## Coercion resistance in electronic voting: design and analysis

Quentin Yang

Under the supervision of Véronique Cortier and Pierrick Gaudry

LORIA, 23 June 2023

## Table of Contents

(1) Introduction
(2) Tally hiding and Italian attacks
(3) Achieving coercion-resistance

4 Conclusion

## What is electronic voting?



## The security goals in electronic voting



Security properties

- Confidence in the result $\checkmark$ Eligibility
$\checkmark$ Cast as intended $\checkmark$ Recorded as cast $\checkmark$ Tallied as recorded
- Vote secrecy


## A more advanced property: coercion-resistance

Vote for Bob



## Vote buying in practice



La nostra libertà di voto oggi costa appena $50 €$ Se in Italia, e soprattutto in terra di mafia, i cittadini fossero effettivamente liberi di votare per chi vogliono, la qualità degli eletti sarebbe certamente migliore.
Da tempo denunciamo questa vergognosa realtà ma nessuno prende provvedimenti; evidentemente il controllo del voto torna utile a molti. Abbiamo anche scritto al Presidente Napolitano nel marzo del 2012 ma non abbiamo ricevuto risposta. Ascolta lo SPOT AUDIO _il VOTO quel segreto che la mafia conosce_(1) della campasgna
L'Art. 48 della Costituzione fra l'altro stabilisce che: II voto è personale ed eguale, libero e
Petition to stop vote buying in Italia (Libero Futuro, 2012)

«Beaucoup d'électeurs sont prêts à vendre leur voix ": l'achat de votes, un fléau bulgare
A la veille des élections législatives en Bulgarie du 4 avril, une étude confirme une pratique endémique et partagée par tous les partis du pays : payer les électeurs pour s'assurer leur voix.
Par Jean-Baptiste Chastand (Vienne, correspondant régional)
Publièle 02 avril 2021 a OOh14-Mis à jour le 02 avil 2021 a 12 h 78 . © Lecture 4 min.

## Article about vote buying in Bulgaria (Le Monde, 2021)

## The adversary in coercion-resistance



## Our contributions



## Outline

## (1) Introduction

(2) Tally hiding and Italian attacks
(3) Achieving coercion-resistance

4 Conclusion

## Two main strategies to compute the tally

Homomorphic tally


Mixnet


## The homomorphic tally

Candidates: Alice, Bob, Charlie, Diane


## The mixnet



A mixnet reveals the multiset of the voting options chosen.

## Why tally hiding?

Some voting systems (Condorcet, STV) let you choose any permutation of the candidates.


## Why tally hiding?

Some voting systems (Condorcet, STV) let you choose any permutation of the candidates.


## Why tally hiding?

Some voting systems (Condorcet, STV) let you choose any permutation of the candidates.


## Why tally hiding?

Some voting systems (Condorcet, STV) let you choose any permutation of the candidates.


Tally hiding: Alice wins.

## Achieving tally-hiding

## Multi-party computation



## Achieving tally-hiding

## Multi-party computation



## Tally-hiding in the literature

Single choice voting: Voters select one candidate or list.

| $\square$ | Ape |
| :--- | :--- |
| $\square$ | Beaver |
| $\nabla$ | Capybara |
| $\square$ | Dolphin |
| $\square$ | Elephant |

- s-best. Küsters et al., EuroS\&P'20 (Ordinos).
- Hare-Niemeyer. Hertel et al., E-VotelD'20 (Ordinos).


## Tally-hiding in the literature

Single choice voting: Voters select one candidate or list.

| $\square$ | Ape |
| :--- | :--- |
| $\square$ | Beaver |
| $\nabla$ | Capybara |
| $\square$ | Dolphin |
| $\square$ | Elephant |

- s-best. Küsters et al., EuroS\&P'20 (Ordinos).
- Hare-Niemeyer. Hertel et al., E-VotelD'20 (Ordinos).

Shortcomings in case of a tie! (Our finding)

## Tally-hiding in the literature

Majority Judgment: Voters grade each candidate. (Used in a primary election in France.)

| Ape | Reject |
| :--- | :--- |
| Beaver | Good |
| Capybara | Excellent |
| Dolphin | Good |
| Elephant | Bad |

- Canard et al., ESORICS'18.


## Tally-hiding in the literature

Majority Judgment: Voters grade each candidate. (Used in a primary election in France.)

| Ape | Reject |
| :--- | :--- |
| Beaver | Good |
| Capybara | Excellent |
| Dolphin | Good |
| Elephant | Bad |

- Canard et al., ESORICS'18. (Majority gauge)

Fails to tally in some not-so-rare cases.
Not fully tally-hiding!

Our finding

## Tally-hiding in the literature

Ranked Voting: Voters rank candidates (several methods).
(1) Capybara
(2) Beaver
(3) Dolphin
(4) Elephant
(5) Ape

## Tally-hiding in the literature

Ranked Voting: Voters rank candidates (several methods).

The Condorcet methods are very popular (used in Debian).
(1) Capybara
(2) Beaver
(3) Dolphin
(4) Elephant
(5) Ape

- Condorcet. Haines, Pattinson and Tiwari, VSTTE'19.


## Tally-hiding in the literature

Ranked Voting: Voters rank candidates (several methods).

The Condorcet methods are very popular (used in Debian).
(1) Capybara
(2) Beaver
(3) Dolphin
(4) Elephant
(5) Ape

- Condorcet. Haines, Pattinson and Tiwari, VSTTE'19.

Privacy breach when candidates are ranked equal. (Our finding)

## Tally-hiding in the literature

Ranked Voting: Voters rank candidates (several methods).

The Condorcet methods are very popular (used in Debian).
(1) Capybara
(2) Beaver
(3) Dolphin
(4) Elephant
(5) Ape

- Condorcet. Haines, Pattinson and Tiwari, VSTTE'19.

Privacy breach when candidates are ranked equal. (Our finding)

- Condorcet. Hertel et al., E-VoteID'20 (Ordinos).

Does not allow equal ranking.

## Tally-hiding in the literature

Ranked Voting: Voters rank candidates (several methods).

STV and IRV are used for high-stake elections in several countries.
(1) Capybara
(2) Beaver
(3) Dolphin
(4) Elephant
(5) Ape

- Condorcet. Haines, Pattinson and Tiwari, VSTTE'19.

Privacy breach when candidates are ranked equal. (Our finding)

- Condorcet. Hertel et al., E-VotelD'20 (Ordinos).

Does not allow equal ranking.

- Borda. Hertel et al., E-VoteID'20 (Ordinos).
- Single Transferable Vote. Benaloh et al., IEEE TIFS'10.
- Instant Run-off Voting. Culnane et al., FC'19.
- Instant Run-off Voting. Hertel et al., E-VotelD'20 (Ordinos).


## Tally-hiding in the literature

Ranked Voting: Voters rank candidates (several methods).

STV and IRV are used for high-stake elections in several countries.
(1) Capybara
(2) Beaver
(3) Dolphin
(4) Elephant
(5) Ape

- Condorcet. Haines, Pattinson and Tiwari, VSTTE'19.

Privacy breach when candidates are ranked equal. (Our finding)

- Condorcet. Hertel et al., E-VotelD'20 (Ordinos).

Does not allow equal ranking.

- Borda. Hertel et al., E-VoteID'20 (Ordinos).
- Single Transferable Vote. Benaloh et al., IEEE TIFS'10.*
- Instant Run-off Voting. Culnane et al., FC'19.*
- Instant Run-off Voting. Hertel et al., E-VotelD'20 (Ordinos).

Super-exponential complexity.

* Not fully tally-hiding


## Our approach - Logical operations on encrypted bits

We use the CGate primitive to build our MPC protocols:


It allows logical operations on encrypted bits
Not gate: $\operatorname{Not}(B)=\operatorname{Enc}(1) / B \equiv \operatorname{Enc}(1-b)$
(Primitive adapted from Shoenmakers and Tuyls, Asiacrypt'04.)

## Our approach - Logical operations on encrypted bits

We use the CGate primitive to build our MPC protocols:


It allows logical operations on encrypted bits
Not gate: $\operatorname{Not}(B)=\operatorname{Enc}(1) / B \equiv \operatorname{Enc}(1-b)$
(Primitive adapted from Shoenmakers and Tuyls, Asiacrypt'04.)
We can use the ElGamal encryption scheme.

## Our approach - MPC based on the ElGamal encryption

## Paillier vs ElGamal

| Encryption | Paillier | EIGamal |
| :---: | :---: | :---: |
| Property | additively homomorphic | homomorphic |
|  |  |  |
| Based on | Decisional Composite Residuosity Assumption | Decisional Diffie-Hellman |
| Key size | 3072 bits | 256 bits (elliptic curve) |
| Operation | 3072-bits exponentiation modulo a 6144 -bits integer | 256 -bits exponentiation |
| Libraries | ?? | Libsodium, OpenSSL Crypto++, |

## A toolbox for generic MPC in ElGamal

| Operation | Comment |
| :---: | :---: |
| Basic | ,,$+- x$ |
| Fixed-point division | $/$ |
| Comparisons | $\leq,<,=$ |

## A toolbox for generic MPC in ElGamal

| Operation | Comment |
| :---: | :---: |
| Basic | ,,$+- x$ |
| Fixed-point division | $/$ |
| Comparisons | $\leq,<,=$ |
| Conditionals | (for branch-freeness) |
| $\vdots$ | $\vdots$ |

Support complex operations: Sorting, Finding the s greatest values...
One difficulty was to give several optimizations and trade-offs.

