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Abstract. We present a new cubic parsing algorithm for ambiguous
pregroup grammars. It modifies the recognition algorithm of Savateev
[10] for categorial grammars based on L\. We show the correctness of
the algorithm and give some examples. We compare our algorithm with
the algorithm of Oehrle [8] for pregroup grammars and the algorithm of
Savateev [10].

1 Introduction and preliminaries

Pregroups were introduced by Lambek [5] as an algebraic tool for the syntactical
analysis of sentences. The idea is that words have syntactical properties that can
be described by a finite set of pregroup types. The problem of parsing pregroup
grammars has been a subject of study in recent years (see the references).

Oehrle [8] proposed a recognising algorithm based on graph theoretic repre-
sentations of lexical types and their complexes. The algorithm can be amended
to become a parsing algorithm. Béchet [1] presents a recognition algorithm based
on a restricted form of partial composition called functional composition. How-
ever, the algorithm employs a construction of a context-free grammar whose size
is exponential with respect to the given pregroup grammar. A polynomial con-
struction is given in [4]. Another approach to parsing pregroup grammars was
proposed by Preller [9]. It yields a linear algorithm for unambiguous pregroup
grammars with some restrictions imposed on the type lexicon.

Savateev [10] provides a characterisation of derivability in L\ (the Lambek
calculus with one residual \ and without product), which is, essentially, a trans-
lation of L\ in the right pregroup calculus with some additional constraint. Then,
he presents a recognition algorithm for L\-grammars, which uses this transla-
tion. Our algorithm modifies the latter. There are essential differences: (1) we
regard poset rules and both left and right adjoints, while Savateev considers right
adjoints only and no poset rules, (2) we drop the extra constraint needed for the
translation of L\. (3) Savateev’s algorithm depends on some special properties of
L\-types, which is not the case for our algorithm. (Actually, Savateev does not
explicitly refer to pregroups, but his translation can be interpreted in terms of
pregroups.) Further we present briefly the algorithm of Savateev. We provide a
complete proof of the correctness of our algorithm. At the end, we show how the



algorithm can be extended to return the reduction, thus becoming a full parsing
algorithm. We also present some examples.

A pregroup is a structure M = (M,6, ·, l, r, 1) such that (M,6, ·, 1) is a
partially ordered monoid, and l, r are unary operations on M , satisfying the
adjoint laws:

(Al) ala 6 1 6 aal, (Ar) aar 6 1 6 ara,

for all a ∈ M . Pregroups are a generalization of partially ordered groups. al

(resp. ar) is called the left (resp. right) adjoint of a.
A right pregroup is a partially ordered monoid in which for each element a

there exists a right adjoint ar satisfying the law (Ar).
It is worth noticing that the following laws are easily derivable from (Al),

(Ar):
1l = 1 = 1r, alr = a = arl, (ab)l = blal, (ab)r = brar,

a 6 b iff bl 6 al iff br 6 ar.

In a given pregroup we can define a\b = arb, a/b = abl, and prove the
residuation law :

ab 6 c iff b 6 a\c iff a 6 c/b,

for all elements a, b, c ∈M . Consequently, pregroups are a special class of resid-
uated monoids, i.e. models of the Lambek calculus L1 [2, 3]

One defines iterated adjoints: a(n) = arr...r and a(−n) = all...l, where n is a
non-negative integer and a any element of M. The following laws are provable:

a(n)a(n+1) 6 1 6 a(n+1)a(n),

for any integer n.
Lambek’s approach to syntactic analysis is based on the notion of a free

pregroup, generated by a finite poset (P,6).
Elements of P are called atoms and denoted by letters p, q, r, s.
Expressions of the form p(n), for any p ∈ P and any integer n are simple

terms.
A term is a finite sequence (string) of simple terms. Terms are also called

types. They are denoted by A,B,C. If p 6 q in P , then we write p(n) 6 q(n), if
n is even, and q(n) 6 p(n), if n is odd.

One defines a binary relation⇒ on the set of terms as the least reflexive and
transitive relation, satisfying the clauses:

(CON) A, p(n), p(n+1),B⇒ A,B,
(EXP) A,B⇒ A, p(n+1), p(n),B,
(IND) A, p(n),B⇒ A, q(n),B, if p(n) 6 q(n).

(CON), (EXP), (IND) are called Contraction, Expansion and Induced Step,
respectively. They can be treated as rules of a term rewriting system. A ⇒ B
is true iff A can be rewritten into B by a finite number of applications of these
rules. This rewriting system is Lambek’s original form of the logic of pregroups.
This logic is also called Compact Bilinear Logic (CBL).



We can also define a Generalized Contraction that combines Contraction
with Inducesd Step:

(GCON) Ap(n)q(n+1)B ⇒ AB if p 6 q and n is even, or q 6 p and n is
odd.

Lambek [5] shows an important property called the switching lemma:

Lemma 1. If A ⇒ B then there exists C such that A ⇒ C without (EXP) and
C⇒ B without (CON).

One can easily see as a consequence of this theorem that if A ⇒ t, where t
is a simple term or ε, then A can be reduced to t by (CON) and (IND) only.
Such reductions are easily computable and can be simulated by a context-free
grammar. This yields the polynomial time decidability of CBL [2, 3].

