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Abstract. We present a uniform framework for defining different λ-
typed λ-calculi in terms of systems to derive typing judgements, akin
to Barendregt’s Pure Type Systems [3]. We first introduce a calculus
called λλ and study its abstract properties. These are, among others, the
property of Church-Rosser, the property of subject reduction, and the
one of strong normalization. Then we show how to extend λλ to obtain
an inferential definition. of Nederpelt’s Λ [20]. One may also extend λλ to
get inferential definitions of van Daalen Λβ [24], and de Bruijn’s Λ∆ [9]
and we argue that these new inferential definitions are well suited for
language-theoretic investigations.

1 Introduction

In: 10th Annual Symposium on Theoretical Aspects of Computer Science, STACS’93,
P. Enjalbert, A. Finkel, and K.W. Wagner (Eds.),
Lecture Notes in Computer Science, Vol. 665, Springer-Verlag (1993), pp. 712-723.

There is a growing interest in designing generic formal systems that can be used
to specify various object logics [16, 18]. These systems, also known as logical
frameworks, may be used to implement and automate many of the logics that
are of interest in computer science. For this reason, they form the basis of generic
theorem provers [23].

We think, as the author of [10] does, that λ-typed λ-calculi have an impor-
tant role to play as the backbones of logical frameworks. λ-Typed λ-calculi are as
elegant and simple than they are powerful. They correspond, at the implementa-
tion level, to a uniform data-structure allowing syntactic categories and formal
languages, as well as logical rules and proofs to be represented. As pointed out
in [17], systems such as LF [16] can be seen as higher-level languages that can
be compiled into λ-typed λ-calculi. Nevertheless the notion of λ-type did not
spread outside the automath community.

In this paper, we define λ-typed λ-calculi in terms of systems to derive typing
judgements, in the spirit of [3]. We consider, for instance, Nederpelt’s Λ [20]
whose original definition is strongly algorithmic. Indeed the notion of well-typed
expressions is defined by means of an algorithm that tells whether an expression
is well-typed or not. Such an algorithmic style of definition is better suited for
implementation than it is for language-theoretic investigations. For a theoretical
study, the inferential style of definition that we use here (called E-definition
in [24]) presents further advantages:



1. it allows proofs to be conducted by induction on the derivations of judge-
ments;

2. it provides a uniform framework to compare the different calculi with each
other;

3. it makes easier the comparison between λ-typed λ-calculi and more usual
typed λ-calculi such as the ones defined in [3].

The paper is organized as follows. In Section 2, we introduce and discuss
the notion of λ-type from a general and somewhat intuitive point of view. In
Section 3, and 4, we introduce the λ-typed λ-calculus λλ, which is equivalent to
the variant of Nederpelt’s Λ that we studied in [12]. The definition that we give
is an adaptation of the one used by Barendregt in [3]. In Section 5, we studied
the abstract properties of λλ and we show how the techniques used in [3, 4, 14,
15] may be adapted to the case of λ-typed λ-calculi. In Sections 6 we extend λλ

by allowing for βη-conversion and we obtain a calculus equivalent to Nederpelt’s
Λ. In section 7, we suggest how to obtain inferential definitions of van Daalen’s
Λβ [24] and de Bruijn’s Λ∆ [9]. Finally, we conclude in Section 8.

2 The Notion of λ-Type

The notion of λ-type originated in the frame of the automath project [8].
In the earliest versions of automath, λ-types were already present, because a
unique binding operator was used both for the terms and their types. Then, by
a further unification of concepts, de Bruijn designed a language called aut-sl (a
shorthand for automath single line), which permits a whole automath book
to be expressed as a single λ-term [6]. This language gave rise to the calculus
Λ that Nederpelt introduced in his dissertation and for which he proved strong
normalization [20, 21]. Finally, a last achievement, due to de Bruijn again, was
to provide the calculus Λ∆ [9] as a generalization of Λ.

The easiest way (but also maybe the most harmful) of understanding the
notion of λ-type is based on the following simple observation: although the func-
tional abstractor (λ) and the constructor of dependent types (Π) are usually
distinguished, their syntactic features are basically the same; both are univer-
sal binding operators. Hence, it is consistent, at least syntactically, to identify
them. This identification gives rise to calculi where the types that are assigned
to λ-terms are themselves λ-terms.

