A characterization of Polynomial Space with Forks

Romain Péchoux joint work with Emmanuel Hainry and Jean-Yves Marion

> Lorraine University Inria project Carte, Loria

> > 30 mai 2012

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

CPSF

R. Péchoux

Motivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes

Outline

Motivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes

Main characterization

CPSF

R. Péchoux

Motivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes

Main characterization

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

ICC and polynomial Space

ICC related works on polynomial space :

- Function algebra with parameter substitution (Leivant-Marion 94)
- Function algebra with ramified recurrence (Leivant-Marion 97)
- Quasi-interpretation with LPO (Bonfante-Marion-Moyen 07)
- Lambda calculus with LLL based type system (Gaboardi-Ronchi Della Rocca-Marion 07)
- Higher-order types or life without cons (Jones 01)
- Matrix calculus (Niggl-Wunderlich, Jones-Kristiansen, Moyen)

CPSF

Motivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes

Our approach

Take the methodology of the type system presented in LICS 2011 (Marion) that combines :

- data ramification principle (or tiering)
- with non-interference based type system
- on a simple imperative language

in order to characterize polynomial space on an imperative language with wait/fork mechanism.

Advantages of the presented methodology :

- a good expressivity
- very close to C-fork processes

CPSF

Motivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes

Simple While Language with fork/wait

$$E, E_1, \ldots, E_n \in \mathsf{Exp}$$
 ::= $X | \mathbf{op}(E_1, \ldots, E_n)$

 $I \in Inst$::= fork() | wait(E)

 $P \in \mathsf{Proc}$::= return $X \mid C$; P

 $X \in \mathcal{X}$ and $\mathbf{op} \in \mathbb{O}$

CPSF

Motivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes

Main characterization

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

Main results

A type system for imperative programs such that :

- Typable programs are computable in polynomial space under some restrictions :
 - termination
 - confluence
 - Iock-freedom
 - the return type
- Each polynomial space problem can be computed by a typed program
- In a terminating program, all processes compute in polynomial time (polynomial number of steps)

A process being either the main program process or a subprocess created by a fork instruction.

CPSF

Motivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes

Informal semantics : store, configuration and environment

Let \mathbb{W} be the set of words over Σ . Sequential commands are evaluated as usual A process P is evaluated inside a configuration $c = (P, \mu)_{\rho}$:

- P is the program counter
- ► A store $\mu : \mathcal{X} \to \mathbb{W}$ mapping each variable of P to a value
- A set of ids ρ, the sons of c
- each configuration has an id (an integer). The main process id is 1.

All configurations are stored in an environment \mathscr{E} , a partial function, mapping an id $\in \mathbb{N}$ to a configuration *c*.

CPSF

Motivations

Semantics

```
Strong
normalization,
lock-freedom and
confluence
```

Type system

```
Safe processes
```

```
Main characterization
```

Informal semantics : fork

At the beginning, there is only one configuration (the main process) of id 1 and with $\rho = \emptyset$. A fork instruction creates a new child :

- with a new id (set to the next available integer)
- that runs concurrently of its father
- with its own duplicated memory (the store and the program counter are duplicated)
- the child id is stored in the father ρ

CPSF

Motivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes

Informal semantics : wait

The wait instruction provides a *one-way* communication and is the only way for a father to communicate with its child.

- A wait(E) instruction :
 - evaluates the expression E to a binary number <u>n</u> encoding id n
 - if $n \in \rho$ and the child is *returning* then :
 - the child return value is passed to the father
 - the child is erased
 - otherwise the father waits for its children

Note that children of a killed father may still be alive

CPSF

Motivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes

Example

P: X := fork(); Q: if X > 0 then { R: Y := wait(X); Y := Y + 1 } else { Y := 17 } S: return Y

Initial environment : $\mathscr{E}(1) = (P, \mu)_{\emptyset}$ Fork evaluation : $\mathscr{E}(1) = (Q, \mu\{X := \underline{2}\})_{\{2\}} \mathscr{E}(2) = (Q, \mu\{X := \underline{0}\})_{\emptyset}$ After some steps : $\mathscr{E}(1) = (R, \mu\{X := \underline{2}\})_{\{2\}} \mathscr{E}(2) = (S, \mu\{X := \underline{0}, Y := \underline{17}\})_{\emptyset}$ Wait evaluation : $\mathscr{E}(1) = (S, \mu\{X := \underline{2}, Y := \underline{18}\})_{\{2\}} \mathscr{E}(2) = \bot$ CPSF

Motivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes

Main characterization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Semantics of expressions and configurations

$$(X, \mu) \stackrel{e}{\rightarrow} \mu(X)$$

$$(\mathbf{op}(E_{1}, \dots, E_{n}), \mu) \stackrel{e}{\rightarrow} \llbracket \mathbf{op} \rrbracket (d_{1}, \dots, d_{n})$$
if $\forall i, (E_{i}, \mu) \stackrel{e}{\rightarrow} d_{i}$

$$(skip; P, \mu)_{\rho} \stackrel{c}{\rightarrow} (P, \mu)_{\rho}$$

$$(X := E; P, \mu)_{\rho} \stackrel{c}{\rightarrow} (P, \mu\{X \leftarrow d\})_{\rho}$$
if $(E, \mu) \stackrel{e}{\rightarrow} d$

$$(if E \text{ then } C_{tt} \text{ else } C_{ff}; P, \mu)_{\rho} \stackrel{c}{\rightarrow} (C_{w}; P, \mu)_{\rho}$$
if $(E, \mu) \stackrel{e}{\rightarrow} w \in \{\text{tt}, \text{ff}\}$

$$(while(E) \text{do}\{C\}; P, \mu)_{\rho} \stackrel{c}{\rightarrow} (P, \mu)_{\rho}$$
if $(E, \mu) \stackrel{e}{\rightarrow} \text{ff}$

$$(while(E) \text{do}\{C\}; P, \mu)_{\rho} \stackrel{c}{\rightarrow} (C; \text{ while}(E) \text{do}\{C\}; P, \mu)_{\rho}$$
if $(E, \mu) \stackrel{e}{\rightarrow} \text{tt}$

CPSF

Notivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes

Semantics of environments

Let
$$\mathscr{E}' = \mathscr{E}[i := c]$$
 be defined by :
• $\mathscr{E}'(j) = \mathscr{E}(j), \forall j \in dom(\mathscr{E}) - \{i\},$
• $\mathscr{E}'(i) = c$

The transition \rightarrow for process evaluation is defined by :

$$\begin{aligned} \mathscr{E}[i := \mathbf{c}] &\to \mathscr{E}[i := \mathbf{c}'] \\ \text{if } \mathbf{c} \stackrel{\sim}{\to} \mathbf{c}' \\ \mathscr{E}[i := (X := \text{fork}(); \mathbf{P}, \mu)_{\rho}] \\ &\to \mathscr{E}[i := (\mathbf{P}, \mu\{X \leftarrow \underline{n}\})_{\rho \cup \{n\}}, n := (\mathbf{P}, \mu\{X \leftarrow \underline{0}\})_{\emptyset}] \\ \text{with } n = \sharp \mathscr{E} + 1 \\ \mathscr{E}[i := (X := \text{wait}(E); \mathbf{P}, \mu)_{\rho}] \\ &\to \mathscr{E}[i := (\mathbf{P}, \mu\{X \leftarrow \mu'(\mathbf{Y})\})_{\rho}, n := \bot] \end{aligned}$$

if
$$(\boldsymbol{E},\mu) \stackrel{e}{\rightarrow} \underline{n}, \, \boldsymbol{n} \in \rho$$
 and $\mathscr{E}_{\boldsymbol{n}} = (\text{return } \boldsymbol{Y},\mu')$

CPSF

Motivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes

Main characterization

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Strong normalization, lock-freedom and confluence

Strong normalization

A process P is strongly normalizing if $\forall \mu$ there is no infinite reduction starting from $(P, \mu)_{\emptyset}$ through the relation \rightarrow .

Lock-freedom

If $\mathscr{E} \not\rightarrow$ and $\mathscr{E}_1 = (X:=wait(E); P, \mu)_{\rho}$ then \mathscr{E} is locked.

A process P is *lock-free* if $\forall \mu$, there is no locked environment \mathscr{E}' s.t. $(P, \mu)_{\emptyset} \stackrel{\star}{\rightarrow} \mathscr{E}'$.