A pregroup grammar is a quintuple G = (Σ,P,6, s, I) such that Σ is a
nonempty, finite alphabet, (P,6) is a finite poset, s ∈ P , and I is a finite
relation between symbols from Σ and nonempty types (on P ). For a ∈ Σ, I(a)
denotes the set of all types A such that (a,A) ∈ I. Let x ∈ Σ+, x = a1...an

(ai ∈ Σ). One says that the grammar G assigns type B to x, if there exist types
Ai ∈ I(ai), i = 1, ..., n, such that A1, ...,An ⇒ B in CBL; we write x →G B.
The set L(G) = {x ∈ Σ+ : x→G s} is called the language of G.

It is useful to present reductions by the set of links. A link indicates a pair
of simple terms that reduce to 1. If a whole string reduces to 1 then any simple
term appearing in the string is connected by a link with another simple term.
Each term can be a member of only one link and links cannot cross. We can see
the links in the following example [6]:

I will meet him.
π1) (πr s1 jl) (i ol) ( o) sr

where there are the following basic types:

π1 - first person singular subject
π - subject
i - infinitive of intransitive verb
j - infinitive of any complete verb phrase
o - direct object
s1 - declarative sentence in present tense
s - sentence

and the following partial order:

π1 6 π, i 6 j, s1 6 s



2 Parsing algorithm

Our goal is to check whether a given string x is a member of the language gener-
ated by the pregroup grammar G: x ∈ L(G). If this is the case, we want to obtain
the appropriate derivation. We should notice that the condition A1...An ⇒ s in
CBL is equivalent to the condition A1...Ans

(1) ⇒ ε. In what follows, we write
1 for ε.

We define the algorithm in a style proposed by Savateev [10] for unidirectional
Lambek calculus. It is a dynamic algorithm working on a special form of a string
containing all possible type assignments for words of the sentence to parse.

2.1 Definition of the function M

We fix G = (Σ,P,6, s, I) and x ∈ Σ+, x = a1...an. We use special symbols
∗, <,>. Let us denote:
- Z - the set of integers
- T = {p(n) : p ∈ P, n ∈ Z} - the set of simple terms
- A,B,C,D, .. - elements of T ∗

- ka = |I(a)|
- Aa

j - the j-th possible assignment of type to a, 1 6 j 6 ka (hence I(a) =
{Aa

1 , ...Aa
ka})

- Qa = 〈∗Aa
1 ∗ Aa

2 ∗ ... ∗ Aa
ka∗〉

- W x ∈ (T ∪ {∗, 〈, 〉})∗ = Qa1 ...Qan〈∗s(1)
- W x

i , 1 6 i 6 |W x| - the i-th symbol of the string W x

- W x
[i,j], 1 6 i < j 6 |W x| - the substring of W x: W x

i W
x
i+1...W

x
j

Let M(i, j), 1 6 i < j 6 |W x| be a function such that M(i, j) = 1 iff one of
the following conditions holds:

– M1. W x
[i,j] ∈ T

+ and it reduces to 1.
– M2a. W x

[i,j] is of the form 〈...〉...〈V ∗ C, where:
- C ∈ T+

- V contains no angle brackets
- in W x

[i,j] there are g (g > 0) pairs of matched angle brackets; for the h-th
pair of them there is a substring of the form ∗Dh∗ in between them such
that Dh ∈ T+ and the string D1...DgC reduces to 1

– M2b. W x
[i,j] is of the form C ∗ U〉...〈...〉, where:

- C ∈ T+

- U contains no angle brackets
- in W x

[i,j] there are g (g > 0) pairs of matched angle brackets; for the h-th
pair of them there is a substring of the form ∗Dh∗ in between them such
that Dh ∈ T+ and the string CD1...Dg reduces to 1

– M3. W x
[i,j] is of the form D ∗ U〉...〈V ∗ C, where:

- C,D ∈ T+

- U,V contains no angle brackets
- in W x

[i,j] there are g (g ≥ 0) pairs of matched angle brackets; for the h-th



pair of them there is a substring of the form ∗Eh∗ in between them such that
Eh ∈ T+ and the string DE1...EgC reduces to 1

– M4. W x
[i,j] is of the form 〈...〉...〈...〉, where:

- in W x
[i,j] there are g (g ≥ 1) pairs of matched angle brackets; for the h-th

pair of them there is a substring of the form ∗Eh∗ in between them such that
Eh ∈ T+ and the string E1...Eg reduces to 1

In all other cases M(i, j) = 0.

2.2 The recognition algorithm

We compute M(i, j) dynamically. M(i, i + 1) = 1 only if W x
i = p(m), W x

i+1 =
q(m+1) and the following condition holds

(GC) p, q ∈ P,m ∈ Z and p 6 q in P if m is even or q 6 p in P if m is
odd.

The other initial case is when W x
[i,j] is of the form p(m) ∗ U〉〈V ∗ q(m+1), the

condition (GC) holds and strings U, V contain no angle brackets. Then we put
M(i, j) = 1.

When we already know M(g, h), 1 6 g < h 6 |W x| and h− g < j− i, we can
compute M(i, j). There are several cases:

– A1a. W x
i ,W

x
j ∈ T . If there exists k such that i < k < j − 1 and W x

k ∈ T ,
W x

(k+1) ∈ T and M(i, k) = 1 and M(k + 1, j) = 1, then we put M(i, j) = 1.
– A1b. W x

i ,W
x
j ∈ T . If there exists k such that i < k < j − 1 and W x

k =〉,
W x

(k+1) = 〈 and M(i, k) = 1 and M(k + 1, j) = 1, then we put M(i, j) = 1.
– A2. W x

i = p(m), W x
j = q(m+1) and the condition (GC) holds.