To see λ-typed λ-calculi as the result of that syntactic identification between
λ and Π is harmful for at least two reasons. First of all, it suggests that the
λ-typed λ-calculi were designed after more usual typed λ-calculi. This is wrong.
aut-sl, for instance, is more than fifteen years older than LF. Second of all,
it makes one feel that λ-typed λ-calculi are based on a syntactic confusion and
amount, therefore, to a semantic absurdity. This is not true by any means since
the consistency of a calculus like Nederpelt’s Λ, for instance, can be established
in a proof-theoretic way [20, 24] (see also Section 5, hereafter).

A better way of understanding λ-typed λ-calculi is to forget about other
typed λ-calculi and to think of the untyped λ-calculus as a calculus of substi-



tution. Then, λ-typed λ-calculi may be seen as calculi of substitution typed by
substitution.1 Actually, λ-typed λ-calculi are very natural in the sense that the
only concepts needed to assign types to terms are the operations of abstraction
and application, i.e. the central concepts of the (untyped) λ-calculus.

The terms and the types of a λ-typed λ-calculus obey the same syntax.
This feature presents some technical advantages, notably when implementing the
calculus. For example, the meta-operation of substituting a term for a variable
into a type may be represented within the calculus by a β-redex. This, in turn,
allows an explicit typing operator to be defined (see Section 5, Definition 5). We
do not claim, however, that λ-typed λ-calculi must be preferred to other calculi.
For instance, we do not think that Nederpelt’s Λ must, in any case, be preferred
to LF. Preference is often only a matter of style. What we believe is that λ-typed
λ-calculi must not be forgotten or ignored.

3 Syntax of Raw λ-Expressions

λ-Expressions are built from a countably infinite set of variables V and a single
constant τ .

Definition 1. The set E of λ-expressions is defined inductively as follows:

i. τ ∈ E
ii. x ∈ V ⇒ x ∈ E
iii. x ∈ V and A,B ∈ E ⇒ (λx :A.B) ∈ E
iv. A,B ∈ E ⇒ (A B) ∈ E

The constant τ is akin to the constant Type of other calculi [5, 16] or to Baren-
dregt’s ∗ [3]. In Nederpelt’s Λ, λ-expressions whose head is τ (i.e. expressions of
the form λx1 :A1. · · ·λxn :An. τ B1 · · · Bm) are not assigned any type. Since we
want to give to λλ a definition in the spirit of [3], contrary to Nederpelt, we will
state the axiom

` τ : κ

where κ is another constant corresponding to Barendregt’s 2. To this end, we
introduce the set K of λ-kinds.

Definition 2. The set K of λ-kinds is defined inductively as follows:

i. κ ∈ K
ii. x ∈ V and A ∈ E and B ∈ K ⇒ λx :A.B ∈ K
1 It is worth noting that the notions of reduction considered in the automath project

(called mini-reductions by de Bruijn in [9]) do not amount to global substitutions,
like β-reduction does, but to local ones. Recently, in [22], Nederpelt pursued further
the study of these mini-reductions and provided a comparison with the explicit
substitutions of Abadi, Cardelli, Curien, and Lévy [1].



For convenience, we also define the set of pseudo-expressions P = E ∪ K.
As customary, λ is a binding operator. The scoping rules are the usual ones.

In particular, variables occurring free in a λ-expression A remain free in λx :A.B.
Pseudo-expressions that can be transformed into each other by renaming their
bound variables are identified (see [7]).

The equality of λλ amounts to the relation of β-conversion (←←→→β), which
is defined as the reflexive, transitive, symmetric closure of the relation of β-
contraction (→β). The latter is defined on raw pseudo-expressions, as usual.

4 Well-Typedness and Correctness

Type checking is defined according to typing contexts. A typing context is a
sequence of declarations x : A, where x ∈ V and A ∈ E . Any context Γ, x : A is
such that (i) the variable x is not declared in Γ , (ii) all the variables occurring
free in the λ-expression A are declared in Γ . C is the set of typing contexts.

We define the notion of well-typed λ-expression by providing a proof system
to derive typing judgements of the shape

Γ ` A : B (1)

where Γ is a typing context and A and B are both λ-expressions. While A and
B belong to the same syntactic category (they are both in E), we will sometimes,
for convenience, refer to A as a term and to B as a type.

