ m, 1 ≤ j ≤ dim(Ai) and

(c) f(xy) = f(x)f(y) for all x, y ∈ (T ∪ V )+.
3. Nothing else is in yield(A).

The language is then {w | 〈w〉 ∈ yield(S)}.

3.2 Grammar Extraction

We can resume both of the afore-cited grammar extraction algorithms in a single
algorithm. We extract a simple RCG G from a syntactic structure D = (V,E, r)
over a sentence w1 . . . wn as follows. For each v0 ∈ V with the children v1, . . . , vk,
k ≥ 0, we construct a clause p = ψ0 → ψ1 · · ·ψk, where ψi, 0 ≤ i ≤ k, are
predicates which we construct as follows. If D is a dependency structure, then
ψ0 receives the label of the incoming arc of v and ψi, 1 ≤ i ≤ k, receives the
label of the arc between v and vi; otherwise, ψi, 0 ≤ i ≤ k, receives the node
label of vi. To the name of each ψi, 0 ≤ i ≤ k, we append the block degree of vi.
In order to determine the predicate arguments, for each u ∈ π0, we introduce a
variable Xu. Then for all ψi, 0 ≤ i ≤ k, the following conditions must hold.

1. The concatenation of all arguments of ψi is the concatenation of all {Xu |
u ∈ πi} such that for all p, q ∈ πi, p < q, it holds that Xp precedes Xq.

2. A variable Xi with 1 ≤ i < n is the right boundary of an argument of ψi iff
i+ 1 /∈ πi, i.e., and argument boundary is introduced at each gap.

If D is a dependency structure and l(v0) = i, we exchange the variable Xi

in ψ0 with wi. If D is a constituent structure, l(v0) = i and l(v′) = ti, v
′ → v,

we add a add a so-called lexical clause ti(wi) → ε to the grammar, ti being the
part-of-speech tag of wi. Sequences of more than one variable which are a RHS
argument are collapsed into a single variable both on the LHS and the RHS of
the clause. The completed clause p is added to the grammar.

As an example, Fig. 5 shows the two grammars extracted from the constituent
and dependency structures in Fig. 1.

3.3 Grammar Properties

The gap degree and the ill-nestedness of the syntactic structure used for grammar
extraction determine certain properties of the extracted grammar. The proper-
ties in Corollary 1 are immediately obvious.



S1(X1X2X3) → VP2(X1,X3) VMFIN1(X2)
VP2(X1, X2X3) → VP2(X1,X2) VAINF1(X3)
VP2(X1, X2) → PROAV1(X1) VVPP1(X2)
PROAV(Darüber) → ε, VMFIN(muß) → ε
VVPP(nachgedacht) → ε, VAINF(werden) → ε.

pp(Darüber) → ε
root(X1mußX3) → aux(X1,X3)
aux(X1,nachgedacht) → pp(X1)
aux(X1, X2werden) → aux(X1,X2)

Fig. 5. Simple RCGs obtained from constituent structures (left) and from de-
pendency structures (right)

Corollary 1 (Grammar Properties). Let G be a simple RCG of rank r and
fan-out g. A syntactic structure D derived from G has gap degree g−1 and does
not have nodes with more than r children.

Assuming the relation between simple RCGs and syntactic structures given by
the grammar extraction algorithm above, we can also draw conclusions from the
clauses of a simple RCG G on the well-nestedness of its derivations. Lemma
2 relates the interleaving of the variables in the arguments of clauses with the
conditions given by the definition of well-nestedness. For simplicity, we assume
that all clauses p ∈ P contain only continuously numbered variables X1 through
Xm in their LHS predicate. Furthermore, we introduce the function η : P ×N →
N

+, which returns the numbers of the variables used in the arguments of the ith
RHS predicate of a clause.