If M(i+ 1, j − 1) = 1, then M(i, j) = 1.
– A3a. W x

[i,j] is of the form 〈...〉...〈...p(m), p ∈ P,m ∈ Z. If there exists k
such that i < k < j and W x

k = ∗,W x
[i+1,k] contains no angle brackets and

M(k + 1, j) = 1 then M(i, j) = 1
– A3b.W x

[i,j] is of the form p(m)...〉...〈...〉, p ∈ P,m ∈ Z. If there exists k
such that i < k < j and W x

k = ∗,W x
[k,j−1] contains no angle brackets and

M(i, k − 1) = 1. Then we put M(i, j) = 1
– A4a. W x

[i,j] is of the form p(m)∗...〉...〈...q(m+1) and the condition (GC) holds.
If M(k, j − 1) = 1, where k is the position of the first left angle bracket in
the string W x

[i,j]. Then we put M(i, j) = 1
– A4b. W x

[i,j] is of the form p(m)...〉...〈...∗q(m+1) and the condition (GC) holds.
If M(i+ 1, k) = 1, where k is the position of the last right angle bracket in
the string W x

[i,j] then M(i, j) = 1
– A4c. W x

[i,j] is of the form p(m) ∗ ...〉...〈... ∗ q(m+1) where the string ”...” in
between the angle brackets is not empty and the condition (GC) holds. If
M(k, k′) = 1, where k is the position of the first left angle bracket in the
string W x

[i,j] and k′ is the position of the last right angle bracket in the string
W x

[i,j]then M(i, j) = 1



– A5. W x
[i,j] is of the form 〈...〉...〈...〉. If M(k, k′) = 1, where W x

k is a simple
term in between the first pair of angle brackets, W x

k′ is a simple term in
between last pair of angle brackets in the string W x

[i,j] and W x
k−1 = ∗ and

W x
k′+1 = ∗, then M(i, j) = 1.

In all other cases M(i, j) = 0.

Theorem 1. The algorithm computes M(i, j) correctly.

Proof. We will show at first that if the algorithm computes M(i, j) = 1, then
M(i, j) = 1 according to the definition of M. We will prove it by induction on
the length of the string.

For strings of length 2, the algorithm computes M(i, j) = 1 only in case
when W x

i = p(m) and W x
i+1 = q(m+1) and the condition (GC) holds. W x

[i,j] is
then of the form (M1) since W x

[i,j] ∈ T
+ and the string W x

[i,j] reduces to 1. So
M(i, j) = 1 according to the definition of M.

The other initial case when the algorithm computes M(i, j) = 1 is when
W x

[i,j] is of the form p(m) ∗ U〉〈V ∗ q(m+1), the condition (GC) holds and the
strings U and V contain no angle brackets. W x

[i,j] is then of the form (M3) since
we can assume D = p(m) and C = q(m+1) and g = 0. So DC reduces to 1. Hence
M(i, j) = 1 according to the definition of M.

Let us consider now the recursive cases when the algorithm computes
M(i, j) = 1 (all cases of the description of the algorithm).

A1a. W x
i ,W

x
j ∈ T and there exists k such that i < k < j − 1 and W x

k ∈ T ,
W x

(k+1) ∈ T , M(i, k) = 1 and M(k + 1, j) = 1. Then the substrings W x
[i,k]

and W x
[k+1,j] are shorter than W x

[i,j] therefore by the induction hypothesis
both M(i, k) and M(k + 1, j) are equal to 1 according to the definition of
M. W x

[i,k] and W x
[k+1,j] can be of the form (M1) or (M3). There are the

following cases.
- If both substrings W x

[i,k] and W x
[k+1,j] are of the form (M1) then W x

[i,j] also
consists of simple terms and reduces to 1, as both W x

[i,k] and W x
[k+1,j]

reduce to 1. W x
[i,j] is therefore of the form (M1). Hence M(i, j) = 1 in

accordance with the definition of M.
- W x

[i,k] is of the form (M1). Therefore it consists of simple terms and re-
duces to 1 and W x

[k+1,j] is of the form (M3). Then W x
[i,j] is also of the

form (M3). Hence M(i, j) = 1 according to the definition of M.
- W x

[i,k] is of the form (M3) and W x
[k+1,j] is of the form (M1). So it consists

of simple terms and reduces to 1. Then W x
[i,j] is also of the form (M3).

Hence M(i, j) = 1 according to the definition of M.
- W x

[i,k] and W x
[k+1,j] are of the form (M3). Hence the whole string W x

[i,j]

is also of the form (M3). Then M(i, j) = 1 in accordance with the
definition of M.

A1b. W x
i ,W

x
j ∈ T and there exists k such that i < k < j− 1 and W x

k is a right
angle bracket, W x

(k+1) is a left angle bracket, M(i, k) = 1 and M(k+1, j) = 1.



Then the substrings W x
[i,k] and W x

[k+1,j] are shorter than W x
[i,j] therefore

by the induction hypothesis both M(i, k) and M(k + 1, j) are equal to 1
according to the definition of M. W x

[i,k] is of the form (M2b) so there is
a string CD1...Dg1 that reduces to 1 (such that the first simple term of C
is W x

i , Dh ∈ T+ is a substring in between the h-th pair of matching angle
brackets in the string W x

[i,k]). The substring W x
[k+1,j] is of the form (M2a) so

there is a string E1...Eg2F that reduces to 1 (such that the last simple term
of F is W x

j , Eh ∈ T+ is a substring in between the h-th pair of matching
angle brackets in the string W x

[k+1,j]). So the whole string W x
[i,j] is of the

form (M3) (with the string CD1...Dg1E1...Eg2F reducing to 1).
A2. W x

i = p(m), W x
j = q(m+1), the condition (GC) holds and M(i+1, j−1) = 1.

