
CPSF

R. Péchoux

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

A characterization of Polynomial Space
with Forks

Romain Péchoux
joint work with Emmanuel Hainry and Jean-Yves Marion

Lorraine University
Inria project Carte, Loria

30 mai 2012

CPSF

R. Péchoux

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Outline

Motivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes

Main characterization

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

ICC and polynomial Space
ICC related works on polynomial space :

I Function algebra with parameter substitution
(Leivant-Marion 94)

I Function algebra with ramified recurrence
(Leivant-Marion 97)

I Quasi-interpretation with LPO
(Bonfante-Marion-Moyen 07)

I Lambda calculus with LLL based type system
(Gaboardi-Ronchi Della Rocca-Marion 07)

I Higher-order types or life without cons (Jones 01)

I Matrix calculus (Niggl-Wunderlich, Jones-Kristiansen,
Moyen)

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Our approach

Take the methodology of the type system presented in
LICS 2011 (Marion) that combines :

I data ramification principle (or tiering)
I with non-interference based type system
I on a simple imperative language

in order to characterize polynomial space on an imperative
language with wait/fork mechanism.

Advantages of the presented methodology :
I a good expressivity
I very close to C-fork processes

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Simple While Language with fork/wait

E ,E1, . . . ,En ∈ Exp ::= X | op(E1, . . . ,En)

I ∈ Inst ::= fork() | wait(E)

C,C′ ∈ Cmd ::= X :=E | C; C′ | skip
| while(E)do{C}

X :=I | if E then C else C′

P ∈ Proc ::= return X | C; P

X ∈ X and op ∈ O

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Main results

A type system for imperative programs such that :

I Typable programs are computable in polynomial
space under some restrictions :

I termination
I confluence
I lock-freedom
I the return type

I Each polynomial space problem can be computed by
a typed program

I In a terminating program, all processes compute in
polynomial time (polynomial number of steps)

A process being either the main program process or a
subprocess created by a fork instruction.

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Informal semantics : store, configuration and
environment

Let W be the set of words over Σ.
Sequential commands are evaluated as usual
A process P is evaluated inside a configuration c = (P, µ)ρ :

I P is the program counter
I A store µ : X →W mapping each variable of P to a

value
I A set of ids ρ, the sons of c
I each configuration has an id (an integer). The main

process id is 1.
All configurations are stored in an environment E , a partial
function, mapping an id ∈ N to a configuration c.

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Informal semantics : fork

At the beginning, there is only one configuration (the main
process) of id 1 and with ρ = ∅.
A fork instruction creates a new child :
I with a new id (set to the next available integer)
I that runs concurrently of its father
I with its own duplicated memory (the store and the

program counter are duplicated)
I the child id is stored in the father ρ

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Informal semantics : wait

The wait instruction provides a one-way communication
and is the only way for a father to communicate with its
child.
A wait(E) instruction :
I evaluates the expression E to a binary number n

encoding id n
I if n ∈ ρ and the child is returning then :

I the child return value is passed to the father
I the child is erased

I otherwise the father waits for its children
Note that children of a killed father may still be alive

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Example

P: X := f o r k () ;
Q: i f X > 0 then {
R: Y := wa i t (X) ;

Y := Y + 1
} else {

Y := 17
}

S : return Y

Initial environment :
E (1) = (P, µ)∅
Fork evaluation :
E (1) = (Q, µ{X := 2}){2} E (2) = (Q, µ{X := 0})∅
After some steps :
E (1) = (R, µ{X := 2}){2} E (2) = (S, µ{X := 0,Y := 17})∅
Wait evaluation :
E (1) = (S, µ{X := 2,Y := 18}){2} E (2) = ⊥

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Semantics of expressions and configurations

(X , µ)
e→ µ(X)

(op(E1, . . . ,En), µ)
e→ JopK(d1, . . . ,dn)

if ∀i , (Ei , µ)
e→ di

(skip; P, µ)ρ
c→ (P, µ)ρ

(X :=E ; P, µ)ρ
c→ (P, µ{X ← d})ρ

if (E , µ)
e→ d

(if E then Ctt else Cff; P, µ)ρ
c→ (Cw ; P, µ)ρ

if (E , µ)
e→ w ∈ {tt,ff}

(while(E)do{C}; P, µ)ρ
c→ (P, µ)ρ

if (E , µ)
e→ ff

(while(E)do{C}; P, µ)ρ
c→ (C; while(E)do{C}; P, µ)ρ

if (E , µ)
e→ tt

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Semantics of environments

Let E ′ = E [i := c] be defined by :
I E ′(j) = E (j),∀j ∈ dom(E)− {i},
I E ′(i) = c

The transition→ for process evaluation is defined by :

E [i := c]→ E [i := c′]
if c c→ c′

E [i := (X :=fork(); P, µ)ρ]
→ E [i := (P, µ{X ← n})ρ∪{n},n := (P, µ{X ← 0})∅]

with n =]E + 1

E [i := (X :=wait(E); P, µ)ρ]
→ E [i := (P, µ{X ← µ′(Y)})ρ,n := ⊥]

if (E , µ)
e→ n, n ∈ ρ and En = (return Y , µ′)

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Strong normalization, lock-freedom and
confluence

Strong normalization
A process P is strongly normalizing if ∀µ
there is no infinite reduction starting from
(P, µ)∅ through the relation→.