Lemma 2 (Ill-Nestedness and Grammars). Let G be a ordered simple RCG
which produces k-ill-nested derivations with k ≥ 1. There is a clause p ∈ P ,
p = ψ0 → ψ1 · · ·ψm such that there is a pair of predicates (ψi, ψj), 1 ≤ i < j ≤ m
for which it holds that i1, i2 ∈ η(p, i) and j1, j2 ∈ η(p, j) with i1 < j1 < i2 < j2.

Proof. By contradiction. Assume there is no such clause and G produces ill-
nested derivations. Due to the definition of well-nestedness, there must be a
derivation D = (V,E, r) of G with disjoint yields πv1

, πv2
of nodes v1, v2 ∈ V

such that for some i1, i2 ∈ πv1
and j1, j2 ∈ πv2

it holds that i1 < j1 < i2 < j2.
The fact that πv1

and πv2
are disjoint entails that v1 and v2 do not dominate

each other. Furthermore, it entails that the yield πlca of their least common
ancestor vlca must contain both πv1

and πv2
and that for all yields π′ of nodes

v′ with vlca
∗

→ v′, it holds that π′ ∩ πv1
= ∅ or π′ ∩ πv2

= ∅. Assume vlca

and its children have been generated by a clause ψlca → ψ1
lca · · ·ψ

m
lca. Due to

the aforementioned condition on the yields of all nodes dominated by vlca and
condition 1 in the extraction algorithm, there must be at least two predicates
ψi

lca, ψ
j
lca, 1 ≤ i < j ≤ m for which it holds that i1, i2 ∈ η(p, i) and j1, j2 ∈ η(p, j)

with i1 < j1 < i2 < j2. This contradicts our initial assumption. ⊓⊔

4 Empirical Investigation

4.1 Non-Projective Dependency Structures

The empirical relevance of gap degree and well-nestedness has been shown for
dependency treebanks in works such as [14] on the basis of the Prague Depen-



dency Treebank (PDT) [19] and the Danish Dependency Treebank (DDT) [20].
We have extended these previous investigations on two other treebanks, namely
the dependency versions of the NeGra and TIGER, which we will call TIGER-
Dep and NeGra-Dep. Both have been built with the dependency converter for
TIGER-style trees from [21]. We are aware of the fact that all dependency con-
version methods introduce undesired noise, but we choose this well-established
method rather than using other German dependency data sets like the CoNLL-X
TIGER data (used by [13]) or the very small TIGER-DP [22] due to our desire
of obtaining comparable dependency structures for both constituent treebanks.
Since punctuation is generally not attached to the trees and therefore not part of
the annotation, it has been removed in a preprocessing step from all trees in both
treebanks prior to the conversion. This lead to the exclusion of a handful of sen-
tences from TIGER and NeGra, since they consisted only of punctuation. Tab. 1
contains the gap degree figures and ratios of well-nestedness of the PDT and the
DDT, borrowed from [14], and our findings for NeGra-Dep and TIGER-Dep.

DDT PDT NeGra-Dep TIGER-Dep

number of sent. 4393 73088 20597 40013

av. sent. length 18 17 15 16

gap degree 0 3732 84.95% 56168 76.85% 16695 81.06% 32079 80.17%
gap degree 1 654 14.89% 16608 22.72% 3662 17.78% 7466 18.66%
gap degree 2 7 0.16% 307 0.42% 225 1.09% 438 1.09%
gap degree 3 – – 4 0.01% 12 0.05% 22 0.05%
gap degree 4 – – 1 < 0.01% 2 0.01% 4 0.01%
gap degree ≥5 – – – – 1 < 0.01% 4 0.01%

well-nested 4388 99.89% 73010 99.89% 20472 99.39% 39750 99.34%

1-ill-nested ? ? 125 0.61% 263 0.66%

Table 1. Gap degree and well-nestedness in DDT and PDT (figures from [14]) and in
NeGra-Dep and TIGER-Dep

The gap degree figures of NeGra-Dep and TIGER-Dep lie in the same range
as the figures of DDT and PDT. A closer look at the dependency annotations
of TIGER-Dep and NeGra-Dep reveals that the most common causes for a high
gap-degree (≥ 3) are enumerations, appositions and parenthetical constructions.