M(i + 1, j − 1) = 1 is computed according to the definition of M by the
induction hypothesis, as W x

[i+1,j−1] is shorter than W x
[i,j]. Then the substring

W x
[i+1,j−1] can be:

- of the form (M1), then the whole string W x
[i,j] consists of simple terms and

reduces to 1, so it is also of the form (M1). Hence M(i, j) = 1 according
to the definition of M.

- of the form (M3), that is D ∗ U〉...〈V ∗ C, where U and V contain no
angle brackets and the string DE1...EgC reduces to 1. We can assume
D′ = p(m)D and C′ = Cq(m+1). Then W x

[i,j] = D′ ∗ U〉...〈V ∗ C′ and
the string D′E1...EgC′ reduces to 1. Hence M(i, j) = 1 according to the
definition of M.

We should notice that the string W x
[i+1,j−1] cannot be of the form (M2a),

(M2b) or (M4) since a simple term can be followed (preceded) only by
another simple term or an asterisk.

A3a. W x
[i,j] is of the form 〈...〉...〈...p(m), p ∈ P,m ∈ Z and there exists k such

that i < k < j and W x
k = ∗, the string W x

[i+1,k] contains no angle brackets
and M(k + 1, j) = 1. W x

[k+1,j] is shorter than W x
[i,j] so M(k + 1, j) = 1

is computed according to the definition of M by the induction hypothesis.
The string W x

[k+1,j] ends with a simple term, so it can be of the form (M1),
(M2a) or (M3). But it cannot begin with a left angle bracket and it contains
angle brackets, so it must be of the form (M3). So there is a string CE1...EgD
reducing to 1. Hence W x

[i,j] is of the form (M2a) with the string CE1...EgD
reducing to 1. Therefore M(i, j) = 1 according to the definition of M.

A3b. W x
[i,j] is of the form p(m)...〉...〈...〉, where p ∈ P,m ∈ Z and there exists

k such that i < k < j, W x
k = ∗,W x

[k,j−1] contains no angle brackets and
M(i, k − 1) = 1. The string W x

[i,k−1] is shorter than W x
[i,j] so M(i,k-1)=1

is computed according to the definition of M, by the induction hypothesis.
The string W x

[i,k−1] begins with a simple term, so it can be of the form
(M1), (M2b) or (M3). But it cannot end with a right angle bracket and it
contains angle brackets, so it must be of the form (M3). So there is a string
CE1...EgD reducing to 1. Hence W x

[i,j] is of the form (M2b) with the string
CE1...EgD reducing to 1. Therefore M(i, j) = 1 according to the definition
of M.



A4a. . W x
[i,j] is of the form p(m) ∗ ...〉...〈...q(m+1), the condition (GC) holds and

M(k, j − 1) = 1, where k is the position of the first left angle bracket in
the string W x

[i,j]. W
x
[k,j−1] is shorter than W x

[i,j]. Hence, by the induction
hypothesis, M(k, j − 1) = 1 according to the definition of M. The string
W x

[k,j−1] must be therefore of the form (M2a) since it is the only form
starting with an angle bracket and ending with something different from
a bracket. Hence W x

[k,j−1] = 〈...〉...〈V ∗ C, where C is the string of simple
terms, V contains no angle brackets and there are g pairs of matched angle
brackets, for the h-th of them there is the substring ∗Eh∗ in between them,
such that Eh ∈ T+ and E1...EgC reduces to 1. Let C′ = Cq(m+1), D = p(m).
Then DE1...EgC′ reduces to 1, and the string W x

[i,j] is therefore of the form
(M3). Then M(i, j) = 1 in accordance with the definition of M.

A4b. W x
[i,j] is of the form p(m)...〉...〈... ∗ q(m+1), the condition (GC) holds, and

M(i + 1, k) = 1, where k the position of the last right angle bracket in
the string W x

[i,j]. W
x
[i+1,k] is shorter than W x

[i,j]. Hence, by the induction
hypothesis, M(i + 1, k) = 1 according to the definition of M. The string
W x

[i+1,k] must be therefore of the form (M2b) since it is the only form
ending with an angle bracket but starting with something different from a
bracket. Hence W x

[i+1,k] = D∗U〉...〈...〉, where D is the string of simple terms,
U contains no angle brackets and there are g pairs of matched angle brackets,
for the h-th of them there is the substring ∗Eh∗ in between them, such that
Eh ∈ T+ and DE1...Eg reduces to 1. Let D′ = p(m)D, C = q(m+1). Then
D′E1...EgC reduces to 1, and the string W x

[i,j] is therefore of the form (M3).
Then M(i, j) = 1 in accordance with the definition of M.