Another form of judgement is necessary. The judgements of this second form
have also the shape of (1) with the difference that B is no longer a λ-expression
but a λ-kind. Strictly speaking, the two forms of judgements are different. Nev-
ertheless, by a slight abuse of language, we identify them and say that A is a
well-typed λ-expression in both cases.

Definition 3. Let Γ ∈ C, A ∈ E and B ∈ P. A typing judgment of λλ is an
expression of the form

Γ ` A : B

derivable according to the following proof system:

` τ : κ (constant)

Γ ` A : B

Γ, x : A ` x : A
(variable)

Γ, x : A ` B : C

Γ ` λx :A.B : λx :A.C
(abstraction)

Γ ` A : λx :C.D Γ ` B : C

Γ ` A B : D[x :=B]
(application)

Γ ` A : B Γ ` C : D

Γ, x : C ` A : B
(weakening)



Γ ` A : B Γ ` C : D

Γ ` A : C
if B ←←→→β C (type conversion)

Given some A ∈ E and some Γ ∈ C, one says that the λ-expression A is well-
typed according to the context Γ if and only if there exists a pseudo-expression
B ∈ P such that Γ ` A : B.

Given some A ∈ E, A is called a correct λ-expression of λλ if and only if A
is well-typed according to the empty context.

We may now compare the system given in Definition 3 with related systems
such as LF [16] or Barendregt’s λP [3]. Two rules of the present system seem to
be unusual. The first one is the abstraction rule that introduces an abstractor λ
in the right-hand side of the colon (instead of some specific type constructor such
as Π). The second one is the weakening rule where no degree restriction is given
on C. This means that any well-typed term may be used as a type or, in other
words, that there may be chains Γ ` A1 :A0, Γ ` A2 :A1, . . ., Γ ` An :An−1 of
arbitrary lengths. This must be contrasted with the other (more usual) calculi
where expressions of only three degrees are provided: the kinds, the types, and
the terms.

5 The Language Theory of λλ

In this section, we review the main properties of λλ. Among others, we state the
properties of Church-Rosser, of subject reduction, and of strong normalization.
These properties, for Nederpelt’s Λ, were first established by Nederpelt and van
Daalen in their respective PhD theses [20, 24]. The proofs they give, however,
are rather difficult because of the algorithmic nature of Nederpelt’s original
definition (see section 6 below). On the other hand, Definition 3 allows the same
properties to be proven by induction on the derivations of the typing judgements.
It is then a mere exercise to adapt the proofs that are given in [4, 15]

The first property that we state is the Church-Rosser Theorem for the set of
pseudo-expressions.

Proposition 1. (Church-Rosser) Let A,B, C ∈ P be such that A →→β B and
A→→β C. Then there exists D ∈ P such that B →→β D and C →→β D.

Proof. The usual Tait–Martin-Löf proof for type free λ-terms [2, pp. 61–62] gen-
eralizes easily to raw λ-expressions and λ-kinds. ut

The next property of interest is subject reduction. This property turns out
to be important in practice. If one sees β-reduction as the process of evaluating
a λ-expression, a consequence of subject reduction is that there is no need for
any kind of dynamic type checking.

Proposition 2. (Subject reduction) For all A,B ∈ E, C ∈ P and all Γ ∈ C, if
A→→β B and Γ ` A : C then Γ ` B : C.



Proof. The property can be established by induction on the derivation of Γ `
A : C. Some technical lemmas are needed. See [4] or [15] for details. ut

The subject reduction and Church-Rosser properties allow one to give a sim-
ple characterization of the relation of β-equality between well-typed terms. β-
equality is the least equivalence relation containing the relation of β-contraction
between well-typed terms. It is defined, more explicitly, as follows.

Definition 4. Let A,A′ ∈ E and Γ ∈ C. We say that A and A′ are β-equal with
respect to Γ , and we write

Γ ` A =β A′

if and only if there exist A1, . . . , An ∈ E, B1, . . . , Bn ∈ P such that:

i. A1 ≡ A and An ≡ A′,
ii. for all 1 ≤ i ≤ n, Γ ` Ai : Bi,
iii. for all 1 ≤ i < n, Ai →β Ai+1 or Ai+1 →β Ai.

