A characterization of Polynomial Space
with Forks

Romain Péchoux
joint work with Emmanuel Hainry and Jean-Yves Marion

Lorraine University
Inria project Carte, Loria

30 mai 2012

CPSF

R. Péchoux

CPSF

Outline

R. Péchoux

Motivations

Semantics

Strong normalization, lock-freedom and confluence
Type system

Safe processes

Main characterization

CPSF

|ICC and polynomial Space

ICC related works on polynomial space :

Motivations

» Function algebra with parameter substitution
(Leivant-Marion 94)

» Function algebra with ramified recurrence
(Leivant-Marion 97)

» Quasi-interpretation with LPO
(Bonfante-Marion-Moyen 07)

» Lambda calculus with LLL based type system
(Gaboardi-Ronchi Della Rocca-Marion 07)

» Higher-order types or life without cons (Jones 01)

» Matrix calculus (Niggl-Wunderlich, Jones-Kristiansen,
Moyen)

Our approach o

Motivations

Take the methodology of the type system presented in
LICS 2011 (Marion) that combines :

» data ramification principle (or tiering)
» with non-interference based type system
» on a simple imperative language

in order to characterize polynomial space on an imperative
language with wait/fork mechanism.

Advantages of the presented methodology :
» a good expressivity
» very close to C-fork processes

Simple While Language with fork/wait

E Ey,...,EncExp == X]|op(Ey,...,En)

I € Inst = fork()|wait(E)

C,C’' ¢ Cmd n= X:=E|C;C|skip
| while(E)do{C}

X:=Il|if E then Celse ('

P € Proc 2= return X| C; P

XeXandopcO

CPSF

Motivations

CPSF

Main results

Motivations

A type system for imperative programs such that :

» Typable programs are computable in polynomial
space under some restrictions :

» termination

» confluence

» lock-freedom
» the return type

» Each polynomial space problem can be computed by
a typed program

» In a terminating program, all processes compute in
polynomial time (polynomial number of steps)

A process being either the main program process or a
subprocess created by a fork instruction.

Informal semantics : store, configuration and
environment

Let W be the set of words over .
Sequential commands are evaluated as usual

A process P is evaluated inside a configuration ¢ = (P, p1), :

v

P is the program counter

A store p - X — W mapping each variable of P to a
value

v

v

A set of ids p, the sons of ¢

v

each configuration has an id (an integer). The main
process id is 1.

All configurations are stored in an environment &, a partial
function, mapping an id € N to a configuration c.

CPSF

Semantics

CPSF

Informal semantics : fork

Semantics

At the beginning, there is only one configuration (the main
process) of id 1 and with p = 0.
A fork instruction creates a new child :

with a new id (set to the next available integer)
that runs concurrently of its father

with its own duplicated memory (the store and the
program counter are duplicated)

the child id is stored in the father p

v

v

v

v

Informal semantics : wait

The wait instruction provides a one-way communication
and is the only way for a father to communicate with its
child.
A wait(E) instruction :
» evaluates the expression E to a binary number n
encoding id n
» if n € p and the child is returning then :

» the child return value is passed to the father
» the child is erased

» otherwise the father waits for its children
Note that children of a killed father may still be alive

CPSF

Semantics

CPSF

Example
P: X = fork(), Semantics
Q: if X > 0 then {
R: Y = wait(X);
Y =Y + 1
} else {
Y = 17
!
S: return Y

Initial environment :

&) = (P, u)o

Fork evaluation :

E(1) = (Qu{X :=2})2y £(2) = (Q, u{X :=0})p

After some steps :

&)= (R, p{X:=2})2 £(2) = (S,p{X:=0,Y :=17})y
Wait evaluation :

E1) =(S,u{X:=2,Y:=18})2; £(2) = L

CPSF

Semantics of expressions and configurations

(X, 1) = p(X)

(0P(Ei, .. En). ;1) 5 [opl(ch. ... cn)
it Vi, (B 1) <

Semantics

(skip; P,p), = (P, 1),

(X:=E; P,), = (P,u{X « d}),
if (E,p) S d

(if E then C.. else C:s; Pyp), — (Cwi P, 1),
if (E,pn) > w e {tt, £f}

(while(E)do{C}: P,p), 5 (P,p),
if (E,p) > £f

(while(E)do{C}; P,u), — (C; while(E)do{C}; P, 1),
if (E,p) > tt

Semantics of environments orer

Let & = &[i := c] be defined by :
> &'(j) = £()), V) € dom(&) — {i},
» &'(i)=c
The transition — for process evaluation is defined by :

Semantics

Eli:=c] — &li:=]
ifc> ¢
Eli == (X:=fork(); P,),

= &= (P, p{X = n})pgny, 1= (P, p{ X = 0})o]
with n =& + 1

Eli == (X:=wait(E); P, u),]
Sl = (P X 1 (Y)) = 1]
if (E,u) > n,nepand &, = (return Y, ')

CPSF

Strong normalization, lock-freedom and

confluence
Strong normalization Stong
A process P is strongly normalizing if Vu lock-freedom and

confluence

there is no infinite reduction starting from
(P,)y through the relation —.