A4c. W x
[i,j] is of the form p(m)∗...〉...〈...∗q(m+1), where the string ”...” in between

the angle brackets is not empty and the condition (GC) holds. M(k, k′) = 1,
where k is the position of the first left angle bracket in the string W x

[i,j] and
k′ the position of the last right angle bracket in the string W x

[i,j]. W
x
[k,k′]

is shorter than W x
[i,j]. Hence, by the induction hypothesis, M(k, k′) = 1

according to the definition of M. The string W x
[k,k′] must be therefore of the

form (M4). Hence W x
[k,k′] = 〈...〉...〈...〉, where there are g pairs of matched

angle brackets, for the h-th of them there is the substring ∗Eh∗ in between
them, such that Eh ∈ T+ and E1...Eg reduces to 1. Let D = p(m), C = q(m+1),
U = W x

[i+2,k−1] (if k > i + 3 else U = ε) and V = W x
[k′+1,j−2] (if k′ < j − 3

else V = ε). Then DE1...EgC reduces to 1, and the string W x
[i,j] is therefore

of the form (M3). Then M(i, j) = 1 according to the definition of M.

A5 W x
[i,j] is of the form 〈...〉...〈...〉, and M(k, k′) = 1, where W x

k is a simple
term in between the first pair of angle brackets and W x

k′ is a simple term in
between last pair of angle brackets in the string W x

[i,j] and W x
k−1 = ∗ and

W x
k′+1 = ∗. W x

[k,k′] is shorter than W x
[i,j] hence M(k, k′) = 1 according to the

definition of M. W x
[k,k′] must be then of the form (M3), so the whole string

W x
[i,j] is of the form (M4) and therefore M(i, j) = 1 in accordance with the

definition of M.



We will prove that the algorithm finds correctly all substrings for which the
function M(i, j) = 1 by induction on the length of the substring. Let us notice
that there are no such substrings that contain asterisk but no angle brackets.

The only strings of length 2 for which M(i, j) = 1 are of the form p(m)q(m+1)

where the condition (GC) holds (that is of the form (M1)), and the algorithm
finds them correctly.

Let us consider now the substrings of the length l > 2 such that for all l′ < l
the algorithm finds the substrings of the length l′ correctly. (all forms of the
definition of M)

– 1. W x
[i,j] is of the form (M1) that is W x

[i,j] ∈ T
+ and it reduces to 1. There

are 2 possible cases:
- W x

i W
x
j does not reduce to 1 in the whole reduction of the string W x

[i,j] to
1. Then W x

[i,j] can be divided into 2 substrings. Each of them reduces
to 1, is shorter than W x

[i,j], so they are found by the algorithm correctly
(by the induction hypothesis). Hence by (A1a), M(i, j) = 1.

- W x
i W

x
j reduces to 1 in the whole reduction of W x

[i,j] to 1. Then W x
[i+1,j−1]

is shorter substring reducing to 1. By the induction hypothesis the string
is found by the algorithm correctly, so M(i, j) = 1 (case (A2)).

– 2a. W x
[i,j] is of the form (M2a). If M(i, j) = 1 then there exists a substring

of the form ∗D1∗ in between the first pair of angle brackets such that D1

takes part in some reduction to 1 (if g > 0). Let i′ be the position of the
first simple term in D1. The substring W x

[i′,j] is of the form (M3), is shorter
than W x

[i,j] and M(i′, j) = 1. By the induction hypothesis, the string is found
by the algorithm correctly, so M(i, j) = 1 (case (A3a)). If g = 0, then C
reduces to 1 and it is of the form (M1) and shorter than W x

[i,j]. So, by the
induction hypothesis it is found by the algorithm correctly. Then M(i, j) = 1
by (A3a).

– 2b. W x
[i,j] is of the form (M2b). If M(i, j) = 1 then there exists the substring

of the form ∗Dg∗ (if g > 0) in between the last pair of angle brackets such
that Dg takes part in some reduction to 1. Let j′ be the position of the
last simple term in Dg. The substring W x

[i,j′] is of the form (M3), is shorter
than W x

[i,j] and M(i, j′) = 1. By the induction hypothesis the string is found
by the algorithm correctly, so M(i, j) = 1 (case (A3b)). If g = 0 then C
reduces to 1 and it is of the form (M1) and shorter than W x

[i,j], so by the
induction hypothesis it is found by the algorithm correctly. Then M(i, j) = 1
by (A3b).

– 3. W x
[i,j] is of the form (M3). W x

i W
x
j takes part in the reduction to 1 in

W x
[i,j]. Let us assume: W x

i W
x
i′ reduce to 1 where i′ 6= j. Then W x

i′+1 can be:
- simple term. Then W x

[i,i′] and W x
[i′+1,j] are of the form (M1) or (M3),

they are shorter and both M(i, i′) = 1 and M(i′ + 1, j) = 1. Hence,
by the induction hypothesis, these strings are found by the algorithm
correctly, so M(i, j) = 1 (case (A1a)).

- asterisk. Then W x
[i,i′] is of the form (M1) or (M3), it is shorter and

M(i, i′) = 1. Hence, by the induction hypothesis, the string is found



by the algorithm correctly. Let k be the position of the first right angle
bracket following i′. W x

[i,k] is shorter than W x
[i,j] and it is of the form

(M2b). So, by the induction hypothesis M(i, k) = 1 (case (A3b)). Sim-
ilarly the substring W x

[k+1,j] is of the form (M2a) is shorter than W x
[i,j].

So, by the induction hypothesis M(k + 1, j) = 1 (case (A3a)). Hence
M(i, j) = 1 by the induction hypothesis (case (A1b)).

Let us assume i′ = j so W x
i W

x
j reduces to 1. There are the following cases:

- W x
i+1,W

x
j−1 are simple terms. Then the substring W x

[i+1,j−1] is of the form
(M3), it is shorter than W x

[i,j] hence M(i+1, j−1) = 1. By the induction
hypothesis that string is found by the algorithm correctly so M(i, j) = 1
(case (A2)).