As a corollary of Propositions 1 and 2, we have that Γ ` A =β A′ if and
only if A ←←→→β A′, Γ ` A : B, and Γ ` A′ : B′, for some B,B′ ∈ P. In
connection with this (and with Proposition 4 below), it is worth noting that the
type conversion rule of Definition 3 is equivalent to the following type equality
rule:

Γ ` A : B Γ ` B =β C

Γ ` A : C
(type equality)

Actually, the type equality rule is the intended meaning of the type conversion
rule. Nevertheless if we replace the latter by the former, using Definition 4, we
would introduce circularity into the definitions. It is possible to circumvent this
problem by providing an axiomatization of the equality judgements, in the spirit
of Martin-Löf’s type theory [19]. This solution, however, would lengthen most
of the proofs of the propositions.

Most of the typed λ-calculi that have been studied in the literature, among
others the eight systems of Barendregt’s λ-cube, are strongly normalizable. This
property also holds for λλ.

Proposition 3. (Strong normalization) Let A,B ∈ P and Γ ∈ C be such that
Γ ` A : B. Then there is no infinite sequence of β-contraction starting in A.

Proof. As in the case of LF or λP, strong normalization for λλ may be derived
from strong normalization for the simply typed λ-calculus. See [15, 16]. ut

Two other properties are related to the λ-expressions that are acting as types.
The peculiarity of λ-typed λ-calculi is that the set of terms is identical to

the set of types. We know that this is certainly true at the context-free level of
raw λ-expressions. To make sense, however, this identification must also exist
for well-typed expressions. In other words, when a well-typed λ-expression is
assigned another λ-expression as a type, we expect the latter λ-expression to be
also well-typed. This is stated by the following result.



Proposition 4. (Well-typedness of types) Let A,B ∈ E and Γ ∈ C. If Γ ` A :
B then there exists C ∈ P such that Γ ` B : C.

Proof. The proof is by induction on the derivation of Γ ` A : B. The only
problematic case is the one of application for which a substitution lemma is
needed. ut

We also have that the type of an expression is unique up to β-conversion.

Proposition 5. (Unicity of types) Let A,B ∈ E, C ∈ P and Γ ∈ C. If Γ ` A :
B and Γ ` A : C then B ←←→→β C.

Proof. A straightforward induction on the derivation of Γ ` A : B. ut

One of the main consequences of the above metatheoretic properties is the
decidability of the typing relation of λλ. Another application consists in designing
other definitions of λλ that are more suited to implementation [12] and then
proving their equivalence with definition 3. Let us illustrate partially this by
introducing Nederpelt’s typing operator.

Definition 5. Nederpelt’s typing operator type: C×E ⇀ P is defined inductively
according to the following clauses:

i. typeΓ [τ ] = κ,
ii. typeΓ [x] = A if x:A ∈ Γ ,
iii. typeΓ [λx :A.B] = λx :A. typeΓ,x:A [B],
iv. typeΓ [A B] = typeΓ [A]B.

Except for the first clause, which is proper to our formalism, the above defi-
nition corresponds to the one given by Nederpelt’s in his thesis.

The connection between this typing operator and the typing relation defined
by Definition 3 is expressed by the following property.

Proposition 6. Let A ∈ E , B ∈ P and Γ ∈ C be such that Γ ` A : B. Then
B ←←→→β typeΓ [A].

Proof. By induction on the derivation of Γ ` A : B. ut

It is remarkable that the operator type is defined on the raw expressions.
This allows one to also define so-called applicability conditions on the raw ex-
pressions. Then the well-typedness of a λ-expression may be checked simply by
structural induction except for the case of an application where, in addition, the
applicability conditions must be satisfied. For λλ, we have that an application
(A B) is well typed according to a context Γ if and only if

i. A and B are well-typed according to Γ ,
ii. there exist C ∈ E and D ∈ P such that typeΓ [A]→→β λx :C.D, and
iii. typeΓ [B] ↓β C (where the relation ↓β , by definition, indicates the existence

of a common reduct).

Clauses ii and iii correspond to the applicability conditions.



6 Nederpelt’s Λ

The main difference between λλ and Nederpelt’s Λ [20, 21], besides the way in
which they are defined, is that the equality of Λ is extensional in the sense that
it is based on the notion of βη-reduction.

Let us look at the applicability conditions for Λ as defined by Nederpelt
in [20]. First the degree of an expression is defined as follows.

