Formal Semantics of Natural Language

Philippe de Groote and Yoad Winter

ESSLLI 2021, Online
Additional Topics:

Intensionality
Sinn und bedeutung

Gottlob Frege (1848-1925)
Sinn und bedeutung

► *Sinn* (sense)/*Bedeutung* (reference)
— Frege

Gottlob Frege (1848-1925)
Sinn und bedeutung

► **Sinn** (sense)/**Bedeutung** (reference) — Frege

► **Intension/Extension** — Carnap

Gottlob Frege (1848-1925)
According to Frege, the sense of an expression is its “mode of presentation”, while the reference or denotation of an expression is the object it refers to.

Gottlob Frege (1848-1925)
Sinn und bedeutung

► **Sinn (sense)/Bedeutung (reference)** — Frege

► **Intension/Extension** — Carnap

► According to Frege, the sense of an expression is its “mode of presentation”, while the reference or denotation of an expression is the object it refers to.

► For instance, both expressions “1 + 1” and “2” have the same denotation but not the same sense.

Gottlob Frege (1848-1925)
Intensional propositions
An intensional proposition is a proposition whose validity is not invariant under extensional substitution.
An intensional proposition is a proposition whose validity is not invariant under extensional substitution.

Frege gives the example of “the morning star” and “the evening star” which both refer to the planet Venus.
Intensional propositions

- An intensional proposition is a proposition whose validity is not invariant under extensional substitution.

- Frege gives the example of “the morning star” and “the evening star” which both refer to the planet Venus.

- Compare “the morning star is the evening star” with “the ancients did not know that the morning star is the evening star”.
Possible world semantics

G.W. von Leibniz
(1646–1716)
Possible world semantics

- A proposition is necessarily true if it is true in all possible worlds.

G.W. von Leibniz (1646–1716)
Possible world semantics

- A proposition is necessarily true if it is true in all possible worlds.
- A proposition is possibly true if it is true in at least one possible world.

G.W. von Leibniz
(1646–1716)
Possible world semantics

- A proposition is necessarily true if it is true in all possible worlds.
- A proposition is possibly true if it is true in at least one possible world.

Pangloss enseignait la métaphysico-théologo-cosmolo-nigologie.
Il prouvait admirablement qu’il n’y a point d’effet sans cause, et que,
dans ce meilleur des mondes possibles, le château de monseigneur le baron
était le plus beau des châteaux et madame la meilleure des baronnes possibles.

G.W. von Leibniz (1646–1716)

Voltaire (Candide)
Modals
In a strict sense, modal logic is concerned with the study of statements and reasonings that involve the notions of necessity and possibility.
In a strict sense, modal logic is concerned with the study of statements and reasonings that involve the notions of necessity and possibility.

In a more general sense, modal logic is concerned with the study of statements and reasonings that involve expressions (modals) that qualify the validity of a judgement:
Modals

- In a strict sense, modal logic is concerned with the study of statements and reasonings that involve the notions of necessity and possibility.

- In a more general sense, modal logic is concerned with the study of statements and reasonings that involve expressions (modals) that qualify the validity of a judgement:
 - Alethic logic: *It is necessary that...* *It is possible that...*
In a strict sense, modal logic is concerned with the study of statements and reasonings that involve the notions of necessity and possibility.

In a more general sense, modal logic is concerned with the study of statements and reasonings that involve expressions (modals) that qualify the validity of a judgement:

- Alethic logic: *It is necessary that...* *It is possible that...*
- Deontic logic: *It is mandatory that...* *It is allowed that...*
In a strict sense, modal logic is concerned with the study of statements and reasonings that involve the notions of necessity and possibility.

In a more general sense, modal logic is concerned with the study of statements and reasonings that involve expressions (modals) that qualify the validity of a judgement:

- **Alethic logic:** *It is necessary that...* *It is possible that...*
- **Deontic logic:** *It is mandatory that...* *It is allowed that...*
- **Epistemic logic:** *Bob knows that...* *Bob ignores that...*
Modals

► In a strict sense, modal logic is concerned with the study of statements and reasonings that involve the notions of necessity and possibility.