As [8, p. 62] remarks, the well-nestedness constraint seems to be a good ex-
tension of projectivity since almost all dependency structures found in treebanks
adhere to it. This is confirmed by our quantitative findings in the German tree-
banks. The structures which do not adhere to the well-nestedness constraint are
all 1-ill-nested. Note that 1-ill-nestedness is a stronger constraint than non-well-
nestedness. A closer linguistic inspection of the ill-nested dependency structures
in Negra-Dep and TIGER-Dep shows that most common reason for ill-nestedness
is not erroneous annotation etc., but linguistically acceptable analyses of extra-
position phenomena. Fig. 6 shows a typical ill-nested dependency analysis of a



sentence of NeGra. The edges relevant for the ill-nestedness are dashed. In this
sentence, the subject noun ein Modus dominates a non-adjacent, extraposed
relative clause, while being surrounded by a disjoint subtree, namely the non-
finite main verb eingespielt and its dependent. The annotation can be related

r Im Grenzverkehr hat sich ein Modus eingespielt der [. . . ] zuläßt
in the border traffic has itself a mode established that [. . . ] admits

Fig. 6. An ill-nested dependency structure in Negra-Dep

to linguistic generalizations on dependency structures discussed in the literature
(particularly on German):

1. The subject depends on the finite verb [12, p. 110][23, pp. 83].
2. The non-finite verb depends on the finite verb and governs its objects and

modifying expressions[24, p. 189]. In our treebanks, this is only true for
objects and modifying expressions outside the Vorfeld since Vorfeld material
is systematically attached to the finite verb by the conversion procedure.

3. Extraposed material is dependent on its antecedent [12, pp. 130][23, pp. 101].

. In the remaining sentences, there are two phenomena which give rise to
ill-nested structures, namely coordinated structures and discontinuous subjects.
Fig. 7 shows the annotation of (2), an example from TIGER-Dep for a discon-
tinuous subject. Again, the relevant edges are dashed.

(2) Auch
Also

würden
would

durch
through

die
the

Regelung
regulation

nur
only

ständig
always

neue
new

Altfälle
cases

entstehen.
emerge

“Another effect of the regulation would be constantly emerging new cases.”

r Auch würden durch die Regelung nur ständig neue Altfälle entstehen
Also would through the regulation only always new cases emerge

Fig. 7. Ill-nestedness due to a discontinuous subject

The ill-nested annotation of the coordination cases is largely disputable; however,
this can be explained with the lack of a general linguistic theory of coordination



[25]. The situation for discontinuous subjects is clearer, since one can argue that
the components of the discontinuous subject distinguish themselves from the
material in the gap by making up a semantic unit.

To sum up, ill-nested dependency annotation in NeGra-Dep and TIGER-Dep
can generally be linguistically justified and is not due to annotation oddities. An
accurate linguistic survey of (k)-ill-nestedness of structures in DDT and PDT
has not been presented in the literature and is left for future work.

4.2 Discontinuous Constituent Structures

In the following, we investigate gap degree and well-nestedness of constituent
treebanks in order to verify if both measures are as informative for constituent
trees as they are for dependency trees. We conduct our study on the constituent
versions of the treebanks in the previous section, using exactly the same set of
sentences (with removed punctuation). The quantitative results are summarized
in Fig. 2.