- W x
i+1 = ∗,W x

j−1 ∈ T . So W x
[i,j] is of the form p(m) ∗ ...〉...〈...q(m+1). Let j′

be the position of the first left angle bracket in W x
[i,j]. We know there

exists j′ < k < j − 1 such that W x
kW

x
j−1 reduces to 1. Hence W x

[j′,j−1] is
of the form (M2a), it is shorter than W x

[i,j] hence M(j′, j − 1) = 1. By
the induction hypothesis that string is found by the algorithm correctly
so M(i, j) = 1 (case (A4a)).

- W x
i+1 ∈ T , W x

j−1 = ∗. So W x
[i,j] is of the form p(m)...〉...〈... ∗ q(m+1). Let

i′ be the position of the last right angle in W x
[i,j]. We know there exists

i + 1 < k < i′ such that W x
i+1W

x
k reduces to 1. Hence W x

[i+1,i′] is of
the form (M2b), it is shorter than W x

[i,j] hence M(i+ 1, i′) = 1. By the
induction hypothesis that string is found by the algorithm correctly so
M(i, j) = 1 (case (A4b)).

- W x
i+1 = ∗,W x

j−1 = ∗. Then the string W x
[i,j] can be of the form

p(m) ∗ U〉〈V ∗ q(m+1) and then M(i, j) = 1 by the initial case of the
description of the algorithm. If W x

[i,j] contains more brackets, then there
is a string W x

[k,k′], where k is the index of the first left angle bracket in
the string W x

[i,j] and k’ is the index of the last right angle bracket in
the string W x

[i,j]. W
x
[k,k′] is of the form (M4), it is shorter than W x

[i,j]

therefore by the induction hypothesis M(k, k′) = 1. So M(i, j) = 1 by
(A4c).

– 4. W x
[i,j] is of the form (M4). Then let k be the index of the first simple

term that participates in the reduction (that is the first simple term in the
substring D1, so it is obviously in between the first pair of matched angle
brackets) and k’ be the index of the last simple term that participates in
the reduction (that is the last simple term in the substring Dg, so it is
obviously in between the last pair of matched angle brackets). The substring
W x

[k,k′] is of the form (M3) is shorter than W x
[i,j] so by induction hypothesis

M(k, k′) = 1. Therefore M(i, j) = 1 by (A5).

The algorithm is polynomial. One can observe that all conditions for W x
[i,j] can

be checked in O(j− i) steps. The number of the substrings is equal to O(|W x|2).
So one can compute the function M(1, |W x|) in time O(|W x|3).



2.3 Obtaining the reduction

The algorithm can be easily modified to become a parsing algorithm. Each ob-
tained reduction is described by the set of the links that take part in it. If we
want to obtain only one reduction the complexity of the algorithm does not in-
crease. The set of links L(i, j) represents a reduction of some term to 1. Links
are denoted by pairs of integers (k, l) such that i 6 k < l 6 j. We find the
set of links by backtracking the indices of the function M(i, j) = 1 obviously
starting with M(1, |W x|). We also define an auxiliary function Prev(i, j) to
help us follow the backtracking (as the value of the function M(i, j) does not
tell how it was obtained). The value of the function Prev(i, j) is a sequence
of three pairs ((l1, l2), (m11,m12), (m21,m22)) where l1, l2 are indices of the
link, m11,m12,m21,m22 are indices of function M on which the computation
M(i, j) = 1 is based. If any of the values is not used it is set to 0. Every time
when the algorithm computes the value of the function M(i, j) = 1 we set the
value of the function Prev(i, j) in the following way:

- for any initial case, Prev(i, j) = ((i, j), (0, 0), (0, 0))
- if it is a computation by one of the cases: (A2), (A4a), (A4b), (A4c),
then Prev(i, j) = ((i, j), (k, l), (0, 0)), where (k, l) is the pair of indices
for which the value the function M was 1 in the current computation
(that is e.g. in (A2) a pair (k, l) = (i+ 1, j − 1))
- if it is a computation by one of the cases: (A3a), (A3b), (A5), then
Prev(i, j) = ((0, 0), (k, l), (0, 0)) where (k, l) is the pair of indices for
which the value the function M was 1 in the current computation
- if it is a computation by one of the cases: (A1a), (A1b), then
Prev(i, j) = ((0, 0), (i, k), (k + 1, j))

When the computation of the functions M and Prev is finished we easily com-
pute the set L(1, |W x|). The definition of the function L(i, j) is as follows:

- if Prev(i, j) = ((i, j), (0, 0), (0, 0)), where 0 < i < j, then
L(i, j) = {(i, j)}
- if Prev(i, j) = ((i, j), (k, l), (0, 0)), where 0 < i 6 k < l 6 j, then
L(i, j) = L(k, l) ∪ {(i, j)}
- if Prev(i, j) = ((0, 0), (k, l), (0, 0)), where 0 < i 6 k < l 6 j, then
L(i, j) = L(k, l)
- if Prev(i, j) = ((0, 0), (i, k), (k + 1, j)), where 0 < i < k < j, then
L(i, j) = L(i, k) ∪ L(k + 1, j).

3 Examples

We run our algorithm on some linguistic examples from [6], [8].

Example 1. Let us take a sample dictionary:



I: π1

will: πrs1j
l, q1j

lπl

meet: iol

him: o

with

π1 6 π, i 6 j, s1 6 s

Let us consider the sentence:

I will meet him.