## The main protocols of the toolbox

| Functionality | Option | Protocol | \# exp. | Synch. locks | Transcript size |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Not | - | - | 0 | 0 | 0 |
| CSZ | original | [ST04] | $19 n_{T}$ | $n_{T}$ | $18 n_{T}$ |
|  | SUC-secure | CSZ | $33 n_{T}$ | $n_{T}$ | $34 n_{T}$ |
| And, Or, Xor | - | And, Or, Xor | CSZ | CSZ | CSZ |
| If, Cond. swap | - | If, Swap | CSZ | CSZ | CSZ |
| Select, Cond. shift | - | Select, CLS, CRS | $N \mathrm{CSZ}$ | CSZ | NCSZ |
| Addition, subtraction | linear | Add, Sub | $2 \ell \mathrm{CSZ}$ | 2 CSZ | $2 \ell \mathrm{CSZ}$ |
|  | sublinear | UFCAdd | $\frac{3}{2} \ell \log \ell$ CSZ | $2 \log \ell$ CSZ | $\frac{3}{2} \ell \log \ell$ CSZ |
| Opposite | - | Neg | $\ell$ CSZ | $\ell$ CSZ | $\ell$ CSZ |
| Aggregation | - | Aggreg | 3 NCSZ | $\frac{1}{2} \log (N)^{2} \mathrm{CSZ}$ | 3 NCSZ |
|  | UFC | (use UFCAdd) | 5.54 NCSZ | $2 N \log N \log \log N \mathrm{CSZ}$ | 5.54NCSZ |
| Multiplication | - | Mult | $3 \ell^{2} \mathrm{CSZ}$ | $2 \ell^{2} \mathrm{CSZ}$ | $3 \ell^{2} \mathrm{CSZ}$ |
| Division | - | Div | $3 \mathrm{r} \ell \mathrm{CSZ}$ | 2r€CSZ | 3 r ¢CSZ |
| Equality | - | Eq | $2 \ell$ CSZ | $\log \ell$ CSZ | $2 \ell$ CSZ |
| Comparison | linear | Lt | $2 \ell$ CSZ | $2 \ell$ CSZ | $2 \ell$ CSZ |
|  | lin. + eq | LtEq | $3 \ell \mathrm{CSZ}$ | $2 \ell \mathrm{CSZ}$ | $3 \ell \mathrm{CSZ}$ |
|  | sublinear | CLt | $4 \ell$ CSZ | $2 \log \ell$ CSZ | $4 \ell$ CSZ |
|  | sublin. + eq | CLt | $5 \ell$ CSZ | $2 \log \ell$ CSZ | $5 \ell \mathrm{CSZ}$ |
| Min, max | linear |  | $(3 \ell+\log N) N C S Z$ | $2 \ell \log$ NCSZ | $(3 \ell+\log N) N$ |
|  | sublinear | (CLt instead of Lt) | $(5 \ell+\log N) N \operatorname{CSZ}$ | $2 \log \ell \log N \mathrm{CSZ}$ | $(5 \ell+\log N) N$ CSZ |
| $s$ largest | comp. | sinsert | $\left(N-\frac{s}{2}\right) s(3 \ell+\log N) \mathrm{CSZ}$ | $2 \ell s\left(N-\frac{s}{2}\right) \mathrm{CSZ}$ | $(3 \ell+\log N) N$ CSZ |
|  | trade-off | sSelect | $N s(3 \ell+\log N) \mathrm{CSZ}$ | $2 s \ell \log N \mathrm{CSZ}$ | $N s(3 \ell+\log N) \mathrm{CSZ}$ |
|  | comm. | (use sublin. Max) | $N s(5 \ell+\log N) \mathrm{CSZ}$ | $2 s \log \ell \log$ NCSZ | $N s(5 \ell+\log N) \mathrm{CSZ}$ |
| Sorting | oblivious | OddEvenMergeSort | ${ }^{\frac{3}{4}} N \log (N)^{2} \ell$ CSZ | $\ell \log (N)^{2} \mathrm{CSZ}$ | $\frac{3}{4} N \log (N)^{2} \ell \mathrm{CSZ}$ |
|  | with CLt |  | $\frac{5}{4} N \log (N)^{2} \ell$ CSZ | $\log \ell \log (N)^{2} \mathrm{CSZ}$ | ${ }_{\frac{5}{4}} N \log (N)^{2} \ell$ CSZ |

## Our approach - Universally composable security

## The key to modularity: Universal composability



We use the SUC framework of Canetti, Cohen and Lindell, Crypto'15.

## Application of the toolbox to tally-hiding

We applied the toolbox to various counting methods: Single choice voting, Majority Judgment, Condorcet, STV.

- Fixed the existing shortcomings.
- Complete leakage-free solutions.
- Based on EIGamal, as efficient as in the Paillier setting.


## Application of the toolbox to tally-hiding

We applied the toolbox to various counting methods: Single choice voting, Majority Judgment, Condorcet, STV.

- Fixed the existing shortcomings.
- Complete leakage-free solutions.
- Based on EIGamal, as efficient as in the Paillier setting.

Another counting function? We can do it!

- Adaptation to the D'Hondt method, which is used in Belgium.


## Our contributions

Registration

$1^{\text {st }}$ contribution:
Tally hiding


## Our contributions



## Outline

## (1) Introduction

## (2) Tally hiding and Italian attacks

(3) Achieving coercion-resistance

## Coercion-resistance in the literature: The JCJ scheme

## Registrars

Public board
Talliers
(sk, pk)

Voters


Scheme by Juels, Catalano and Jakobsson, in Coercion-Resistant Electronic Elections, WPES 2005.

## Coercion-resistance in the literature: The JCJ scheme



Scheme by Juels, Catalano and Jakobsson, in Coercion-Resistant Electronic Elections, WPES 2005.

## Coercion-resistance in the literature: The JCJ scheme



Scheme by Juels, Catalano and Jakobsson, in Coercion-Resistant Electronic Elections, WPES 2005.

## Coercion-resistance in the literature: The JCJ scheme



Scheme by Juels, Catalano and Jakobsson, in Coercion-Resistant Electronic Elections, WPES 2005.

## Coercion-resistance in the literature: The JCJ scheme



Scheme by Juels, Catalano and Jakobsson, in Coercion-Resistant Electronic Elections, WPES 2005.

## Analysis of JCJ - Where does the security come from?

Intuitively:

- Indistinguishability of fake and real credentials.
- Untraceability of the shuffle.

Formally:

- We need a definition of coercion-resistance.


## Analysis of JCJ - Defining coercion-resistance



| Real Game | Ideal game |
| :---: | :---: |
| Takes part in the protocol | Learns the size of the board |
| Learns any public information | Learns the result |

## Definition (Informal)

A scheme is coercion-resistant if the adversary cannot guess the voter's behavior with a better probability in the real game than in the ideal game.

## Coercion-resistance in the literature: The JCJ scheme

| Registrars <br> genCred | Public board | Talliers <br> (sk, pk) |
| :---: | :---: | :---: |
| Voters <br> (cred) «secret-párt pùblie part-> $\operatorname{Enc}_{p k}(v), \operatorname{Enc}_{p k}(c r e d)$ |  | Remove duplicates Shuffle ballots Remove invalid Decrypt |
|  | Public Roster |  |
|  | $C_{1}, C_{1}^{\prime}$ |  |
| + proofs |  |  |

## Coercion-resistance in the literature: The JCJ scheme



## Analysis of JCJ - Is it really coercion-resistant?



| Real Game | Ideal game |
| :---: | :---: |
| Takes part in the protocol | Learns the size of the board |
| Learns any public information | Learns the result |
| Learn the \# duplicates | \#duplicates + \#invalid |
| Learn the \# invalid ballots | $=$ size $($ board $)-$ size $($ result $)$ |

## Analysis of JCJ - Is it really coercion-resistant?



| Real Game | Ideal game |
| :---: | :---: |
| Takes part in the protocol | Learns the size of the board |
| Learns any public information | Learns the result |
| Learn the \# duplicates | \#duplicates + \#invalid |
| Learn the \# invalid ballots | $=$ size $($ board $)-$ size $($ result $)$ |

## Conclusion:

- The adversary has more information in the real game.
- JCJ is not coercion-resistant!


## The impact of the leakage on coercion-resistance

## We used a framework from Küsters, Truderung and Vogt, CSF 2010.



Figure 43: Coercion levels as a function of the probability of revoting; with 20 voters, 2 candidates and $30 \%$ abstention, with three different distributions between the candidates.


Figure 44: Coercion levels as a function of the bias when revoting; with 20 voters, 2 candidates and $30 \%$ abstention.

## An application of the toolbox: cleansing-hiding

| Registrars <br> genCred | Public board | Talliers $(s k, p k)$ |
| :---: | :---: | :---: |
| Voters <br> (cred) «secret-párt pùblie part- $\operatorname{Enc}_{p k}(v), \operatorname{Enc}_{p k}(c r e d)$ | Public Roster | Remove duplicates <br> Shuffle ballots <br> Remove invalid |
|  | $\begin{gathered} C_{c}, C_{c}^{\prime} \\ \vdots \\ C_{n}, C_{n}^{\prime} \end{gathered}$ | Decrypt |

## An application of the toolbox: cleansing-hiding



CHide, a cleansing-hiding fix of JCJ.

