MPRI 2-27-1 Exam

Duration: 3 hours

Written documents are allowed. The numbers in front of questions are indicative of hardness or duration.

1 Right Linear Monadic CFTGs

The motivation for this section is to understand *tree insertion grammars*, a restriction of tree adjoining grammars defined by Schabes and Waters in 1995. We shall work with the more convenient (and cleaner) framework of context-free tree grammars, and study the corresponding formalism of *single-sided* linear monadic context-free tree grammars (recall that tree adjoining grammars are roughly equivalent to linear monadic context-free tree grammars). To further simplify matters, we shall work with *right* grammars.

Definition 1 (Right Contexts). We work with three disjoint ranked alphabets:

- N_0 is a nullary nonterminal alphabet consisting of symbols of rank 0,
- \bullet N_R is a right nonterminal alphabet consisting of symbols of rank 1, and
- \mathcal{F} is a ranked terminal alphabet.

We use A_0, B_0, \ldots to denote elements of N_0, A_R, B_R, \ldots for elements of N_R , and $f^{(k)}, \ldots$ for elements of \mathcal{F}_k the sub-alphabet of \mathcal{F} with symbols of rank k. Let us define $N \stackrel{\text{def}}{=} N_0 \uplus N_R$ and $V \stackrel{\text{def}}{=} N \uplus \mathcal{F}$; then e, e_1, \ldots denote trees in T(V) and t, t_1, \ldots terminal trees in $T(\mathcal{F})$.

The set of **right contexts** $C_R(V)$ is made of contexts C where \square is the rightmost leaf. In other words, \square is a right context in $C_R(V)$, and if $X^{(k)}$ is a symbol of arity k > 0 in V, C is a right context in $C_R(V)$, and e_1, \ldots, e_{k-1} are trees in T(V) then $X^{(k)}(e_1, \ldots, e_{k-1}, C)$ is also a right context in $C_R(V)$.

Definition 2 (Right Linear Monadic CFTGs). A **right linear monadic context-free tree grammar** is a tuple $\mathcal{G} = \langle N_0, N_R, \mathcal{F}, S_0, R \rangle$ where N_0 , N_R , and \mathcal{F} are as above, $S_0 \in N_0$ is the *axiom*, and R is a finite set of rules of form:

- $A_0 \to e$ with $A_0 \in N_0$ and $e \in T(V)$, or
- $A_R(y) \to C[y]$ with $A_R \in N_R$ and $C \in \mathcal{C}_R(V)$; y is called the parameter of the rule.

The tree language of \mathcal{G} is

$$L(\mathcal{G}) \stackrel{\text{def}}{=} \{ t \in T(\mathcal{F}) \mid S_0 \stackrel{R}{\Rightarrow}^{\star} t \} .$$

Exercise 1 (Yields and Branches). Given a tree language $L \subseteq T(\mathcal{F})$, let Yield $(L) \stackrel{\text{def}}{=} \bigcup_{t \in L} \text{Yield}(t)$ and define inductively

$$Yield(a^{(0)}) \stackrel{\text{def}}{=} a$$
 $Yield(f^{(k)}(t_1, \dots, t_k) \stackrel{\text{def}}{=} Yield(t_1) \cdots Yield(t_k)$.

Hence $\text{Yield}(t) \in \mathcal{F}_0^*$ is a word over \mathcal{F}_0 , and $\text{Yield}(L) \subseteq \mathcal{F}_0^*$ is a word language over \mathcal{F}_0 .

[1] 1. What is the word language Yield($L(\mathcal{G})$) of the CFTG with rules

$$S_0 \to A_R(c^{(0)})$$

$$A_R(y) \to f^{(2)}(a^{(0)}, A_R(f^{(2)}(a^{(0)}, y)))$$

$$A_R(y) \to f^{(2)}(b^{(0)}, A_R(f^{(2)}(b^{(0)}, y)))$$

$$A_R(y) \to y$$

where
$$N_0 \stackrel{\text{def}}{=} \{S_0\}$$
, $N_R \stackrel{\text{def}}{=} \{A_R\}$, and $\mathcal{F} \stackrel{\text{def}}{=} \{f^{(2)}, a^{(0)}, b^{(0)}, c^{(0)}\}$?

[2] 2. Show that there exists a right linear monadic CFTG \mathcal{G} such that $L(\mathcal{G})$ is not a regular tree language.

Hint: Recall that, if $L \subseteq T(\mathcal{F})$ is a regular tree language, then its set of branches Branches(L) is a regular word language over \mathcal{F} . We define Branches(L) $\subseteq \mathcal{F}^*$ by Branches(L) $\stackrel{\text{def}}{=} \bigcup_{t \in L} \text{Branches}(t)$ and in turn

Branches
$$(a^{(0)}) \stackrel{\text{def}}{=} \{a\}$$
 Branches $(f^{(k)}(t_1, \dots, t_k)) \stackrel{\text{def}}{=} \bigcup_{1 \le j \le k} \{f\} \cdot \text{Branches}(t_j)$.

Exercise 2 (Tree Insertion Grammars). Consider the tree adjoining grammar depicted below. Note that its sole auxiliary tree β_1 is of the form $C[VP_*^{na}]$ where C is a right context; this grammar is actually a *right* tree insertion grammar.

- [1] 1. Provide an equivalent right linear monadic CFTG.
- [1] 2. Complete the TIG or your CFTG (in a linguistically informed manner) in order to also generate the sentence 'Bill likes black mushrooms.'

Exercise 3 (Context-Free Word Languages). We show in this exercise that, although right linear monadic CFTGs can generate non-regular tree languages, their expressive power is just as limited as that of finite tree automata when it comes to word languages.