Lock-freedom
If & /4 and & = (X:=wait(E); P,u), then &
is locked.
A process P is lock-free if Yy, there is no
locked environment &’ s.t. (P, i)y — &".

Confluence
A process P is confluent if Vu, (P,)y — &
and (P, u)y — &", 363 s.t. &' 5 &2 and
& 2 &8,

Example of non-confluent process o

Strong
normalization,
lock-freedom and

P: X := fork(); confluence
Y = fork();
return Y

The main process will return the process identifier of its
second son.

Depending on the order in which execution of the
subprocesses occurs, this identifier can be either 3 or 4.

CPSF

Tiers and typing environments

v

Tiers are two elements 0,1 underlying a boolean
lattice ({0,1},=<,0,Vv,A) such that0 < 1

Operator types 7 are defined by Type system

v

Ti=ala—r71, ac{0,1}

v

A variable typing environment I maps each variable in
V to atierin {0,1}

An operator typing environment A maps each
operator op of arity nto a set A(op) of operator types
oftheshape r = a1y — ...anp — «

v

CPSF

MNX) =«
— (EV)
NAFX:«a

NAFE : o a1 — ... — ap — a € A(op)

(EO)
AFop(Ey,...,En): «

AFX:0

Type system

(F)
M Atg Xi=fork():0

MAFE:0 T,AFX:a

a=xp (W)
MAFg Xi=wait(E): «

NMAFX:«a NAFE:d E € Exp
a=ao (CA)

AFg X:i=E :«

At C:a T,AFzC o
(CC)

MAFg G, C:avad

CPSF

MNAFE:1 Az C: o
(cw)

IMAFgwhile(E)do{C}:1

NMAFE:« ARz C: NArgC:a
(CB)

Type system

MAlgif Ethen Celse C :«

(CS)

IMAFgskip:«

[AF;C:0
—— (CSub)
NAFg C:1

ARz C:a F,Al—X:B(P)

NAF C;, return X : 8

CPSF

Some more intuitions

» The type discipline precludes values from flowing from
tier 0 to 1 (but not command because of CS)

» Consequently, while loop guards are enforced to be of Tpe system
tier 1 (CW)

» In a (CB) rule the guard tier is equal to tier of both
branches (could be weakened)

» However information may flow in the opposite
direction (CA)

» The annotation 5 keeps tract of the return type and is
used by wait instructions (W)

Example :
found® := ££% .0 ;
n' := length(str)! :1;
1T := n/21 :1;
x% := fork()? :0;

while 150" do {
if x>0 then

c® := getchar(str?
else
c® := getchar(str?
if c=="%’0 then
found® := tt? : 0
else skip :0 ;
|1 | —11 1
}oo
if x>00 then {
sonf® := wait(x)? :0;
found® := or(found, sonf)®

} else skip :0 ;
return found?®

CPSF

Type system
1\1 .
, 1)1

, n—1"1:0;

:0

Neutral, positive and polynomial operators e

An operator op is :
1. neutral (op € Nitr) if :

1.1 either vn e N*, [op](W,) C W,_;.
1.2 orthere is a polynomial Pop s.t. Vn € N*, IViP C W,

[oP](W,) C V3P and §ViP < Pop(n)
Safe processes

2. positive (op € Pos) if op ¢ Nir and there is cop € N
s.t.:
vd € W™, |[op](d)| < max |dj| + Cop
ie[1,m]

3. polynomial (op € Pol) if op ¢ Ntr U Pos and there is a
polynomial Qop S.t. :

vd € W, [[op](d)] < Qop(max i)

CPSF

Safe operator typing environment

Definition
A is safe if Yop € dom(A) and
Vay — ... = ap — a € A(op) we have :

» if op € Nir then o < Aj—1 pavj,
> if op € Pos then o = 0, Safe processes
» ifop € PolthenVic [1,n], aj=1and a =0

Intuitively :
» Neutral operators are iterable
(1 — 1 in a while loop guard).