## CHide: a quasi-linear solution based on sorting



## CHide: a quasi-linear solution based on sorting

## $\operatorname{Enc}_{\mathrm{pk}}(0), \operatorname{Enc}_{\mathrm{pk}}\left(\boldsymbol{c}_{1}\right), \operatorname{Enc}_{\mathrm{pk}}\left(n_{b}\right)$

$\operatorname{Enc}_{\mathrm{pk}}\left(\boldsymbol{c}_{1}\right), \cdots, \operatorname{Enc}_{\mathrm{pk}}\left(\boldsymbol{c}_{n_{v}}\right) \longrightarrow$
$C_{1}, C_{1}^{\prime}$
$\operatorname{Enc}_{\mathrm{pk}}(0), \operatorname{Enc}_{\mathrm{pk}}\left(\boldsymbol{c}_{\boldsymbol{n}_{\mathrm{v}}}\right), \operatorname{Enc}_{\mathrm{pk}}\left(n_{b}\right)$

$$
C_{i}, C_{i}^{\prime}
$$

$$
\begin{gathered}
C_{1}, C_{1}^{\prime}, \operatorname{Enc}_{\mathrm{pk}}(0) \\
\vdots \\
C_{\boldsymbol{n}_{b}}, C_{n_{b}}^{\prime}, \text { Enc }_{\mathrm{pk}}\left(n_{b}-1\right)
\end{gathered}
$$

    \(C_{n_{b}}, C_{n_{b}}^{\prime}\)
    
## CHide: a quasi-linear solution based on sorting

|  | $\operatorname{Enc}_{p k}(0), \operatorname{Enc}_{\text {pk }}\left(c_{1}\right), \operatorname{Enc}_{\text {pk }}\left(n_{b}\right)$ |
| :---: | :---: |
| $\operatorname{Enc}_{\text {pk }}\left(c_{1}\right), \cdots, \operatorname{Enc}_{\text {pk }}\left(c_{n_{v}}\right)$ | $\operatorname{Enc}_{\mathrm{pk}}(0), \operatorname{Enc}_{\mathrm{pk}}\left(c_{n_{v}}\right), \operatorname{Enc}_{\mathrm{pk}}\left(n_{b}\right)$ |
| $C_{1}, \operatorname{Enc}_{\mathrm{pk}}\left(c_{1}\right)$ |  |
| $C_{2}, \operatorname{Enc}_{\mathrm{pk}}\left(c_{2}\right)$ |  |
| $C_{3}, \operatorname{Enc}_{p k}\left(c_{1}\right)$ | $C_{1}, \operatorname{Enc}_{\mathrm{pk}}\left(c_{1}\right), \operatorname{Enc}_{\mathrm{pk}}(0)$ |
| $C_{4}, \operatorname{Enc}_{\text {pk }}(\tilde{c})$ | $C_{2}, \operatorname{Enc}_{\mathrm{pk}}\left(c_{2}\right), \operatorname{Enc}_{\mathrm{pk}}(1)$ |
|  | $\longrightarrow C_{3}, \operatorname{Enc}_{\text {pk }}\left(c_{1}\right), \operatorname{Enc}_{\text {pk }}(2)$ |
|  | $C_{4}, \operatorname{Enc}_{\text {pk }}(\tilde{c}), \operatorname{Enc}_{\text {pk }}(3)$ |
| : | $\vdots$ |
| $C_{n_{b}}, C_{n_{b}}^{\prime}$ |  |

## CHide: a quasi-linear solution based on sorting

$$
\underline{\operatorname{Enc}_{p k}(0)}, \underline{\operatorname{Enc}_{\mathrm{pk}}\left(c_{1}\right), \operatorname{Enc}_{\mathrm{pk}}\left(n_{b}\right)}
$$

$\operatorname{Enc}_{\mathrm{pk}}\left(c_{1}\right), \cdots, \operatorname{Enc}_{\mathrm{pk}}\left(c_{n_{v}}\right)$
$C_{1}, \operatorname{Enc}_{\mathrm{pk}}\left(c_{1}\right)$
$\underline{\operatorname{Enc}}{ }_{\mathrm{pk}}(0), \operatorname{Enc}_{\mathrm{pk}}\left(c_{n_{v}}\right), \operatorname{Enc}_{\mathrm{pk}}\left(n_{b}\right)$
$C_{2}, \operatorname{Enc}_{\mathrm{pk}}\left(c_{2}\right)$
$C_{3}, \operatorname{Enc}_{\mathrm{pk}}\left(c_{1}\right)$
$C_{1}, \operatorname{Enc}_{\mathrm{pk}}\left(c_{1}\right), \operatorname{Enc}_{\mathrm{pk}}(0)$
$C_{2}, \operatorname{Enc}_{\mathrm{pk}}\left(c_{2}\right), \operatorname{Enc}_{\mathrm{pk}}(1)$
$C_{3}, \overline{\operatorname{Enc}_{p k}\left(c_{1}\right), E n c_{p k}(2)}$
$C_{4}, \underline{\operatorname{Enc}_{\mathrm{pk}}(\tilde{c}), \operatorname{Enc}_{\mathrm{pk}}(3)}$
$C_{n_{b}}, C_{n_{b}}^{\prime}$
$C_{4}, \operatorname{Enc}_{\text {pk }}(\tilde{c})$


## CHide: a quasi-linear solution based on sorting

|  |  | $C_{2}, \operatorname{Enc}_{p k}\left(c_{2}\right), \operatorname{Enc}_{p k}(1)$ |
| :---: | :---: | :---: |
|  |  | $\operatorname{Enc}_{p k}(0), \operatorname{Enc}_{\text {pk }}\left(c_{2}\right), \operatorname{Enck}^{\text {pk }}\left(n_{b}\right)$ |
| $\underline{E n c}{ }_{p k}(0), \operatorname{Enc}_{p k}\left(c_{n_{v}}\right), \operatorname{Enc}_{p k}\left(n_{b}\right)$ |  |  |
| $C_{1}, \operatorname{Enc}_{\mathrm{pk}}\left(c_{1}\right), \operatorname{Enc}_{\mathrm{pk}}(0)$ |  | $C_{1}, \operatorname{Enc}_{\mathrm{pk}}\left(c_{1}\right), \operatorname{Enc}_{\mathrm{pk}}(0)$ |
| $C_{2}, \overline{\operatorname{Enc}_{\mathrm{pk}}\left(c_{2}\right), \operatorname{Enc}_{\mathrm{pk}}(1)}$ |  | $\frac{C_{3}, \operatorname{Enc}_{\mathrm{pk}}\left(c_{1}\right), \operatorname{Enc}_{\mathrm{pk}}(2)}{\operatorname{Enc}_{\mathrm{pk}}(0), \operatorname{Enc}_{\mathrm{pk}}\left(c_{1}\right), \operatorname{Enc}_{\mathrm{pk}}\left(n_{b}\right)}$ |
| $C_{3}, \overline{\operatorname{Enc}_{p k}\left(c_{1}\right), \operatorname{Enc}_{p k}(2)}$ |  | $\underline{\operatorname{Enc}_{p k}(0)}, \underline{\text { Enc }}$ pk $\left(c_{1}\right), \operatorname{Enc}_{\text {pk }}\left(n_{b}\right)$ |
| $C_{4}, \underline{\operatorname{Enc}_{p k}(\tilde{c}), \operatorname{Enc}_{p k}(3)}$ |  |  |
|  |  | $\underline{C} 4, \underline{\operatorname{Enc}_{\mathrm{pk}}(\tilde{c}), \operatorname{Enc}_{\mathrm{pk}}(3)}$ |

value key

## CHide: a quasi-linear solution based on sorting

$\underline{\operatorname{Enc}_{\mathrm{pk}}(0)}, \underline{\operatorname{Enc}_{\mathrm{pk}}\left(c_{1}\right), \operatorname{Enc}_{\mathrm{pk}}\left(n_{b}\right)}$
$\underline{\operatorname{Enc}_{p k}(0)}, \operatorname{Enc}_{p k}\left(c_{n_{v}}\right), E n c_{p k}\left(n_{b}\right)$

| $\underline{C_{1}}, \operatorname{Enc}_{p k}\left(c_{1}\right)$, | , $\mathrm{Enc}_{\mathrm{pk}}(0)$ |
| :---: | :---: |
| $\underline{C}_{2}, \operatorname{Enc}_{p k}\left(c_{2}\right)$ | Enc $\mathrm{pl}_{\text {pk }}(1)$ |
| $\underline{C}_{3}, \operatorname{Enc}_{\mathrm{pk}}\left(c_{1}\right)$ | , $\mathrm{Enc}_{\mathrm{pk}}(2)$ |
| $C_{4}, \overline{\operatorname{Enc} \mathrm{pl}^{(\tilde{c})}}$ | Enc $\mathrm{pk}^{\text {( }}$ ( ${ }^{\text {a }}$ |

value key
$\mathcal{C}_{2}, \operatorname{Enc}_{\mathrm{pk}}\left(\boldsymbol{c}_{2}\right), \operatorname{Enc}_{\mathrm{pk}}(1)$
$\underline{\operatorname{Enc}_{p k}(0), \operatorname{Enc}_{p k}\left(\boldsymbol{c}_{2}\right), \operatorname{Enc}_{p k}\left(n_{b}\right)}$
$\mathcal{C}_{1}, \operatorname{Enc}_{p k}\left(c_{1}\right), \operatorname{Enc}_{p k}(0)$
$C_{3}, \operatorname{Enc}_{p k}\left(c_{1}\right), E \operatorname{Enc}_{p k}(2)$
$\operatorname{Enc}_{\mathrm{pk}}(0), \operatorname{Enc}_{\mathrm{pk}}\left(c_{1}\right), \operatorname{Enc}_{\mathrm{pk}}\left(n_{b}\right)$
$\mathcal{C}_{4}, \operatorname{Enc}_{\mathrm{pk}}(\tilde{c}), \operatorname{Enc}_{\mathrm{pk}}(3)$
equal? $\rightarrow$ same credential equal to $n_{b}$ ? $\rightarrow$ valid credential