NeGra TIGER

total 20597 40013

gap degree 0 14,648 72.44% 28,414 71.01%
gap degree 1 5,253 24.23% 10,310 25.77%
gap degree 2 687 3.30% 1,274 3.18%
gap degree 3 9 0.04% 15 0.04%

well-nested 20339 98.75% 39573 98.90%

1-ill-nested 258 1.25% 440 1.10%

Table 2. Constituent gap degree of TIGER/NeGra trees

The constituent gap degree figure of both German treebanks again lie close
together. We found that the number of constituent structures with gap degree ≥3
is considerably lower than the corresponding number of dependency structures.
The reason is that the phenomena which cause a high gap degree in dependency
structures (enumerations and appositions) generally receive a constituent struc-
ture without gaps. The most frequent reasons for gaps in constituent structures
are parenthetical constructions, as well as finite verbs, subjects and negative
markers, which are generally annotated as immediate constituents of the highest
S node and therefore may cause gaps in the VP yield.

Tab. 2 shows that the ratio of ill-nested structures in constituent data is
comparable to the ratio in dependency data. This suggests that ill-nestedness
has a comparable explanatory value as a constraining feature for constituent
structures. As in the dependency treebanks, the only degree of ill-nestedness
that can be observed is 1-ill-nestedness. A linguistic inspection of the ill-nested
constituent structures shows that most of them are ill-nested due to the inter-
play of several annotation principles. Again, most of the ill-nested constituent



structures in TIGER and NeGra arise from extraposition phenomena. Further-
more we can also find cases of discontinuous subjects annotated with ill-nested
structures. Other than for the dependency structures, coordination is no trigger
for ill-nestedness in the constituent data.

As an example for ill-nested constituent structure, see the embedded sentence
(3) and its tree annotation in Fig. 8.

(3) . . . ob
. . . whether

auf
on

deren
their

Gelände
premises

der
the

Typ
type

von
of

Abstellanlage
parking facility

gebaut
built

werden
be

könne,
could,

der
which

. . .

. . .
“whether on their premises precisely the type of parking facility could be
built, which . . . ”

The two overlapping, disjunctive constituents are the lower VP, and the NP
with its extraposed relative clause.

The following underlying annotation principles seem to be respected through-
out:

1. the subject is an immediate constituent of the sentence;
2. the finite verb is another immediate constituent (and the head) of the sen-

tence;
3. the non-finite verb is the head of another immediate constituent that also

includes objects and modifying expressions;
4. extraposed material is included in the antecedent constituent.

We will not argue in favor or against these annotation principles from a linguis-
tic point of view. A mapping to common linguistic theories is highly non-trivial,
since very different means of expressing constituency relations and a variety of
shapings of constituent structures would have to be taken into account. On the
other hand, the similarity to the above stated annotation principles for depen-
dency structures is striking.

Ill-nestedness does not affect the same set of structures across treebank vari-
ants, i.e., the ill-nested dependency structures are no subset of the ill-nested
constituent structures or vice versa. We leave for future work an exhaustive
investigation of the differences.

5 Conclusion

We have presented a formal account for two measures of discontinuity, resp. non-
projectivity, namely gap degree and well-nestedness. Our definitions emphasize
that the notions of gaps and well-nestedness are independent of the type of syn-
tactic structures, since they apply to both dependency and constituent struc-
tures. Concerning their application on dependency structures, they correspond
to the well-known definitions from the literature. We have conducted an empirical
study on two different versions of two treebanks, one annotated with constituents



Fig. 8. An ill-nested sentence from NeGra

with crossing branches, the other one annotated with non-projective dependen-
cies. The results show that the explanatory value of our measures applied on
constituent trees is as high as for dependency structures. Even though well-
nestedness has an almost perfect coverage on both constituent and dependency
data, a linguistic inspection of ill-nested dependency and constituent structures
shows that there exist linguistic phenomena for which ill-nested can indeed by
linguistically justified.

As mentioned before, dependency conversion procedures introduce undesired
noise. Therefore, in future work, we plan to undertake an exhaustive investigation
of the exact effects of our converter on critical examples. Furthermore, we plan
to conduct a study on Czech and Danish constituent data3 and on Bulgarian
constituent and dependency data [26], as well as an analysis of the conversion
methods for dependency treebanks.
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Montréal, Canada (1998) 21–29
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