► In a more general sense, modal logic is concerned with the study of statements and reasonings that involve expressions (modals) that qualify the validity of a judgement:

 ► Alethic logic: *It is necessary that... It is possible that...*

 ► Deontic logic: *It is mandatory that... It is allowed that...*

 ► Epistemic logic: *Bob knows that... Bob ignores that...*

 ► Temporal logic: *It will always be the case that... It will eventually be the case that...*
Modal logic
Modal logic

Syntax:

\[F ::= a | \neg F | F \lor F | \Box F \]

Define the other connectives in the usual way. Define \(\Diamond A \) as \(\neg \Box \neg A \).

\(\Box A \) stands for “necessarily A”. \(\Diamond A \) stands for “possibly A”.

Modal logic

Syntax:

\[F ::= a \mid \neg F \mid F \lor F \mid \Box F \]

Define the other connectives in the usual way. Define \(\Diamond A \) as \(\neg \Box \neg A \).

\(\Box A \) stands for “necessarily A”. \(\Diamond A \) stands for “possibly A”.

Validity:

let \(M = \langle W, P \rangle \), where \(W \) is a set of “possible worlds”, and \(P \) is a function that assigns to each atomic proposition a subset of \(W \).

\[\begin{align*}
\forall M, s \models a & \iff s \in P(a). \\
\forall M, s \models \neg A & \iff \text{not } M, s \models A. \\
\forall M, s \models A \lor B & \iff \text{either } M, s \models A \text{ or } M, s \models B, \text{ or both.} \\
\forall M, s \models \Box A & \iff \text{for every } t \in W, \ M, t \models A.
\end{align*} \]
Modal logic and type theory
Modal logic and type theory

- Use three atomic types: \(e \), \(s \), and \(t \).
Modal logic and type theory

- Use three atomic types: e, s, and t.
- Define a modal proposition to be a term of type (s t).
Use three atomic types: e, s, and t.

Define a modal proposition to be a term of type (s t).

Define the modal connectives as follows:
Modal logic and type theory

- Use three atomic types: e, s, and t.
- Define a modal proposition to be a term of type (s t).
- Define the modal connectives as follows:

\[
\text{not}_m := \lambda A \, w. \, \neg (A \, w)
\]
Modal logic and type theory

- Use three atomic types: \(e, s, \) and \(t. \)
- Define a modal proposition to be a term of type \((s \ t).\)
- Define the modal connectives as follows:

\[
\text{not}_m := \lambda A \; w. \neg (A \; w)
\]
\[
\text{or}_m := \lambda A \; B \; w. (A \; w) \lor (B \; w)
\]
Modal logic and type theory

► Use three atomic types: e, s, and t.

► Define a modal proposition to be a term of type $(s \ t)$.

► Define the modal connectives as follows:

$$
\text{not}_m := \lambda A \ w. \ \neg (A \ w)
$$

$$
\text{or}_m := \lambda A \ B \ w. \ (A \ w) \ \lor \ (B \ w)
$$

$$
\text{all}_m := \lambda P \ w. \ \forall x. \ P \ x \ w
$$
Modal logic and type theory

► Use three atomic types: \(e, s, \) and \(t. \)

► Define a modal proposition to be a term of type \((s \ t).\)

► Define the modal connectives as follows:

\[
\text{not}_m := \lambda A w. \neg (A w)
\]

\[
\text{or}_m := \lambda A B w. (A w) \lor (B w)
\]

\[
\text{all}_m := \lambda P w. \forall x. P x w
\]

\[
\text{necessarily} := \lambda A w. \forall v. (A v)
\]
Intension and extension
Intension and extension

This red car is a Ferrari
Intension and extension

This red car is a Ferrari

This skillful surgeon is Dr Johnson
Intension and extension

This red car is a Ferrari

This skillful surgeon is Dr Johnson

$$(\forall x. \text{surgeon } x) \leftrightarrow (\text{driver } x)$$

$$(\forall x. ((\text{skillful surgeon}) x) ((\text{skillful driver}) x))$$
Intension and extension

This red car is a Ferrari

This skillful surgeon is Dr Johnson

\[
(\forall x. (\text{surgeon } x) \leftrightarrow (\text{driver } x)) \\
(\forall x. ((\text{skillful surgeon}) x) ((\text{skillful driver}) x))
\]

Solution:

\[
\begin{align*}
\text{surgeon} & : e(s \ t) \\
\text{driver} & : e(s \ t) \\
\text{skillful} & : (e(s \ t)) e(s \ t)
\end{align*}
\]