## CHide: a quasi-linear solution based on sorting

$\underline{\operatorname{Enc}_{p k}(0)}, \operatorname{Enc}_{p k}\left(c_{1}\right), \operatorname{Enc}_{p k}\left(n_{b}\right)$
$\underline{\operatorname{Enc}_{p k}(0)}, \operatorname{Enc}_{p k}\left(c_{n_{v}}\right), E \operatorname{Enc}_{p k}\left(n_{b}\right)$

| $C_{1}, \operatorname{Enc}_{p k}\left(c_{1}\right), \operatorname{Enc}_{p k}(0)$ |
| :---: |
| $C_{2}, \operatorname{Enc}_{p k}\left(c_{2}\right), \operatorname{Enc}_{p k}(1)$ |
| $C_{3}, \overline{E n c}_{\text {pk }}\left(c_{1}\right), \operatorname{Enc}_{p k}(2)$ |
| $C_{4}, \underline{\operatorname{Enc}_{p k}(\tilde{c}), \operatorname{Enc}_{p k}(3)}$ |
|  |

value key
$\mathcal{C}_{2}, \operatorname{Enc}_{p k}\left(c_{2}\right), \operatorname{Enc}_{p k}(1)$
$\underline{\operatorname{Enc}_{\mathrm{pk}}(0), \operatorname{Enc}_{\mathrm{pk}}\left(\boldsymbol{c}_{2}\right), \operatorname{Enc}_{\mathrm{pk}}\left(n_{b}\right)}$
$C_{1}, \operatorname{Enc}_{p k}\left(c_{1}\right), \operatorname{Enc}_{p k}(0)$
$C_{3}, \operatorname{Enc}_{p k}\left(c_{1}\right), E \operatorname{Enc}_{p k}(2)$
$\operatorname{Enc}_{\mathrm{pk}}(0), \operatorname{Enc}_{\mathrm{pk}}\left(c_{1}\right), \operatorname{Enc}_{\mathrm{pk}}\left(n_{b}\right)$
$\underline{C_{4}}, \operatorname{Enc}_{\mathrm{pk}}(\tilde{c}), \operatorname{Enc}_{\mathrm{pk}}(3)$
equal? $\rightarrow$ same credential equal to $n_{b}$ ? $\rightarrow$ valid credential

## CHide: a quasi-linear solution based on sorting


value key
equal? $\rightarrow$ same credential
equal to $n_{b}$ ? $\rightarrow$ valid credential

## CHide: a quasi-linear solution based on sorting


value key
equal? $\rightarrow$ same credential
equal to $n_{b}$ ? $\rightarrow$ valid credential

## CHide: a quasi-linear solution based on sorting

| $\underline{\operatorname{Enc}_{p k}(0)}, \underline{\operatorname{Enc}_{p k}\left(c_{1}\right), \operatorname{Enc}_{p k}\left(n_{b}\right)}$ |  | $C_{2}, \operatorname{Enc}_{p k}\left(c_{2}\right), \operatorname{Enc}_{\mathrm{pk}}(1)$ |
| :---: | :---: | :---: |
|  |  | $\underline{\operatorname{Enc}_{p k}(0), ~ E n c p k}$ ( $\left.c_{2}\right), \operatorname{Enc}_{p k}\left(n_{b}\right)$ |
| $\underline{E n c}{ }_{p k}(0), \underline{E n c} c_{p k}\left(c_{n_{v}}\right), \operatorname{Enc}_{\text {pk }}\left(n_{b}\right)$ |  |  |
| $C_{1}, \operatorname{Enc}_{\mathrm{pk}}\left(c_{1}\right), \operatorname{Enc}_{\mathrm{pk}}(0)$ | sort $\longrightarrow$ | $C_{1}, \operatorname{Enc}_{\text {pk }}\left(c_{1}\right), \operatorname{Enc}_{\text {pk }}(0)$ |
| $C_{2}, \overline{E n c}_{\mathrm{pk}}\left(c_{2}\right), \operatorname{Enc}_{\mathrm{pk}}(1)$ | by key |  |
| $C_{3}, \overline{\operatorname{Enc}_{p k}\left(c_{1}\right), \operatorname{Enc}_{p k}(2)}$ | in MPC | $\underline{E n c_{p k}(0), ~ E n c ~}{ }_{\text {pk }}\left(\boldsymbol{c}_{1}\right), \operatorname{Enc}_{\text {pk }}\left(n_{b}\right)$ |
| $\underline{C}$, $\overline{E n c}_{\text {pk }}(\tilde{c}), \operatorname{Enc}_{\text {pk }}(3)$ |  |  |
|  |  | $\underline{C}$ |

value key
equal? $\rightarrow$ same credential
equal to $n_{b}$ ? $\rightarrow$ valid credential

## CHide: a quasi-linear solution based on sorting


value key
equal? $\rightarrow$ same credential
equal to $n_{b}$ ? $\rightarrow$ valid credential

## CHide: a quasi-linear solution based on sorting


value key
equal? $\rightarrow$ same credential
equal to $n_{b}$ ? $\rightarrow$ valid credential

## Sorting with the toolbox: OddEvenMergeSort

## Batcher's algorithm (1968):

```
OddEvenMS \(\left(a_{1}, \cdots, a_{n}\right)\) (iterative)
\(t \leftarrow\lceil\log n\rceil ; p \leftarrow 2^{t-1}\);
while \(p>0\) do
    \(q \leftarrow 2^{t-1} ; r \leftarrow 0 ; d \leftarrow p ;\)
    while \(d>0\) do
        for \(i=0\) to \(n-d-1\) do
            if BitwiseAnd \((i, p)=r\) then
            L CompSwap \((i, i+d)\);
\begin{tabular}{|c|}
\hline Od \\
\hline ```
\(t \leftarrow\lceil\log n\rceil ; p \leftarrow 2^{t-1}\);
while \(p>0\) do
    \(q \leftarrow 2^{t-1} ; r \leftarrow 0 ; d \leftarrow p ;\)
    while \(d>0\) do
        for \(i=0\) to \(n-d-1\) do
            if BitwiseAnd \((i, p)=r\) then
                CompSwap \((i, i+d)\);
``` \\
\hline
\end{tabular}
```

From The art of computer programming, vol. 3 (D. Knuth)

- Data oblivious
- Efficient
- Parallelizable


From Wikipedia

## Defining coercion-resistance - The JCJ definition

(Simplified version)

| Real game |
| :--- |
| $b \leftarrow\{0,1\} ;$ |
| $B \leftarrow$ HonestVotes; |
| $\mathrm{PB} \leftarrow(\text { EncBallot }(\nu))_{\nu \in B} ;$ |
| $\tilde{c} \leftarrow c_{V} ;$ |
| if $b=0$ (evasion strategy) then |
| $\tilde{c} \leftarrow$ Fakecred $\left(c_{V}\right) ;$ |
| $\quad \mathrm{PB} \leftarrow \mathrm{PB} \\|$ EncBallot $\left(\nu_{\text {intent }}\right) ;$ |
| $M \longleftarrow \mathbb{A}(\mathrm{~PB}, \tilde{c}) ;$ |
| $\mathrm{PB} \leftarrow \mathrm{PB} \\|\{\mathrm{b} \in M \mid \mathrm{b}$ is valid $\} ;$ |
| $r, \Pi \leftarrow \operatorname{tally}(\mathrm{~PB}) ;$ |
| guess $\leftarrow \mathbb{A}(r, \Pi) ;$ |
| if guess $=b$ then $\mathbb{A}$ wins; |
| else $\mathbb{A}$ loses; |

$b \stackrel{\Phi}{\leftarrow}\{0,1\}$;
$B \leftarrow$ HonestVotes;
$\mathrm{PB} \leftarrow(\operatorname{EncBallot}(\nu))_{\nu \in B} ;$
$\tilde{c} \leftarrow c_{V}$;
if $b=0$ (evasion strategy) then
$\tilde{c} \leftarrow$ Fakecred $\left(c_{V}\right)$;
$\mathrm{PB} \leftarrow \mathrm{PB} \| \operatorname{EncBallot}\left(\nu_{\text {intent }}\right) ;$
$M \longleftarrow \mathbb{A}(\mathrm{~PB}, \tilde{c}) ;$
$\mathrm{PB} \leftarrow \mathrm{PB} \|\{\mathrm{b} \in \boldsymbol{M} \mid \mathrm{b}$ is valid $\} ;$
$r, \Pi \leftarrow$ tally (PB);
guess $\leftarrow \mathbb{A}(r, \Pi)$;
if guess $=b$ then $\mathbb{A}$ wins;
else $\mathbb{A}$ loses;

Ideal game
$b \stackrel{S}{\leftarrow}\{0,1\}$;
$B \leftarrow$ HonestVotes;