We construct a string Wx:
〈∗π(0)

1 ∗〉〈 ∗π(1)s
(0)
1 j(−1)∗q(0)1 j(−1)π(−1)∗ 〉 〈 ∗ i(0) o(−1) ∗ 〉 〈 ∗ o(0) ∗ 〉 〈 ∗ s(1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

We can compute the function M(i, j). There are no substrings of the length
2 such that M(i, j) = 1. We start with the following M(i, j):

1. M(3, 8) = 1
2. M(10, 19) = 1
3. M(20, 25) = 1

Then we compute:

4. M(10, 25) = 1 by the lines 2,3 and the case (A1a)
5. M(10, 27) = 1 by the line 4 and the case (A3b)
6. M(9, 30) = 1 by the line 5 and the case (A4b)
7. M(3, 30) = 1 by the lines 1,6 and the case (A1a)
8. M(1, 30) = 1 by the line 7 and the case (A3a)

Therefore there exists a type assignment for a given string of words which reduces
to s.

The output of the parsing algorithm is:
{(3,8), (9,30), (10,19) (20,25)}

Example 2. The dictionary:

did: q2ilπl, πrs2i
l

he: π3

give: iol, inlo′l

books: n
to: iriol, jil

her: o

with

πj 6 π, si 6 s, qk 6 q 6 s, j 6 π3, o
′ 6 o, n 6 n 6 o



We consider the sentence:

Did he give books to her?

We construct a string Wx:
< ∗πrs2i

l ∗ q2ilπl∗ >< ∗π3∗ >< ∗ iol ∗ inlo′l∗ >< ∗n∗ >< ∗iriol ∗ jil∗ >< ∗o∗ >< ∗sr

1 7 8 9 14 16 19 20 29 34 36 44 49

We can compute the function M(i, j). There are no substrings of the length
2 such that M(i, j) = 1. The algorithm computes M(i, j) = 1:

1. M(9, 14) = 1 by initial case
2. M(9, 16) = 1 by line 1 and (A3b)
3. M(8, 19) = 1 by line 2 and (A4b)-useless
4. M(8, 22) = 1 by line 2 and (A4b) - useless
5. M(20, 29) = 1 by initial case
6. M(8, 29) = 1 by lines 3,5 and (A1a)-useless
7. M(20, 31) = 1 by line 5 and (A3b)
8. M(8, 31) = 1 by line 6 and (A3b)-useless
9. M(19, 34) = 1 by line 7 and (A4b)
10. M(17, 34) = 1 by line 9 and (A4a)
11. M(9, 34) = 1 by lines 2,10 and (A1b)
12. M(8, 35) = 1 by line 11 and (A2)
13. M(36, 44) = 1 by initial case
14. M(8, 44) = 1 by lines 12,13 and (A1a)
15. M(36, 46) = 1 by line 13 and (A3b)-useless
16. M(8, 46) = 1 by line 14 and (A3b)
17. M(7, 49) = 1 by line 16 and (A4b)
18. M(1, 49) = 1 by line 17 and (A3a)

Therefore there exists a type assignment for a given string which reduces to s.
The output of the parsing algorithm is:
{(7,49), (8,35), (9,14), (19,34), (20,29), (36,44)}

Example 3. An example from [8].
The dictionary:

Kim: np
mailed: npr s ppl npl, npr s npl

the: np nl

letter: n ppl, n
to: pp npl

Sandy: np

We consider the sentence:
Kim mailed the letter to Sandy.



We construct a string Wx:
< ∗np∗ >< ∗npr s ppl npl ∗ npr s npl∗ >< ∗np nl∗ >< ∗n ppl ∗ n∗ >
1 3 8 9 10 11 17 20 21 29
< ∗pp npl∗ >< ∗np∗ >< ∗sr

32 34 35 40 45

1. M(3, 8) = 1 by initial case -(r1)
2. M(1, 8) = 1 by line 1 and (A3a) - useless
3. M(3, 13) = 1 by initial case -(r2)
4. M(1, 13) = 1 by line 3 and (A3a) - useless
5. M(15, 20) = 1 by initial case - (r2)
6. M(11, 20) = 1 by initial case - (r1)
7. M(21, 26) = 1 by initial case - (r2)
8. M(15, 26) = 1 by lines 5,7 and (A1a) - (r2’)
9. M(11, 26) = 1 by line 6,7 and (A1a) - useless
10. M(21, 29) = 1 by initial case - (r1)
11. M(15, 29) = 1 by lines 5,10 and (A1a)
12. M(11, 29) = 1 by lines 6,10 and (A1a)- (r1)
13. M(21, 31) = 1 by line 10 and (A3b) - useless
14. M(15, 31) = 1 by line 11 and (A3b) - useless
15. M(11, 31) = 1 by line 12 and (A3b) - (r1)
16. M(27, 34) = 1 by initial case - (r2)
17. M(21, 34) = 1 by lines 7,16 and (A1a) - (r2”)
18. M(15, 34) = 1 by lines 5,17 and (A1a) or by line 8,16 and (A1a) -
both leading to (r2)
19. M(11, 34) = 1 by lines 6,17 and (A1a) - useless
20. M(10, 34) = 1 by line 15 and (A4b) - (r1)
21. M(35, 40) = 1 by initial case - (r1) and (r2)
22. M(27, 40) = 1 by lines 16,21 and (A1a) - (r2)
23. M(21, 40) = 1 by lines 7,22 and (A1a) - (r2) or by lines 17,20 and
(A1a)
24. M(15, 40) = 1 by lines 5,23 and (A1a) - (r2) or by lines 8,22 - (r2’)
and (A1a) or by lines 18,21 and (A1a) - (r2”)
25. M(11, 40) = 1 by lines 6,23 and (A1a) - useless
26. M(10, 40) = 1 by lines 20,21 and (A1a) - (r1)
27. M(35, 42) = 1 by line 21 and (A3b) - useless
28. M(27, 42) = 1 by line 22 and (A3b) - useless
29. M(21, 42) = 1 by line 23 and (A3b) - useless
30. M(15, 42) = 1 by line 24 and (A3b) - (r2)
31. M(11, 42) = 1 by line 25 and (A3b) - useless
32. M(10, 42) = 1 by line 26 and (A3b) - (r1)
33. M(14, 45) = 1 by line 30 and (A4b) - (r2)
34. M(9, 45) = 1 by line 32 and (A4b) - (r1)
35. M(3, 45) = 1 by lines 1,34 and (A1a) - (r1) or lines 3,33 and (A1a)
- (r2)
36. M(1, 45) = 1 by line 35 and (A3a) - (r1) and (r2)