» Positive operators are not iterable but composable
(0 — 0in a while-loop command).

» Polynomial operators are neither iterable nor
composable (1 — 0).

CPSF

Examples

(Nir 1.1) [pred](u) =€ ifu=e
=w ifu=aw
(Ntr 1.2) [==](u, w) =tt fu=w
=ff otherwise. Safe processes
(Pos) [sucq](b) =d.b
(Pol) [ecalloc](u,w) =w.---.w
|u| times

If A is a safe operator typing environment then :
A(pred) {0 — 0,1 — 1,1 — 0},
A==)C{1—1—1a——0,a,p¢c{0,1}},
A(sucy) € {1 — 0,0 — 0},

A(calloc) = {1 — 1 — 0}.

CPSF

Safe process

Definition (Safe process)
Given I' a variable typing environment and A a operator Safe processes
typing environment, a process P is a safe process if :

» Piswell-typedwrt and A, i.e. T, AFP: 3
» and A is safe
The search(str) program is safe wrt I', A provided.

Polynomial space o

Theorem
The set of Pspace decision problems is exactly the set of
problems decided by :

» safe,
confluent,

v

Main

Strong/y norma/izing, characterization
and lock-free processes P

v

v

Corollary

IfP is a safe, confluent, strongly normalizing and lock-free
processes P such that A, T P : 1 then the function
computed by P is in FPspace.

CPSF

Intermediate Lemmata on tier 1 values

Lemma (Simple security)

Given a safe process P wrtT and A, ifT, A+ E : 1 then
VX € V(E), I'(X) =1 and all operators in E are neutral.

Lemma (Bounded size)

Given a safe process P wrtT and A s.t. T,A+ E : 1, for A erisation
each store yu, if¥X € V(E), u(X) € W, and (E,u) > d

thend € W,,.

Lemma (Bounded cardinality)

Given a safe process P wrtl and A andT,A+ E : 1, the
number of distinct values taken by E during the evaluation
of (P, u)g is bounded polynomially in |p|.

CPSF

Process tree

Definition (Process tree)
The process tree T(&') of an environment & is defined by :

» the nodes are the configurations {&7,..., &8s}
g the rOOt iS (9(01 ’ !\:Ahjpacterization
» foreach / € [1,4&], there is an edge from & = (P,),

to &, if k € p.

Given a process tree T, its degree is denoted d(T) and
height h(T).
~ pstree

CPSF

Intermediate Lemmata on the process tree

Lemma (Bounded degree)

Given a strongly normalizing and safe process P, there
exists a polynomial Q s.t., Vu, if (P,)y —* & then

d(T(£)) < Q(lul)-

Lemma (Bouded height)

Given a strongly normalizing and safe process P, there M ion
exists a polynomial Q s.t., Yy, if (P, u)g —* & then

h(T(€)) < Q(ul)-

Lemma (Subprocesses in polynomial time)

Given a strongly normalizing and safe process P, there is a
polynomial Q s.t., Yy and Vi € N, if (P, u)y =K & then

k< Q(lu)).

where =k means that the i-th configuration has been
evaluated k times.

CPSF

Pspace abiding strategy

Lemma (Bounded stores)

Given a strongly normalizing and safe decision process P,
there exists a polynomial Q such that, Yy, if (P, n)g —* &
then¥i < $&, if& = (Pj, pi)p, then |u;| < Q(\u\)

Soundness.
We define a lazy Pspace abiding evaluation strategy that : Main

characterization

Init defines the current process to be the main process
configuration

» executes the current process as long as possible

» on a wait instruction updates the current process to
the waited process

» on a return instruction updates the current process to
the father

O

Completeness o

We write a safe process computing QBF :

» when an 3x (V) is encoutered a fork instruction is
called :

» the son evaluates the remaining formula with x set to
tt
» whereas the father evaluates the remaining formula A erization
with x setto £f
» at the end the father gets his son’s result and
computes the disjunction with its own result
(conjunction)

» A calloc operator is used in order to store the
processses id.

Conclusions orst

» We have a characterization of Pspace combining
non-interference and tiering methodologies

» The system is expressive (very close to C fork i
programs or Unix processes) characterization

» |t allows the programmer to simulate malloc/calloc
operators (Polynomial operators)

» Possible extension on threads with creation

	Motivations
	Semantics
	Strong normalization, lock-freedom and confluence
	Type system
	Safe processes
	Main characterization