```
if \(b=0\) then
            \(B \leftarrow B \| \nu_{\text {intent }} ;\)
\(\left(\nu_{i}\right)_{i \in \text { corrupted }}, \nu_{\text {instruct }} \leftarrow \mathbb{A}(|B|) ;\)
\(B \leftarrow B \|\left(\nu_{i}\right)_{i \in \text { corrupted }} ;\)
if \(b=1\) then \(B \leftarrow B \| \nu_{\text {instruct }}\);
\(r \leftarrow \operatorname{result}(B)\);
guess \(\leftarrow \mathbb{A}(r)\);
if guess \(=b\) then \(\mathbb{A}\) wins;
else \(\mathbb{A}\) loses;
```


## Defining coercion-resistance - The JCJ definition

## (Simplified version)

| Real game | Ideal game |
| :---: | :---: |
| $b \stackrel{¢}{\leftarrow}\{0,1\}$; | $b \stackrel{\Phi}{\leftarrow}\{0,1\}$; |
| $B \leftarrow$ HonestVotes; | $B \leftarrow$ HonestVotes; |
| $\mathrm{PB} \leftarrow(\operatorname{EncBallot}(\nu))_{\nu \in B} ;$ |  |
| $\tilde{c} \leftarrow c_{V}$; |  |
| if $b=0$ (evasion strategy) then | if $b=0$ then |
| $\tilde{c} \leftarrow \operatorname{Fakecred}(c v) ;$ <br> $\mathrm{PB} \leftarrow \mathrm{PB} \\| \operatorname{EncBallot}\left(\nu_{\text {intent }}\right) ;$ | $B \leftarrow B \\| \nu_{\text {intent }} ;$ |
| $M \longleftarrow \mathbb{A}(\mathrm{~PB}, \tilde{c}) ;$ | $\left(\nu_{i}\right)_{i \in \text { corrupted }} \nu_{\text {instruct }} \leftarrow \mathbb{A}(\|B\|) ;$ |
| $\mathrm{PB} \leftarrow \mathrm{PB} \\|\{\mathrm{b} \in \mathrm{M} \mid \mathrm{b}$ is valid $\} ;$ | $B \leftarrow B \\|\left(\nu_{i}\right)_{i \in \text { corrupted }} ;$ <br> if $b=1$ then $B \leftarrow B \\| \nu_{\text {instruct }}$; |
| $r, \Pi \leftarrow \operatorname{tally}(\mathrm{~PB})$; | $r \leftarrow \operatorname{result}(B)$; |
| guess $\leftarrow \mathbb{A}(r, \Pi)$; | guess $\leftarrow \mathbb{A}(r)$; |
| if guess $=b$ then $\mathbb{A}$ wins; | if guess $=b$ then $\mathbb{A}$ wins; |
| else $\mathbb{A}$ loses; | else $\mathbb{A}$ loses; |

The adversary $(\mathbb{A})$ must guess the behavior of the coerced voter $(\mathrm{V})$.

## Defining coercion-resistance - The JCJ definition

## (Simplified version)

| Real game | Ideal game |
| :---: | :---: |
| $b \stackrel{\&}{\leftarrow}\{0,1\}$; | $b \stackrel{\Phi}{\leftarrow}\{0,1\}$; |
| $B \leftarrow$ HonestVotes; | $B \leftarrow$ HonestVotes; |
| $\mathrm{PB} \leftarrow(\operatorname{EncBallot}(\nu))_{\nu \in B} ;$ |  |
| $\tilde{c} \leftarrow c_{V}$; |  |
| if $b=0$ (evasion strategy) then | if $b=0$ then |
| $\tilde{c} \leftarrow$ Fakecred ( $c v$ ); <br> $\mathrm{PB} \leftarrow \mathrm{PB} \\| \operatorname{EncBallot}\left(\nu_{\text {intent }}\right) ;$ | $\left\lfloor B \leftarrow B \\| \nu_{\text {intent }} ;\right.$ |
| $\mathrm{M} \longleftarrow \mathbb{A}(\mathrm{PB}, \tilde{c}) ;$ | $\left(\nu_{i}\right)_{i \in \text { corrupted }}, \nu_{\text {instruct }} \leftarrow \mathbb{A}(\|B\|) ;$ |
| $\mathrm{PB} \leftarrow \mathrm{PB} \\|\{\mathrm{b} \in \mathrm{M} \mid \mathrm{b}$ is valid $\} ;$ | $B \leftarrow B \\|\left(\nu_{i}\right)_{i \in \text { corrupted }} ;$ <br> if $b=1$ then $B \leftarrow B \\| \nu_{\text {instruct }}$; |
| $r, \Pi \leftarrow$ tally $(\mathrm{PB})$; | $r \leftarrow \operatorname{result}(B)$; |
| guess $\leftarrow \mathbb{A}(r, \Pi)$; | guess $\leftarrow \mathbb{A}(r)$; |
| if guess $=b$ then $\mathbb{A}$ wins; | if guess $=b$ then $\mathbb{A}$ wins; |
| else $\mathbb{A}$ loses; | else $\mathbb{A}$ loses; |

The adversary $(\mathbb{A})$ must guess the behavior of the coerced voter $(\mathrm{V})$.

## Defining coercion-resistance - The JCJ definition

## (Simplified version)

| Real game | Ideal game |
| :---: | :---: |
| $b \stackrel{\$}{\leftarrow}\{0,1\}$; | $b \stackrel{\$}{\leftarrow}\{0,1\}$; |
| $B \leftarrow$ HonestVotes; | $B \leftarrow$ HonestVotes; |
| $\mathrm{PB} \leftarrow(\text { EncBallot }(\nu))_{\nu \in B} ;$ |  |
| $\tilde{c} \leftarrow c_{V}$; |  |
| if $b=0$ (evasion strategy) then | if $b=0$ then |
| $\tilde{c} \leftarrow$ Fakecred $\left(c_{v}\right)$; <br> $\mathrm{PB} \leftarrow \mathrm{PB}\left\|\mid \operatorname{EncBallot}\left(\nu_{\text {intent }}\right) ;\right.$ | $B \leftarrow B \\| \nu_{\text {intent }} ;$ |
| $M \longleftarrow \mathbb{A}(\mathrm{~PB}, \tilde{c}) ;$ | $\left(\nu_{i}\right)_{i \in \text { corrupted }}, \nu_{\text {instruct }} \leftarrow \mathbb{A}(\|B\|)$; |
| $\mathrm{PB} \leftarrow \mathrm{PB} \\|\{\mathrm{b} \in \mathrm{M} \mid \mathrm{b}$ is valid $\} ;$ | $B \leftarrow B \\|\left(\nu_{i}\right)_{i \in \text { corrupted }}$; <br> if $b=1$ then $B \leftarrow B \\| \nu_{\text {instruct }}$; |
| $r, \Pi \leftarrow \text { tally }(\mathrm{PB}) ;$ | $r \leftarrow \operatorname{result}(B)$ |
| if guess $=b$ then $\mathbb{A}$ wins; | if guess $=b$ then $\mathbb{A}$ wins; |
| else $\mathbb{A}$ loses; | else $\mathbb{A}$ loses; |

The adversary $(\mathbb{A})$ must guess the behavior of the coerced voter $(\mathrm{V})$.

## Defining coercion-resistance - The JCJ definition

(Simplified version)

| Real game |
| :--- |
| $b \stackrel{\$}{\leftarrow}\{0,1\} ;$ |
| $B \leftarrow$ HonestVotes; |
| $P B \leftarrow(\text { EncBallot }(\nu))_{\nu \in B ;} ;$ |
| $\tilde{c} \leftarrow c v ;$ |
| if $b=0$ (evasion strategy) then |
| $\quad \tilde{c} \leftarrow$ Fakecred $(c v) ;$ |
| PB $\leftarrow \mathrm{PB} \\|$ EncBallot $\left(\nu_{\text {intent }}\right) ;$ |
| $M \leftarrow \mathbb{A}(\mathrm{~PB}, \tilde{c}) ;$ |
| $\mathrm{PB} \leftarrow \mathrm{PB} \\|\{\mathrm{b} \in M \mid \mathrm{b}$ is valid $\} ;$ |
| $r, \Pi \leftarrow$ tally $(\mathrm{PB}) ;$ |
| guess $\leftarrow \mathbb{A}(r, \Pi) ;$ |
| if guess $=b$ then $\mathbb{A}$ wins; |
| else $\mathbb{A}$ loses; |

The coerced voter's behavior influences the result.

## Defining coercion-resistance - The JCJ definition

(Simplified version)

| Real game | Ideal game |
| :---: | :---: |
| $b \stackrel{\$}{\leftarrow}\{0,1\}$; | $b \stackrel{\$}{\leftarrow}\{0,1\}$; |
| $B \leftarrow$ HonestVotes; | $B \leftarrow$ HonestVotes; |
| $\mathrm{PB} \leftarrow(\operatorname{EncBallot}(\nu))_{\nu \in B}$; |  |
| $\tilde{c} \leftarrow c_{V}$; |  |
| if $b=0$ (evasion strategy) then | if $b=0$ then |
| $\left[\begin{array}{l} \tilde{c} \leftarrow \text { Fakecred }\left(c_{V}\right) ; \\ \mathrm{PB} \leftarrow \operatorname{PB}\left\\|\\| \text { EncBallot }\left(\nu_{\text {intent }}\right) ;\right. \end{array}\right.$ | $\left\lfloor B \leftarrow B \\| \nu_{\text {intent }} ;\right.$ |
| $M \longleftarrow \mathbb{A}(\mathrm{~PB}, \tilde{c}) ;$ | $\left(\nu_{i}\right)_{i \in \text { corrupted },}, \nu_{\text {instruct }} \leftarrow \mathbb{A}(\|B\|) ;$ |
| $\mathrm{PB} \leftarrow \mathrm{PB} \\|\{\mathrm{b} \in M \mid \mathrm{b}$ is valid $\} ;$ | $B \leftarrow B \\|\left(\nu_{i}\right)_{i \in \text { corrupted }} ;$ <br> if $b=1$ then $B \leftarrow B \\| \nu_{\text {instruct }}$; |
| $r, \Pi \leftarrow \operatorname{tally}(\mathrm{~PB}) ;$ | $r \leftarrow \operatorname{result}(B)$; |
| guess $\leftarrow \mathbb{A}(r, \Pi)$; | guess $\leftarrow \mathbb{A}(r)$; |
| if guess $=b$ then $\mathbb{A}$ wins; else $\mathbb{A}$ loses; | if guess $=b$ then $\mathbb{A}$ wins; else $\mathbb{A}$ loses; |

The result also depends on the honest voters.

## Defining coercion-resistance - The JCJ definition

## (Simplified version)

| Real game | Ideal game |
| :---: | :---: |
| $b \stackrel{\$}{\leftarrow}\{0,1\}$; | $b \stackrel{\$}{\leftarrow}\{0,1\}$; |
| $B \leftarrow$ HonestVotes; | $B \leftarrow$ HonestVotes; |
| $\mathrm{PB} \leftarrow(\operatorname{EncBallot}(\nu))_{\nu \in B} ;$ |  |
| $\tilde{c} \leftarrow c_{V}$; |  |
| if $b=0$ (evasion strategy) then | if $b=0$ then |
| $\left[\begin{array}{l} \tilde{c} \leftarrow \text { Fakecred }\left(c_{V}\right) ; \\ \mathrm{PB} \leftarrow \mathrm{~PB} \\| \operatorname{EncBallot}\left(\nu_{\text {intent }}\right) \end{array}\right.$ | $B \leftarrow B \\| \nu_{\text {intent }} ;$ |
| $M \longleftarrow \mathbb{A}(\mathrm{~PB}, \tilde{c}) ;$ | $\left(\nu_{i}\right)_{i \in \text { corrupted }}, \nu_{\text {instruct }} \leftarrow \mathbb{A}(\|B\|) ;$ |
| $\mathrm{PB} \leftarrow \mathrm{PB} \\|\{\mathrm{b} \in \boldsymbol{M} \mid \mathrm{b}$ is valid $\} ;$ | $B \leftarrow B \\|\left(\nu_{i}\right)_{i \in \text { corrupted }} ;$ <br> if $b=1$ then $B \leftarrow B \\| \nu_{\text {instruct }}$; |
| $r, \Pi \leftarrow$ tally $(\mathrm{PB}) ;$ | $r \leftarrow \operatorname{result}(B)$; |
| guess $\leftarrow \mathbb{A}(r, \Pi)$; | guess $\leftarrow \mathbb{A}(r)$; |
| if guess $=b$ then $\mathbb{A}$ wins; else $\mathbb{A}$ loses; | if guess $=b$ then $\mathbb{A}$ wins; else $\mathbb{A}$ loses; |

The result also depends on the adversary's votes.

## Defining coercion-resistance - The JCJ definition

(Simplified version)

| Real game |
| :--- |
| $b \stackrel{\$}{\leftarrow}\{0,1\} ;$ |
| $B \leftarrow$ HonestVotes; |
| PB $\leftarrow(\text { EncBallot }(\nu))_{\nu \in B} ;$ |
| $\tilde{c} \leftarrow c_{V} ;$ |
| if $b=0$ (evasion strategy) then |
| $\quad \tilde{c} \leftarrow$ Fakecred $\left(c_{V}\right) ;$ |
| $\quad \mathrm{PB} \leftarrow \mathrm{PB} \\|$ EncBallot $\left(\nu_{\text {intent }}\right) ;$ |
| $M \leftarrow \mathbb{A}(\mathrm{~PB}, \tilde{c}) ;$ |
| $\mathrm{PB} \leftarrow \mathrm{PB} \\|\{\mathrm{b} \in \boldsymbol{M} \mid \mathrm{b}$ is valid $\} ;$ |
| $r, \Pi \leftarrow$ tally $(\mathrm{PB}) ;$ |
| guess $\leftarrow \mathbb{A}(r, \Pi) ;$ |
| if guess $=b$ then $\mathbb{A}$ wins; |
| else $\mathbb{A}$ loses; |

But how are the honest votes chosen?

## Defining coercion-resistance - The (flawed) JCJ definition

How are the honest votes chosen?

- Only one distribution HonestVotes is considered.


## Defining coercion-resistance - The (flawed) JCJ definition

## How are the honest votes chosen?

- Only one distribution HonestVotes is considered.
- HonestVotes does not allow revoting!


## Defining coercion-resistance - The (flawed) JCJ definition

## How are the honest votes chosen?

- Only one distribution HonestVotes is considered.
- HonestVotes does not allow revoting!

Problem: no revotes $\Longrightarrow \#$ duplicates $=0$.

$$
\# d u p l i c a t e s+\# \text { invalid }=\text { size }(\text { board })-\text { size }(\text { result })
$$

The JCJ definition is flawed! (It does not capture the leakage in JCJ.)

## Defining coercion-resistance - The (flawed) JCJ definition

## How are the honest votes chosen?

- Only one distribution HonestVotes is considered.
- HonestVotes does not allow revoting!

Problem: no revotes $\Longrightarrow$ \#duplicates $=0$.

$$
\# \text { duplicates }+\# \text { invalid }=\text { size }(\text { board })-\text { size }(\text { result }) .
$$

The JCJ definition is flawed! (It does not capture the leakage in JCJ.)

## Solution:

- Consider a larger family of honest behaviors (that allow revoting).
- Coercion-resistance must be achieved for all distribution $\mathcal{B}$.


## Our definition of coercion-resistance