Definition 6. The degree deg Γ [A] of a λ-expression A according to a context
Γ is defined inductively according to the following clauses:

i. deg Γ [τ ] = 0,
ii. deg Γ [x] = deg Γ [A] + 1 if x:A ∈ Γ ,
iii. deg Γ [λx :A.B] = deg Γ,x:A [B],
iv. deg Γ [A B] = deg Γ [A].

Then an iterated version of the typing operator is defined.

Definition 7. Let typen be defined as follows:

i. type0
Γ [A] = A,

ii. typen+1
Γ [A] = typen

Γ [typeΓ [A]].

Then one defines type∗Γ [A] = typed
Γ [A], where d = deg Γ [A].

Finally, Nederpelt’s applicability conditions are given by the following defi-
nition: a λ-expression A is applicable to a λ-expression B in the context γ if and
only if there exist C ∈ E and D ∈ P such that

i. type∗Γ [A]→→β λx :C.D,
ii. typeΓ [B] ↓βη C.

The above applicability conditions might seem awkward. Nevertheless they
may be explained in term of βη-conversion in a rather clean way.Roughly speak-
ing, applicability conditions say that the domain of a functional expression must
match the type of its argument. In the case of λλ, the domain and the type may
be computed using the operator type, and the meaning of the word “match” is
β-conversion.

In the case of Nederpelt’s Λ, Clause (ii) above suggests that the meaning of
the word “match” is βη-conversion. One also has that the type of the argument
is computed using the same operator type. What is unclear is why an iterated
version of the typing operator is used when computing the domain. In order to
answer this question, let us first consider an example.

Example. Consider the context

Γ ≡ a : λx :τ. τ, b : a, c : τ



In this context, the expression b is applicable to the expression c according to
Nederpelt’s conditions (while, in λλ, b c is not well-typed with respect to Γ ).
Indeed we have:

type∗Γ [b] = λx :τ. τ and typeΓ [c] = τ.

Let us try now to extend λλ in order to derive Γ ` b c : A, for some λ-expression
A. A possible derivation tree is the following:

Γ ` b : a

...
Γ, x : τ ` a : λx :τ. τ

...
Γ, x : τ ` x : τ

Γ, x : τ ` a x : τ
Γ ` λx :τ. a x : λx :τ. τ

(?) Γ ` b : λx :τ. a x

...
Γ ` c : τ

Γ ` b c : a c

The interesting step in the above derivation is (?). The expression b is assigned
a functional type λx : τ. a x thanks to the η-expansion a ←η λx : τ. a x. This
η-expansion is legitimate because the expanded expression, that is λx : τ. a x, is
well-typed. Now, the reason why the latter expression is well-typed is because
the type of a is functional or, in other words, because type∗Γ [b] is functional.

This example demonstrates that the iterated version of the typing operator
is simply related to η-conversion. Therefore, in order to get an inferential def-
inition of Nederpelt’s Λ, we must adapt Definition 3 to take η-conversion into
account. The first idea consists of simply replacing the type conversion rule by
the following one:

Γ ` A : B Γ ` C : D

Γ ` A : C
if B ←←→→βη C (2)

Unfortunately, this does not work. We have seen that, when dealing with β-
conversion only, the type conversion rule is equivalent to a type equality rule.
The problem, in the present case, is precisely that rule (2) is not equivalent to
the corresponding type equality rule:

Γ ` A : B Γ ` B =βη C : D

Γ ` A : C
(3)

In fact, (2) and (3) are not equivalent becauses βη-reduction on pseudo-
expressions is not Church-Rosser (see [14, 20, 24]). This was first pointed out by
Nederpelt in his thesis [20]. The typical counterexample he gives is the following:

λx :A. (λx :B.C) x→η λx :B.C and λx :A. (λx :B.C) x→β λx :A.C

where A and B can be any λ-expressions. In particular, A and B could be such
that the λ-expressions λx : B.C and λx : A.C would be well-typed. Therefore
Rule (2) allows one to change arbitrarily the domain of a functional expression.

The problem can be circumvented by strengthening the type conversion rule
as follows:



Γ ` A : B Γ ` B : D Γ ` C : D

Γ ` A : C
if B ←←→→βη C. (4)

In Rule (4), the λ-expressions B and C are explicitly required to have the same
type D. As a consequence, when B and C are functional expressions, they must
have the same domain. This is clear for λ-expressions of degree 0 because type
conversion is not allowed at the level of λ-kinds. Then, for λ-expressions of degree
n > 0, it can be established by induction.