- [3] 1. Show for any context-free language L, there is a right linear monadic context-free tree grammar \mathcal{G}' with $L \setminus \{\varepsilon\} = \text{Yield}(L(\mathcal{G}'))$.
- [1] 2. Let us extend Yield(·) to terminal contexts $c \in \mathcal{C}(\mathcal{F}) \subseteq T(\mathcal{F} \uplus \{\Box\})$ by Yield(\Box) $\stackrel{\text{def}}{=} \varepsilon$. Show that, for all terminal right contexts $c \in \mathcal{C}_R(\mathcal{F})$ and all $t \in \mathcal{C}_R(\mathcal{F}) \cup T(\mathcal{F})$,

$$Yield(c[t]) = Yield(c) \cdot Yield(t)$$
.

[5] 3. Show the converse: for any right linear monadic CFTG, Yield($L(\mathcal{G})$) is a context-free word language over \mathcal{F}_0 .

Hint: You might use the fact that \mathcal{G} is linear to restrict your attention to IO derivations: by Theorem 5.9 and Proposition 5.13 of the lecture notes, $L(\mathcal{G}) = L_{IO}(\mathcal{G})$.

[1] 4. Show that, the **word membership problem** for right linear monadic CFTG can be solved in polynomial time (this problem is, given $w \in \mathcal{F}_0^*$ and \mathcal{G} a right linear monadic CFTG, whether $w \in \text{Yield}(L(\mathcal{G}))$).

2 Scope ambiguities and covert moves in ACGs

Exercise 4. One considers the two following signatures:

```
\begin{split} (\Sigma_{\mathrm{ABS}}) & \quad \text{Trace} : NP_{NP} \\ & \quad \text{Move} : NP_{NP} \to (NP \to S) \to S_{NP} \\ & \quad \text{Man} : N \\ & \quad \text{Help} : N \\ & \quad \text{Every} : N \to S_{NP} \to S \\ & \quad \text{Some} : N \to S_{NP} \to S \\ & \quad \text{Needs} : NP \to NP \to S \end{split} (\Sigma_{\text{S-FORM}}) & \quad /man/: string \\ & \quad /help/: string \\ & \quad /every/: string \\ & \quad /some/: string \\ & \quad /needs/: string \end{split}
```

where, as usual, string is defined to be $o \to o$ for some atomic type o.

One then defines a morphism $(\mathcal{L}_{SYNT} : \Sigma_{ABS} \to \Sigma_{S\text{-}FORM})$ as follows:

$$(\mathcal{L}_{ ext{SYNT}})$$
 $N := string$ $NP := string$ $S := string$ $NP_{NP} := string o string$ $S_{NP} := string o string$

TRACE $:= \lambda x. x$
 $MOVE := \lambda xyz. y (x z)$
 $MAN := /man/$
 $HELP := /help/$
 $EVERY := \lambda xy. y (/every/ + x)$
 $SOME := \lambda xy. y (/some/ + x)$
 $NEEDS := \lambda xy. y + /needs/ + x$

where, as usual, the concatenation operator (+) is defined as functional composition.

[1] 1. Give two different terms, say t_0 and t_1 , such that:

$$\mathcal{L}_{\text{SYNT}}(t_0) = \mathcal{L}_{\text{SYNT}}(t_1) = /every/ + /man/ + /needs/ + /some/ + /help/$$

Exercise 5. One considers a third signature :

```
(\Sigma_{	ext{L-FORM}}) man: ind 	o prop
help: ind 	o prop
needs: ind 	o ind 	o prop
```

where the intended intuitive interpretation of the binary relation **needs** is that (**needs** a b) means that b is needed by a.

One then defines a morphism $(\mathcal{L}_{SEM} : \Sigma_{ABS} \to \Sigma_{L\text{-FORM}})$ as follows:

$$(\mathcal{L}_{\mathrm{SEM}})$$
 $N := \mathrm{ind} o \mathrm{prop}$ $NP := \cdots$ $S := \mathrm{prop}$ $NP_{NP} := \mathrm{ind} o \mathrm{ind}$ $S_{NP} := \mathrm{ind} o \mathrm{prop}$ $\mathrm{TRACE} := \cdots$ $\mathrm{MOVE} := \cdots$ $\mathrm{MAN} := \mathbf{man}$ $\mathrm{HELP} := \mathbf{help}$ $\mathrm{EVERY} := \lambda xy. \, \forall z. \, (x\,z) o (y\,z)$ $\mathrm{SOME} := \lambda xy. \, \exists z. \, (x\,z) \wedge (y\,z)$ $\mathrm{NEEDS} := \cdots$

[2] 1. Complete the above semantic interpretation (i.e., provide interpretations for NP, TRACE, MOVE, and NEEDS) in such a way that $\mathcal{L}_{\text{SEM}}(t_0)$ and $\mathcal{L}_{\text{SEM}}(t_1)$ yield two different plausible semantic interpretations of the sentence every man needs some help.

Exercise 6. One extends Σ_{ABS} , Σ_{S-FORM} , \mathcal{L}_{SYNT} , and \mathcal{L}_{SEM} , respectively, as follows:

$$(\Sigma_{ABS})$$
 POSSIBLY: $S \to S$
 (Σ_{S-FORM}) /possibly/: string
 (\mathcal{L}_{SYNT}) POSSIBLY:= $\lambda x. x + /possibly/$
 (\mathcal{L}_{SEM}) POSSIBLY:= $\lambda x. \diamondsuit x$

[2] 1. How many terms u are there such that:

$$\mathcal{L}_{\text{SYNT}}(u) = /every/ + /man/ + /needs/ + /some/ + /help/ + /possibly/$$

[2] 2. Give three such terms together with their semantic interpretations.