```
Algorithm 101: Real \({ }^{C R}\)
    Requires: \(\mathbb{A}, \lambda, n_{T}, C_{t}, n_{V}, n_{A}, n_{C}, \mathcal{B}\)
    \(1 \mathrm{pk},\left(s_{i}, h_{i}\right)_{i=1}^{n_{T}}, \Pi^{S} \longleftarrow \operatorname{Setup}\left(\lambda, n_{T}, t\right)\);
    \(\left(c_{i}, \pi_{i}\right), \Pi^{R} \longleftarrow \operatorname{Register}\left(\mathrm{pk}, n_{V}\right) ;\)
    \(\mathrm{PB} \longleftarrow \Pi^{S} \mid \Pi^{R}\);
\(4 A \longleftarrow \mathbb{A}\left(\mathrm{~PB},\left\{s_{i} \mid i \in C_{t}\right\}\right)\) (* corrupt
    voters \({ }^{*}\) );
    \((j, \alpha) \longleftarrow \mathbb{A}\left(\left\{c_{i} ; i \in A\right\}\right) ;\)
6 (* coerces \(j\) who has the intention \(\alpha^{*}\) )
7 if \(|A| \neq n_{A} \vee j \notin\left[1, n_{V}\right] \backslash A \vee \alpha \notin\)
    \(\left[1, n_{C}\right] \cup\{\phi\}\) then return 0 ;
\(8 B \longleftarrow \mathcal{B}\left(\left[1, n_{V}\right] \backslash A, n_{C}\right)\);
\(\mathbf{9}\) (* samples a sequence of pairs ( \(i, \nu_{i}\) )
    with \(\left.i \in\left(\left[1, n_{V}\right] \backslash A\right) \bigcup\{n \mid n<0\}^{*}\right)\)
    for \((i, *) \in B, i \notin\left[1, n_{V}\right]\) do
        \(c_{i} \longleftarrow\) Fakecred();
        (* this captures dummy ballots *)
    \(b{ }^{\mathrm{s}}\{0,1\} ;\)
    \(\tilde{c} \longleftarrow c_{j} ;\)
    if \(b=1\) then Remove all \((j, *) \in B\);
    else
        Remove all \((j, *) \in B\) but the last,
        which is replaced by \((j, \alpha)\) if \(\alpha \neq \phi\)
        and removed otherwise;
        \(\bar{c} \longleftarrow\) Fakecred \(\left(c_{j}\right) ;\)
    \(\mathbb{A}(\tilde{c})\left({ }^{*} \mathbb{A}\right.\) learns \(\left.\tilde{c}^{*}\right) ;\)
    for \(\left(i, \nu_{i}\right) \in B\) (in this order) do
        \(\mathbb{A}^{\text {Ocast }}(\mathrm{PB})\) (* casts valid ballots *);
        \(\mathrm{PB} \leftarrow \mathrm{PB} \bigcup\left\{\right.\) Vote \(\left._{\mathrm{pk}}\left(c_{i}, \nu_{i}\right)\right\} ;\)
    \(\mathbb{A}^{\text {Ocast }}(\mathrm{PB}\), "end \(f \circ \mathrm{or}\) ");
    \(X, \Pi \leftarrow\) Tally \(^{\text {A }}\left(\mathrm{PB}, \mathrm{pk},\left\{s_{i}\right\}\right)\);
    \(b^{\prime} \longleftarrow \mathbb{A}()\);
    if \(b^{\prime}=b\) then return 1 else return 0 ;
```

Algorithm 101: Real ${ }^{\text {CR }}$
Requires: $\mathbb{A}, \lambda, n_{T}, C_{t}, n_{V}, n_{A}, n_{C}, \mathcal{B}$
$1 \mathrm{pk},\left(s_{i}, h_{i}\right)_{i=1}^{n_{T}}, \Pi^{S} \longleftarrow \operatorname{Setup}\left(\lambda, n_{T}, t\right)$;
$\left(c_{i}, \pi_{i}\right), \Pi^{R} \longleftarrow \operatorname{Register}\left(\mathrm{pk}, n_{V}\right) ;$
$\mathrm{PB} \longleftarrow \Pi^{S} \| \Pi^{R}$;
$4 A \longleftarrow \mathbb{A}\left(\mathrm{~PB},\left\{s_{i} \mid i \in C_{t}\right\}\right)$ (* corrupt voters *);
$(j, \alpha) \longleftarrow \mathbb{A}\left(\left\{c_{i} ; i \in A\right\}\right) ;$
6 (* coerces $j$ who has the intention $\alpha^{*}$ )
7 if $|A| \neq n_{A} \vee j \notin\left[1, n_{V}\right] \backslash A \vee \alpha \notin$
$\left[1, n_{C}\right] \cup\{\phi\}$ then return 0 ;
$8 B \longleftarrow \mathcal{B}\left(\left[1, n_{V}\right] \backslash A, n_{C}\right)$;
9 (* samples a sequence of pairs $\left(i, \nu_{i}\right)$ with $\left.i \in\left(\left[1, n_{V}\right] \backslash A\right) \bigcup\{n \mid n<0\}^{*}\right)$
10 for $(i, *) \in B, i \notin\left[1, n_{V}\right]$ do
$11 \mid c_{i} \longleftarrow$ Fakecred();
12 (* this captures dummy ballots *)
$13 b \stackrel{\varsigma}{\longleftarrow}\{0,1\}$;
$14 \tilde{c} \longleftarrow c_{j}$;
15 if $b=1$ then Remove all $(j, *) \in B$; 16 else

Remove all $(j, *) \in B$ but the last, which is replaced by $(j, \alpha)$ if $\alpha \neq \phi$ and removed otherwise;
$\bar{c} \longleftarrow$ Fakecred $\left(c_{j}\right) ;$
$\mathbb{A}(\tilde{c})\left(* \mathbb{A}\right.$ learns $\left.\tilde{c}^{*}\right) ;$
for $\left(i, \nu_{i}\right) \in B$ (in this order) do $\mathbb{A}^{\text {Ocast }}(\mathrm{PB})$ (* casts valid ballots ${ }^{*}$ );
$\mathrm{PB} \leftarrow \mathrm{PB} \bigcup\left\{\mathrm{Vote}_{\mathrm{pk}}\left(c_{i}, \nu_{i}\right)\right\} ;$
$\mathbb{A}^{\text {Ocast }}(\mathrm{PB}$, "end $f \circ \mathrm{or}$ ");
$X, \Pi \leftarrow$ Tally ${ }^{\text {A }}\left(\mathrm{PB}, \mathrm{pk},\left\{s_{i}\right\}\right) ;$
if $b^{\prime}=b$ then return 1 else return 0 ;