Lock-freedom
If E 6→ and E1 = (X :=wait(E); P, µ)ρ then E
is locked.
A process P is lock-free if ∀µ, there is no
locked environment E ′ s.t. (P, µ)∅

*→ E ′.
Confluence

A process P is confluent if ∀µ, (P, µ)∅
*→ E ′

and (P, µ)∅
*→ E ′′, ∃E 3 s.t. E ′ *→ E 3 and

E ′′ *→ E 3.

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Example of non-confluent process

P: X := f o r k () ;
Y := f o r k () ;
return Y

The main process will return the process identifier of its
second son.
Depending on the order in which execution of the
subprocesses occurs, this identifier can be either 3 or 4.

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Tiers and typing environments

I Tiers are two elements 0,1 underlying a boolean
lattice ({0,1},�,0,∨,∧) such that 0 � 1

I Operator types τ are defined by

τ ::= α | α −→ τ, α ∈ {0,1}

I A variable typing environment Γ maps each variable in
V to a tier in {0,1}

I An operator typing environment ∆ maps each
operator op of arity n to a set ∆(op) of operator types
of the shape τ = α1 −→ . . . αn −→ α

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Γ(X) = α
(EV)

Γ,∆ ` X : α

Γ,∆ ` Ei : αi α1 −→ . . . −→ αn −→ α ∈ ∆(op)
(EO)

Γ,∆ ` op(E1, . . . ,En) : α

Γ,∆ ` X : 0
(F)

Γ,∆ `β X :=fork() : 0

Γ,∆ ` E : 0 Γ,∆ ` X : α
α � β (W)

Γ,∆ `β X :=wait(E) : α

Γ,∆ ` X : α Γ,∆ ` E : α′ E ∈ Exp
α � α′ (CA)

Γ,∆ `β X :=E : α

Γ,∆ `β C : α Γ,∆ `β C′ : α′

(CC)
Γ,∆ `β C; C′ : α ∨ α′

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Γ,∆ ` E : 1 Γ,∆ `β C : α
(CW)

Γ,∆ `β while(E)do{C} : 1

Γ,∆ ` E : α Γ,∆ `β C : α Γ,∆ `β C′ : α
(CB)

Γ,∆ `β if E then C else C′ : α

(CS)
Γ,∆ `β skip : α

Γ,∆ `β C : 0
(CSub)

Γ,∆ `β C : 1

Γ,∆ `β C : α Γ,∆ ` X : β
(P)

Γ,∆ ` C; return X : β

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Some more intuitions

I The type discipline precludes values from flowing from
tier 0 to 1 (but not command because of CS)

I Consequently, while loop guards are enforced to be of
tier 1 (CW)

I In a (CB) rule the guard tier is equal to tier of both
branches (could be weakened)

I However information may flow in the opposite
direction (CA)

I The annotation β keeps tract of the return type and is
used by wait instructions (W)

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Example :
found0 := ff0 : 0 ;
n1 := leng th (s t r) 1 : 1 ;
l 1 := n /2 1 : 1 ;
x0 := f o r k () 0 : 0 ;
while l >01 do {

i f x>00 then
c0 := getchar (s t r 1 , l 1) 1 : 0 ;

else
c0 := getchar (s t r 1 , n− l 1) 1 : 0 ;

i f c== ’ ∗ ’ 0 then
found0 := tt0 : 0

else sk ip : 0 ;
l 1 := l−11 : 1

} : 1
i f x>00 then {

sonf0 := wa i t (x) 0 : 0 ;
found0 := or (found , sonf) 0 : 0

} else sk ip : 0 ;
return found0

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Neutral, positive and polynomial operators
An operator op is :

1. neutral (op ∈ Ntr) if :
1.1 either ∀n ∈ N∗, JopK(~Wn) ⊆Wn−1.
1.2 or there is a polynomial Pop s.t. ∀n ∈ N∗, ∃Vop

n ⊆Wn,

JopK(~Wn) ⊆ Vop
n and]Vop

n ≤ Pop(n)

2. positive (op ∈ Pos) if op /∈ Ntr and there is cop ∈ N
s.t. :

∀~d ∈Wm, |JopK(~d)| ≤ max
i∈[1,m]

|di |+ cop

3. polynomial (op ∈ Pol) if op /∈ Ntr ∪ Pos and there is a
polynomial Qop s.t. :

∀~d ∈Wm, |JopK(~d)| ≤ Qop(max
i∈[1,m]

|di |)

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Safe operator typing environment

Definition
∆ is safe if ∀op ∈ dom(∆) and
∀α1 → . . .→ αn → α ∈ ∆(op) we have :
I if op ∈ Ntr then α � ∧i=1,nαi ,
I if op ∈ Pos then α = 0,
I if op ∈ Pol then ∀i ∈ [1,n], αi = 1 and α = 0

Intuitively :
I Neutral operators are iterable

(1 −→ 1 in a while loop guard).
I Positive operators are not iterable but composable

(0 −→ 0 in a while-loop command).
I Polynomial operators are neither iterable nor

composable (1 −→ 0).