Definition 3 where the type conversion rule is replaced by Rule (4) corre-
sponds to a new system that we will call λλ

βη. This system is equivalent to
Nederpelt’s Λ.

The system λλ
βη is well suited for language-theoretic investigations. The

metatheoretic results of Section 5 may be adapted. Nevertheless the adapta-
tion is not straightforward. The problem, of course, is the failure of the Church-
Rosser property on pseudo-expressions. βη-Reduction on well-typed expressions
satisfies the Church-Rosser property, but to prove it is far from easy. In fact,
the property was conjectured by Nederpelt in his thesis [20] and proven by van
Daalen seven years later [24]. Recently, Geuvers has given a proof of the Church-
Rosser property for a large class of Pure Type System with βη-reduction [14].
His techniques may be adapted to λλ

βη.

7 Van Daalen’s Λβ and de Bruijn’s Λ∆

In his thesis [24], van Daalen investigates a subsystem of Nederpelt’s Λ that he
calls Λβ . In [9] de Bruijn introduces the calculus Λ∆, which is a generalization
of Nederpelt’s Λ.

Definition 3 may be extended in order to get inferential definitions of van
Daalen’s and de Bruijn’s calculi: by allowing for a weak form of η-expansion,
one obtains a calculus equivalent to Λβ ; by adding a subject expansion rule, one
obtains a calculus equivalent to Λ∆. We do not give the precise definitions for
the sake of shortness.

8 Conclusions

While the idea of dealing with λ-types emerged more than twenty years ago, the
concept of λ-typed λ-calculus has remained proper to the automath project
and appears to have been somewhat overlooked by the rest of the scientific
community. There are two main reasons to this:

1. the identification between terms and types is felt to be purely syntactic and
to carry little semantic content,

2. the original definitions of Λ and Λ∆ may be difficult to master because of
their strong algorithmic flavor.

This first reason can be considered at the same time as a cause or as a
consequence. It is true that no interesting model of λ-typed λ-calculi has been



developed and that without such models it could be hard to have an intuition of
what is a λ-type. However, properties such as Church-Rosser and normalization,
which can be interpreted as consistency results, show that the notion of λ-type
make sense and that, at least, we can construct a term model. Therefore, one
may invert the argument. One may say that no interesting model of λ-typed λ-
calculi has been developed not because the notion of λ-type is purely syntactic
but because it has been overlooked.

The second reason is more pertinent. The first time one is confronted with
the original definitions of Λ and Λ∆, which both consist in a type-checking
algorithm, one has the feeling of being confronted with some complicated new
system. This is because one has to face two problems at the same time. On the
one hand, one has to understand the behavior of an algorithm while, on the
other hand, one wants to understand abstractly the features of a new calculus.
Moreover, to compare Λ and Λ∆ to other systems, with which one is possibly
familiar, could be difficult. Hence, sooner or later, one is tempted to draw the
wrong conclusion that λ-typed λ-calculi are artificially complicated because of
the purely syntactic identification between abstractions and dependent types.

The inferential definitions that we have given in this paper should settle this
misunderstanding. In particular, they enlighten the relation existing between λ-
typed and other typed λ-calculi. They also explain unusual features of Λ and Λ∆
in terms of well-known notions. For instance, we have seen that the type-iteration
that is used in [9, 20, 24] to compute the domain of a functional λ-expression may
be explained in term of η-expansion.
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19. P. Martin-Löf. An intuitionistic theory of types: Predicative part. In Logic Collo-
quium ’73, pages 73–118. North-Holland, 1975.

20. R.P. Nederpelt. Strong normalization in a typed lambda calculus with lambda struc-
tured types. PhD thesis, Technische hogeschool Eindhoven, 1973.

21. R.P. Nederpelt. An approach to theorem proving on the basis of a typed lambda-
calculus. In Proceedings of the 5th international conference on automated deduction,
pages 182–194. Lecture Notes in Computer Science, 87, Springer Verlag, 1980.

22. R.P. Nederpelt. The fine-structure of lambda calculus. Computing Science Notes.
Eindhoven University of Technology, 1992.

23. L.C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor,
Logic and Computer Science, pages 361–386. Academic Press, 1990.

24. D.T. van Daalen. The language theory of Automath. PhD thesis, Technische
hogeschool Eindhoven, 1980.