```
Algorithm 102: Ideal \(^{C R}\)
    Requires: \(\mathbb{A}, \lambda, n_{V}, n_{A}, n_{C}, \mathcal{B}\)
1 ;
2 ;
    3 ;
    \({ }_{4} A \longleftarrow \mathbb{A}(\lambda)\left({ }^{*}\right.\) corrupt voters \(\left.{ }^{*}\right)\);
    \(5(j, \alpha) \longleftarrow \mathbb{A}()\);
    6 (* coerces \(j\) who has the intention \(\alpha^{*}\) );
    7 if \(|A| \neq n_{A} \vee j \notin\left[1, n_{V}\right] \backslash A\)
        V \(\alpha \notin\left[1, n_{C}\right] \cup\{\phi\}\) then return 0 ;
    \(8 B \longleftarrow \mathcal{B}\left(\left[1, n_{V}\right] \backslash A, n_{C}\right)\);
    9 (* samples a sequence of pairs \(\left(i, \nu_{i}\right)\)
        with \(\left.i \in\left(\left[1, n_{V}\right] \backslash A\right) \bigcup\{n \mid n<0\}^{*}\right)\);
10 ;
11 ;
12 ;
    \(3 b \stackrel{\S}{\longleftarrow}\{0,1\}\);
14 ;
5 if \(b=1\) then Remove all \((j, *) \in B\);
    else
        Remove all \((j, *) \in B\) but the last,
        which is replaced by \((j, \alpha)\) if \(\alpha \neq \phi\)
        and removed otherwise;
18 ;
19 ;
\(\left(\nu_{i}\right)_{i \in A}, \beta \longleftarrow \mathbb{A}(|B|)\);
if \((b=1) \wedge\left(\beta \in\left[1, n_{C}\right]\right)\) then
\(22\lfloor B \longleftarrow B \bigcup\{(j, \beta)\} ;\)
\(3 B \longleftarrow B \bigcup\left\{\left(i, \nu_{i}\right) \mid i \in A, \nu_{i} \in\left[1, n_{C}\right]\right\}\);
\(X \longleftarrow\) count(cleanse \((B)\) );
\(5 b^{\prime} \longleftarrow \mathbb{A}(X)\);
26 if \(b^{\prime}=b\) then return 1 else return 0 ;
```


## Our definition of coercion-resistance