There are 2 possible reductions:
{(3,8), (9,45), (10,34), (11,20), (21,29), (35,40)} and
{(3,13), (14,45), (15,20), (21,26), (27,34), (35,40)}

4 Algorithms of Oehrle and Savateev

For a better readability of this paper we briefly discuss related algorithms of
Oehrle [8] and Savateev [10].

The run of Oehrle’s algorithm on the last example is presented on pp. 67-71
of [8], so it takes much more space than our presentation. Oehrle’s algorithm
is essentially different. It represents the entry a1...an as a directed graph. Each
type A assigned to ai by G is represented as a linear graph of simple terms; one
draws arcs from the source 1 to the first simple terms of these types and from the
last simple terms of these types to the target 1. Then one identifies the target
of the graph of ai with the source of the graph of ai+1. The algorithm adds new
arcs to the resulting graph. For any path t1 → 1 → t2, one adds t1 → t2, and
for any path t1 → p(n) → p(n+ 1) → t2, one adds t1 → t2 ([8] does not regard
poset rules). This procedure is recursively executed, running the graph from the
left to the right. At the end, it returns the so-called winners, i.e. simple terms t
such that the final graph contains the path 1→ t→ 1 from the source of a1 to
the target of an.

Oehrle [8] shows that the time is O(n3), but the size of G is treated as a
constant. It can be shown that the time is cubic also in our sense (depending on
|W x|). However, the work of the algorithm seems more complicated than ours;
at each step, it has to remember all predecessors and successors of every vertice
and update some of them. Also, our algorithm can easily be modified to admit
an arbitrary type B in the place of s: it suffices to replace s(1) by Br, where
(p(n1)

1 ...p
(nk)
k )r = p

(nk+1)
k ...p

(n1+1)
1 . This generalization is not directly applicable

to Oehrle’s algorithm.
The algorithm of Savateev [10] is a recognition algorithm for L\-grammars.

Recall that L\ is the \-fragment of the Lambek calculus. Types are formed out
of atomic types p, q, r, ... by the rule: if A,B are types, then (A\B) is a type. An
L\-grammar assigns a finite number of types to each a ∈ Σ. L(G) is defined as
for pregroup grammars except that CBL is replaced by L\ (a comma separates
types, whereas for pregroup grammars it is interpreted as the concatenation of
strings).

Atoms are expressions pn, where p is an atomic type and n is a positive
integer. For each type A, γ(A) is a finite string of atoms, defined as follows:
γ(p) = p1, γ(A\B) = (γ(A))>γ(B), where (pn1 ...pnk)> = pnk+1...pn1+1. This is
precisely the translation of types in the formalism of free pregroups except that
Savateev writes pn+1 for our p(n).

A string of atoms has a good pairing, if there exists a system of non-crossing
links (as in pregroup reductions) such that:

(1) each atom is a left or right end of exactly one link,
(2) if pn is the left end of a link, then its right end is pn+1,



(3) if pn is the left end of a link and n is even, then the interval between pn

and the right end pn+1 contains an atom pm with m < n.
The key lemma states that A1, ..., An → B is provable in L\ if and only if

the string γ(A1)...γ(An)(γ(B))> has a good pairing. Clearly (1) and (2) yield
the reducibility of the string to 1 in CBL (after replacing pn+1 by p(n)), and (3)
is an additional constraint (necessary, since L\ is weaker than CBL).

The recognition algorithm for L\-grammars represents the entry x = a1...an

like in our algorithm; each type A assigned to ai is replaced by γ(A). The
algorithm checks whether there exists a string A1, ..., An of types assigned to
a1, ..., an, respectively, such that the string γ(A1)...γ(An)(γ(B))> has a good
pairing. (B is the designated type of G.)

We will not write details of the algorithm and the proof of correctness, given
in [10]. As mentioned in Section 1, although the algorithm is generally similar
to ours (we follow it!), several details are essentially different. For instance, Sa-
vateev’s algorithm and the proof of its correctness rely upon the fact that the
right-most atom in γ(A) has the form p1, and other peculiarities of the transla-
tion. Thus, Savateev’s algorithm does not correctly check whether an arbitrary
string of atoms has a good pairing; it is correct only for strings which are related
to L\-sequents in the way described above. Our algorithm handles arbitrary
strings of terms, admits both positive and negative integers n (i.e. both right
and left adjoints), and needs no constraint like (3).
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