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Examples

(Ntr 1.1) JpredK(u) = ε if u = ε
= w if u = a.w

(Ntr 1.2) J==K(u,w) = tt if u = w
= ff otherwise.

(Pos) JsucdK(b) = d .b

(Pol) JcallocK(u,w) = w . · · · .w︸ ︷︷ ︸
|u| times

If ∆ is a safe operator typing environment then :
∆(pred) ⊆ {0 −→ 0,1 −→ 1,1 −→ 0},
∆(==) ⊆ {1 −→ 1 −→ 1, α −→ β −→ 0, α, β ∈ {0,1}},
∆(sucd) ⊆ {1 −→ 0,0→ 0},
∆(calloc) = {1 −→ 1 −→ 0}.

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Safe process

Definition (Safe process)
Given Γ a variable typing environment and ∆ a operator
typing environment, a process P is a safe process if :
I P is well-typed wrt Γ and ∆, i.e. Γ,∆ ` P : β

I and ∆ is safe

The search(str) program is safe wrt Γ, ∆ provided.

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Polynomial space

Theorem
The set of Pspace decision problems is exactly the set of
problems decided by :
I safe,
I confluent,
I strongly normalizing,
I and lock-free processes P

Corollary
If P is a safe, confluent, strongly normalizing and lock-free
processes P such that ∆, Γ ` P : 1 then the function
computed by P is in FPspace.

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Intermediate Lemmata on tier 1 values

Lemma (Simple security)
Given a safe process P wrt Γ and ∆, if Γ,∆ ` E : 1 then
∀X ∈ V(E), Γ(X) = 1 and all operators in E are neutral.

Lemma (Bounded size)
Given a safe process P wrt Γ and ∆ s.t. Γ,∆ ` E : 1, for
each store µ, if ∀X ∈ V(E), µ(X) ∈Wn and (E , µ)

e→ d
then d ∈Wn.

Lemma (Bounded cardinality)
Given a safe process P wrt Γ and ∆ and Γ,∆ ` E : 1, the
number of distinct values taken by E during the evaluation
of (P, µ)∅ is bounded polynomially in |µ|.

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Process tree

Definition (Process tree)
The process tree T (E) of an environment E is defined by :
I the nodes are the configurations {E1, . . . ,E]E }
I the root is E1 ;
I for each l ∈ [1,]E], there is an edge from El = (P, µ)ρ

to Ek , if k ∈ ρ.
Given a process tree T , its degree is denoted d(T) and
height h(T).
 pstree

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Intermediate Lemmata on the process tree

Lemma (Bounded degree)
Given a strongly normalizing and safe process P, there
exists a polynomial Q s.t., ∀µ, if (P, µ)∅ →∗ E then
d(T (E)) ≤ Q(|µ|).

Lemma (Bouded height)
Given a strongly normalizing and safe process P, there
exists a polynomial Q s.t., ∀µ, if (P, µ)∅ →∗ E then
h(T (E)) ≤ Q(|µ|).

Lemma (Subprocesses in polynomial time)
Given a strongly normalizing and safe process P, there is a
polynomial Q s.t., ∀µ and ∀i ∈ N, if (P, µ)∅ ⇒k

i E then
k ≤ Q(|µ|).
where⇒k

i means that the i-th configuration has been
evaluated k times.

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Pspace abiding strategy

Lemma (Bounded stores)
Given a strongly normalizing and safe decision process P,
there exists a polynomial Q such that, ∀µ, if (P, µ)∅ →∗ E
then ∀i ≤]E , if Ei = (Pi , µi)ρi then |µi | ≤ Q(|µ|).

Soundness.
We define a lazy Pspace abiding evaluation strategy that :
Init defines the current process to be the main process

configuration
I executes the current process as long as possible
I on a wait instruction updates the current process to

the waited process
I on a return instruction updates the current process to

the father

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Completeness

We write a safe process computing QBF :
I when an ∃x (∀) is encoutered a fork instruction is

called :
I the son evaluates the remaining formula with x set to
tt

I whereas the father evaluates the remaining formula
with x set to ff

I at the end the father gets his son’s result and
computes the disjunction with its own result
(conjunction)

I A calloc operator is used in order to store the
processses id.

CPSF

Motivations

Semantics

Strong
normalization,
lock-freedom and
confluence

Type system

Safe processes

Main
characterization

Conclusions

I We have a characterization of Pspace combining
non-interference and tiering methodologies

I The system is expressive (very close to C fork
programs or Unix processes)

I It allows the programmer to simulate malloc/calloc
operators (Polynomial operators)

I Possible extension on threads with creation

	Motivations
	Semantics
	Strong normalization, lock-freedom and confluence
	Type system
	Safe processes
	Main characterization