```
Algorithm 101: Real }\mp@subsup{}{}{CR
    Requires: A, , , n},\mp@subsup{n}{T}{},\mp@subsup{C}{t}{},\mp@subsup{n}{V}{},\mp@subsup{n}{A}{},\mp@subsup{n}{C}{},\mathcal{B
    pk, (si, hi )}\mp@subsup{)}{i=1}{\mp@subsup{n}{T}{}},\mp@subsup{\Pi}{}{S}\longleftarrow\operatorname{Setup}(\lambda,\mp@subsup{n}{T}{},t)
    (ci,\mp@subsup{\pi}{i}{}),\mp@subsup{\Pi}{}{R}\longleftarrow<\operatorname{Register(pk,}\mp@subsup{n}{V}{});
    PB}\longleftarrow\mp@subsup{\Pi}{}{S}|\mp@subsup{\Pi}{}{R}
4 A\longleftarrow\mathbb{A}(PB,{\mp@subsup{s}{i}{}|i\in\mp@subsup{C}{t}{}}) (* corrupt
    voters *);
    (j,\alpha)\longleftarrow\mathbb{A}({\mp@subsup{c}{i}{};i\inA});
6 (* coerces j who has the intention }\mp@subsup{\alpha}{}{*}\mathrm{ )
7 if }|A|\not=\mp@subsup{n}{A}{}\veej\not\in[1,\mp@subsup{n}{V}{}]\A\vee\alpha\not
    [1,\mp@subsup{n}{C}{}]\cup{\phi} then return 0;
8 B\longleftarrow\mathcal{B}([1, n
9 (* samples a sequence of pairs (i, \nui )
    with i\in([1, n
    for (i,*) \inB,i\not\in[1,\mp@subsup{n}{V}{}]\mathrm{ do}
        c
    Theorem
    CHide is coercion-resistant. JCJ is not.
        Remove all (j,*) \inB but the last,
        which is replaced by (j,\alpha) if \alpha}\not=
        and removed otherwise;
        \overline{c}\longleftarrow\mp@code{Fakecred (cj);}
    \mathbb{A}(\tilde{c})(*}\mathbb{A}\mathrm{ learns }\mp@subsup{\tilde{c}}{}{*})
    for (i,\mp@subsup{\nu}{i}{})\inB (in this order) do
        \mp@subsup{A}{}{\mathrm{ Ocast (PB) (* casts valid ballots *);}}\mathbf{}\mathrm{ *}
        PB}\leftarrow\textrm{PB}\{\mp@subsup{V}{0te}{pk}(\mp@subsup{c}{i}{},\mp@subsup{\nu}{i}{})}
    A Ocast (PB, "end for");
    X,\Pi\leftarrowTally }\mp@subsup{}{}{\mathrm{ ( }}(\textrm{PB},\textrm{pk},{\mp@subsup{s}{i}{}})
    b
    if }\mp@subsup{b}{}{\prime}=b\mathrm{ then return 1 else return 0;
Algorithm 101: Real \(^{C R}\)
Requires: \(\mathbb{A}, \lambda, n_{T}, C_{t}, n_{V}, n_{A}, n_{C}, \mathcal{B}\)
\(1 \mathrm{pk},\left(s_{i}, h_{i}\right)_{i=1}^{n_{T}}, \Pi^{S} \longleftarrow \operatorname{Setup}\left(\lambda, n_{T}, t\right)\);
\(\left(c_{i}, \pi_{i}\right), \Pi^{R} \longleftarrow \operatorname{Register}\left(\mathrm{pk}, n_{V}\right) ;\)
\(\mathrm{PB} \longleftarrow \Pi^{S}| | \Pi^{R}\);
\(4 A \longleftarrow \mathbb{A}\left(\mathrm{~PB},\left\{s_{i} \mid i \in C_{t}\right\}\right)\) (* corrupt voters *);
\((j, \alpha) \longleftarrow \mathbb{A}\left(\left\{c_{i} ; i \in A\right\}\right) ;\)
(* coerces \(j\) who has the intention \(\alpha^{*}\) )
7 if \(|A| \neq n_{A} \vee j \notin\left[1, n_{V}\right] \backslash A \vee \alpha \notin\)
\(\left[1, n_{C}\right] \bigcup\{\phi\}\) then return 0 ;
\(8 B \longleftarrow \mathcal{B}\left(\left[1, n_{V}\right] \backslash A, n_{C}\right)\);
9 (* samples a sequence of pairs \(\left(i, \nu_{i}\right)\)
\[
\text { with } \left.i \in\left(\left[1, n_{V}\right] \backslash A\right) \bigcup\{n \mid n<0\}^{*}\right)
\]
\(c_{i} \longleftarrow\) Fakecred();
```


## Theorem

## CHide is coercion-resistant. JCJ is not.

Remove all $(j, *) \in B$ but the last, which is replaced by $(j, \alpha)$ if $\alpha \neq \phi$ and removed otherwise;
$\bar{c} \longleftarrow$ Fakecred $\left(c_{j}\right) ;$
$\mathbb{A}(\tilde{c})\left({ }^{*} \mathbb{A}\right.$ learns $\left.\tilde{c}^{*}\right) ;$
for $\left(i, \nu_{i}\right) \in B$ (in this order) do
$\mathrm{A}^{\text {Ocast }}(\mathrm{PB})$ (* casts valid ballots *);
$\mathrm{PB} \leftarrow \mathrm{PB} \bigcup\left\{\mathrm{Vote}_{\mathrm{pk}}\left(c_{i}, \nu_{i}\right)\right\} ;$
$\mathbb{A}^{\text {O}_{\text {cast }}}(\mathrm{PB}$, "end for");
$A, \Pi \leftarrow$ Tally ${ }^{\text {A}}\left(\mathrm{PB}, \mathrm{pk},\left\{s_{i}\right\}\right)$;
if $b^{\prime}=b$ then return 1 else return 0 ;
which is replaced by $(j, \alpha)$ if $\alpha \neq \phi$ and removed otherwise;

```
```

1 8

```
```

1 8
19;
19;
20}(\mp@subsup{\nu}{i}{}\mp@subsup{)}{i\inA}{},\beta\longleftarrow\mathbb{A}(|B|)
20}(\mp@subsup{\nu}{i}{}\mp@subsup{)}{i\inA}{},\beta\longleftarrow\mathbb{A}(|B|)
if (b=1)\wedge(\beta\in[1,\mp@subsup{n}{C}{}]) then
if (b=1)\wedge(\beta\in[1,\mp@subsup{n}{C}{}]) then
22 LB\longleftarrowB\bigcup{(j,\beta)};
22 LB\longleftarrowB\bigcup{(j,\beta)};
23 }B\longleftarrowB\bigcup{(i,\mp@subsup{\nu}{i}{})\i\inA,\mp@subsup{\nu}{i}{}\in[1,\mp@subsup{n}{C}{}]}
23 }B\longleftarrowB\bigcup{(i,\mp@subsup{\nu}{i}{})\i\inA,\mp@subsup{\nu}{i}{}\in[1,\mp@subsup{n}{C}{}]}
A X\longleftarrow count(cleanse(B));
A X\longleftarrow count(cleanse(B));
25}\mp@subsup{b}{}{\prime}\longleftarrow\mathbb{A}(X)
25}\mp@subsup{b}{}{\prime}\longleftarrow\mathbb{A}(X)
26 if }\mp@subsup{b}{}{\prime}=b\mathrm{ then return 1 else return 0;

```
```

26 if }\mp@subsup{b}{}{\prime}=b\mathrm{ then return 1 else return 0;

```
```


## Our contributions



## Conclusion

| Tally hiding | Coercion-resistance | Vote-buying |
| :--- | :--- | :--- |
| - A toolbox for MPC <br> in EIGamal | • Uncover a leakage in <br> the JCJ scheme | • A receipt-free voting <br> protocol |
| - Applied to various <br> counting methods | - Fixed with CHide | - A new definition of <br> receipt-freeness |
| - Security proofs in the <br> UC framework | - A new definition of <br> coercion-resistance | - Security proofs |
| - Proof that CHide is |  |  |
| coercion-resistant |  |  |

## Conclusion

| Tally hiding | Coercion-resistance | Vote-buying |
| :--- | :--- | :--- |
| - A toolbox for MPC <br> in EIGamal | - Uncover a leakage in <br> the JCJ scheme | - A receipt-free voting <br> protocol |
| - Applied to various <br> counting methods | - Fixed with CHide | - A new definition of <br> receipt-freeness |
| - Security proofs in the <br> UC framework | - A new definition of <br> coercion-resistance | - Security proofs |
| - Proof that CHide is |  |  |
| coercion-resistant |  |  |

Design of protocols Security proofs Security definitions

## Future works

- More modularity for security definitions



## Future works

- More modularity for security definitions
- Accountability and dispute resolution



## Future works

- More modularity for security definitions
- Accountability and dispute resolution
- Registration and eligibility



## Future works

- More modularity for security definitions
- Accountability and dispute resolution
- Registration and eligibility
- Post-quantum electronic voting



## Thank you!

## Publications

- A toolbox for verifiable tally-hiding e-voting systems. ESORICS 2022.
- How to fake zero-knowledge proofs, again. E-Vote-ID 2020 (short paper).


## Work in progress

- Is the JCJ voting system really coercion-resistant?
- End-to-End Verifiable Receipt-Free E-Voting. Henri Devillez, Thomas Peters, Olivier Pereira, Quentin Yang.


## Any question?

## Odd-Even Merge Sort

## back

Recursive algorithm, assuming the length is a power of 2 .

$$
70284949856646362006926080342979
$$

## Odd-Even Merge Sort

## back

Recursive algorithm, assuming the length is a power of 2 .

$$
70284949856646 \text { 36:20 } 0926080342979
$$

## Odd-Even Merge Sort

## back

Recursive algorithm, assuming the length is a power of 2 .


## Odd-Even Merge Sort

## back

Recursive algorithm, assuming the length is a power of 2 .


## Odd-Even Merge Sort

## back

Recursive algorithm, assuming the length is a power of 2 .


## Odd-Even Merge Sort

## back

Recursive algorithm, assuming the length is a power of 2 .


## Odd-Even Merge

## back

Recursive algorithm, assuming the length is a power of 2 .

$$
28364649496670850020293460798092
$$

## Odd-Even Merge

## back

Recursive algorithm, assuming the length is a power of 2 .

$$
28364649496670850020293460798092
$$

## Odd-Even Merge

## back

Recursive algorithm, assuming the length is a power of 2.


## Odd-Even Merge

## back

Recursive algorithm, assuming the length is a power of 2 .


0362849296646854920603470798092

## Multi-party computation

## Computing the logical AND with cards.

Material:

- Three identical red cards (with a hidden side)
- Two identical blue cards (with a hidden side)

Setting:

- Two participants with each a secret input bit
- One red card is put on the table (face down)



## Multi-party computation

## Computing the logical AND with cards.

Step 1. Commit: put your cards (face down) so that the red cards touch (yes) / do not touch (no) each other.
Step 2. Mask: each participant cut the deck any number of times. Step 3. Reveal: check if there are three "consecutive" red cards.


Indistinguishable up to a circular permutation!

## The Paillier encryption scheme

back
Public key: $n=p q$, a strong RSA modulo.
Secret key: s, congruent to 1 moodulo $n$ and to 0 modulo $\varphi(n)$.
Encryption: To encrypt $m \in \mathbb{Z}_{n}$, pick $r \stackrel{\$}{\leftarrow} \mathbb{Z}_{n^{2}}^{\times}$and compute $C=(1+n)^{m} r^{n} \bmod n^{2}$.

Decryption: To decrypt $C$, compute $D=C^{s} \bmod n^{2}$ and $m=(D-1) / n$.
DCRA: The $n$th residues modulo $n^{2}$ are indistinguishable from random.