Confluence

A process P is *confluent* if $\forall \mu$, $(P, \mu)_{\emptyset} \stackrel{*}{\rightarrow} \mathscr{E}'$ and $(P, \mu)_{\emptyset} \stackrel{*}{\rightarrow} \mathscr{E}''$, $\exists \mathscr{E}^3$ s.t. $\mathscr{E}' \stackrel{*}{\rightarrow} \mathscr{E}^3$ and $\mathscr{E}'' \stackrel{*}{\rightarrow} \mathscr{E}^3$. CPSF

Motivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes

Example of non-confluent process

The main process will return the process identifier of its second son.

Depending on the order in which execution of the subprocesses occurs, this identifier can be either 3 or 4.

CPSF

Motivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes

Tiers and typing environments

- Tiers are two elements 0, 1 underlying a boolean lattice ({0, 1}, ≤, 0, ∨, ∧) such that 0 ≤ 1
- Operator types \(\tau\) are defined by

 $\tau ::= \alpha \mid \alpha \longrightarrow \tau, \; \alpha \in \{\mathbf{0}, \mathbf{1}\}$

- A variable typing environment Γ maps each variable in *V* to a tier in {0,1}
- An operator typing environment Δ maps each operator op of arity *n* to a set Δ(op) of operator types of the shape τ = α₁ → ... α_n → α

CPSF

Motivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes Main

characterization

$$\begin{array}{c} \displaystyle \frac{\Gamma(X) = \alpha}{\Gamma, \Delta \vdash X : \alpha} \ (EV) \\ \hline \Gamma, \Delta \vdash X : \alpha \ (EV) \\ \hline \Gamma, \Delta \vdash \Theta (E_1, \ldots, E_n) : \alpha \\ \hline \Gamma, \Delta \vdash \Theta (E_1, \ldots, E_n) : \alpha \\ \hline \Gamma, \Delta \vdash \alpha X : \mathbf{0} \\ \hline \Gamma, \Delta \vdash \beta X := \mathrm{fork}() : \mathbf{0} \ (EO) \\ \hline \Gamma, \Delta \vdash \beta X := \mathrm{fork}() : \mathbf{0} \ (F) \\ \hline \Gamma, \Delta \vdash \beta X := \mathrm{wait}(E) : \alpha \\ \hline \Gamma, \Delta \vdash \beta X := \mathrm{wait}(E) : \alpha \\ \hline \Gamma, \Delta \vdash \beta X := \mathrm{wait}(E) : \alpha \\ \hline \Gamma, \Delta \vdash \beta X := E : \alpha \\ \hline \Gamma, \Delta \vdash \beta C : \alpha \ \Gamma, \Delta \vdash \beta C' : \alpha' \\ \hline \Gamma, \Delta \vdash \beta C : \alpha \ \Gamma, \Delta \vdash \beta C' : \alpha' \\ \hline \Gamma, \Delta \vdash \beta C : \alpha \ CC) \\ \hline \Gamma, \Delta \vdash \beta C : C' : \alpha \lor \alpha' \\ \hline \end{array}$$

CPSF

$$\frac{\Gamma, \Delta \vdash E : \mathbf{1} \qquad \Gamma, \Delta \vdash_{\beta} C : \alpha}{\Gamma, \Delta \vdash_{\beta} \text{while}(E) \text{do}\{C\} : \mathbf{1}} (CW)$$

$$\frac{\Gamma, \Delta \vdash E : \alpha \qquad \Gamma, \Delta \vdash_{\beta} C : \alpha \qquad \Gamma, \Delta \vdash_{\beta} C' : \alpha}{\Gamma, \Delta \vdash_{\beta} \text{if } E \text{ then } C \text{ else } C' : \alpha} (CB)$$

$$\frac{}{\Gamma, \Delta \vdash_{\beta} \text{skip} : \alpha} (CS)$$

$$\frac{\Gamma, \Delta \vdash_{\beta} C : \mathbf{0}}{\Gamma, \Delta \vdash_{\beta} C : \mathbf{1}} (CSub)$$

$$\frac{}{\Gamma, \Delta \vdash_{\beta} C : \alpha \quad \Gamma, \Delta \vdash X : \beta} (P)$$

$$\Gamma, \Delta \vdash C$$
; return $X : \beta$

Γ

_

CPSF

Motivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes

Some more intuitions

- The type discipline precludes values from flowing from tier 0 to 1 (but not command because of CS)
- Consequently, while loop guards are enforced to be of tier 1 (CW)
- In a (CB) rule the guard tier is equal to tier of both branches (could be weakened)
- However information may flow in the opposite direction (CA)
- The annotation β keeps tract of the return type and is used by wait instructions (W)

Motivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes

Example :

```
found^{0} := ff^{0} : 0 :
 n^1 := length (str)^1 : 1;
 |^{1} := n/2^{1} : 1:
 x^{0} := fork()^{0} : 0;
 while |>0^1 do {
       if x > 0^0 then
           c^{0} := getchar(str^{1}, |1)^{1} : 0;
       else
           c^{0} := getchar(str^{1}, n-l^{1})^{1} : 0;
       if C = '*'^0 then
         found^{0} := tt^{0} : 0
      else skip :0 ;
     |^{1} := |^{-1^{1}} : \mathbf{1}
 } : 1
if x > 0^0 then {
     sonf^{0} := wait(x)^{0} : 0;
     found^0 := or(found, sonf)^0 : 0
} else skip :0 ;
return found<sup>0</sup>
                                       ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙
```

CPSF

viouvations

Strong normalization,

lock-freedom and confluence

Type system

Safe processes Main

```
characterizatio
```

Neutral, positive and polynomial operators

An operator **op** is :

1. *neutral* (**op** \in *Ntr*) if :

- 1.1 either $\forall n \in \mathbb{N}^*$, $\llbracket op \rrbracket(\vec{\mathbb{W}}_n) \subseteq \mathbb{W}_{n-1}$.
- 1.2 or there is a polynomial P_{op} s.t. $\forall n \in \mathbb{N}^*$, $\exists \mathbb{V}_n^{op} \subseteq \mathbb{W}_n$,

 $\llbracket \mathbf{op} \rrbracket(\vec{\mathbb{W}_n}) \subseteq \mathbb{V}_n^{\mathbf{op}} \text{ and } \sharp \mathbb{V}_n^{\mathbf{op}} \leq P_{\mathbf{op}}(n)$

2. *positive* (**op** \in *Pos*) if **op** \notin *Ntr* and there is $c_{op} \in \mathbb{N}$ s.t. :

$$orall ec{d} \in \mathbb{W}^m, \ |\llbracket \mathbf{op}
rbracket (ec{d})| \leq \max_{i \in [1,m]} |d_i| + c_{op}$$

polynomial (**op** ∈ Pol) if **op** ∉ Ntr ∪ Pos and there is a polynomial Q_{op} s.t. :

$$orall ec{d} \in \mathbb{W}^m, \ |\llbracket \mathbf{op}
rbracket (ec{d})| \leq Q_{\mathbf{op}}(\max_{i \in \llbracket 1, m
rbracket} |d_i|)$$

CPSF

Motivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes

Safe operator typing environment

Definition

 Δ is *safe* if $\forall op \in dom(\Delta)$ and $\forall \alpha_1 \rightarrow \ldots \rightarrow \alpha_n \rightarrow \alpha \in \Delta(op)$ we have :

- if **op** \in *Ntr* then $\alpha \leq \wedge_{i=1,n} \alpha_i$,
- if $\mathbf{op} \in \mathbf{Pos}$ then $\alpha = \mathbf{0}$,
- if $\mathbf{op} \in Pol$ then $\forall i \in [1, n], \ \alpha_i = \mathbf{1}$ and $\alpha = \mathbf{0}$

Intuitively :

Neutral operators are iterable

 $(\mathbf{1} \longrightarrow \mathbf{1} \text{ in a while loop guard}).$

- Positive operators are not iterable but composable (0 —> 0 in a while-loop command).
- Polynomial operators are neither iterable nor composable (1 —> 0).

CPSF

Notivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes

Examples

- $(Pos) \qquad [[suc_d]](b) \qquad = d.b$

(Pol)
$$[[calloc]](u, w) = \underbrace{w. \cdots w}_{|u| \text{ times}}$$

If Δ is a safe operator typing environment then : $\Delta(pred) \subseteq \{\mathbf{0} \longrightarrow \mathbf{0}, \mathbf{1} \longrightarrow \mathbf{1}, \mathbf{1} \longrightarrow \mathbf{0}\},\$ $\Delta(==) \subseteq \{\mathbf{1} \longrightarrow \mathbf{1} \longrightarrow \mathbf{1}, \alpha \longrightarrow \beta \longrightarrow \mathbf{0}, \alpha, \beta \in \{\mathbf{0}, \mathbf{1}\}\},\$ $\Delta(suc_d) \subseteq \{\mathbf{1} \longrightarrow \mathbf{0}, \mathbf{0} \rightarrow \mathbf{0}\},\$ $\Delta(calloc) = \{\mathbf{1} \longrightarrow \mathbf{1} \longrightarrow \mathbf{0}\}.$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Motivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes

Safe process

Definition (Safe process)

Given Γ a variable typing environment and Δ a operator typing environment, a process P is a *safe process* if :

- P is well-typed wrt Γ and Δ , i.e. $\Gamma, \Delta \vdash P : \beta$
- And ∆ is safe

The search(str) program is safe wrt Γ , Δ provided.

CPSF

Motivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes

Polynomial space

Theorem

The set of Pspace decision problems is exactly the set of problems decided by :

- safe,
- confluent,
- strongly normalizing,
- and lock-free processes P

Corollary

If P is a safe, confluent, strongly normalizing and lock-free processes P such that $\Delta, \Gamma \vdash P : \mathbf{1}$ then the function computed by P is in FPspace.

Motivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes

Intermediate Lemmata on tier 1 values

Lemma (Simple security)

Given a safe process P wrt Γ and Δ , if $\Gamma, \Delta \vdash E : \mathbf{1}$ then $\forall X \in \mathcal{V}(E), \Gamma(X) = \mathbf{1}$ and all operators in E are neutral.

Lemma (Bounded size)

Given a safe process P wrt Γ and Δ s.t. Γ , $\Delta \vdash E : \mathbf{1}$, for each store μ , if $\forall X \in \mathcal{V}(E), \ \mu(X) \in \mathbb{W}_n \text{ and } (E, \mu) \stackrel{e}{\rightarrow} d$ then $d \in \mathbb{W}_n$.

Lemma (Bounded cardinality)

Given a safe process P wrt Γ and Δ and Γ , $\Delta \vdash E : \mathbf{1}$, the number of distinct values taken by E during the evaluation of $(P, \mu)_{\emptyset}$ is bounded polynomially in $|\mu|$.

CPSF

Motivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes

Process tree

Definition (Process tree)

The process tree $T(\mathscr{E})$ of an environment \mathscr{E} is defined by :

- ► the nodes are the configurations { E₁,..., E_{↓E} }
- the root is \mathcal{E}_1 ;
- for each *l* ∈ [1, *μ*𝔅], there is an edge from 𝔅_l = (P, μ)_ρ to 𝔅_k, if k ∈ ρ.

Given a process tree T, its degree is denoted d(T) and height h(T).

→ pstree

CPSF

Motivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes

Intermediate Lemmata on the process tree

Lemma (Bounded degree)

Given a strongly normalizing and safe process P, there exists a polynomial Q s.t., $\forall \mu$, if $(P, \mu)_{\emptyset} \rightarrow^{*} \mathscr{E}$ then $d(T(\mathscr{E})) \leq Q(|\mu|)$.

Lemma (Bouded height)

Given a strongly normalizing and safe process P, there exists a polynomial Q s.t., $\forall \mu$, if $(P, \mu)_{\emptyset} \rightarrow^{*} \mathscr{E}$ then $h(T(\mathscr{E})) \leq Q(|\mu|)$.

Lemma (Subprocesses in polynomial time)

Given a strongly normalizing and safe process P, there is a polynomial Q s.t., $\forall \mu$ and $\forall i \in \mathbb{N}$, if $(P, \mu)_{\emptyset} \Rightarrow_{i}^{k} \mathscr{E}$ then $k \leq Q(|\mu|)$.

where \Rightarrow_i^k means that the i-th configuration has been evaluated *k* times.

CPSF

Motivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes

Pspace abiding strategy

Lemma (Bounded stores)

Given a strongly normalizing and safe decision process P, there exists a polynomial Q such that, $\forall \mu$, if $(P, \mu)_{\emptyset} \rightarrow^* \mathscr{E}$ then $\forall i \leq \sharp \mathscr{E}$, if $\mathscr{E}_i = (P_i, \mu_i)_{\rho_i}$ then $|\mu_i| \leq Q(|\mu|)$.

Soundness.

We define a lazy Pspace abiding evaluation strategy that :

- Init defines the current process to be the main process configuration
 - executes the current process as long as possible
 - on a wait instruction updates the current process to the waited process
 - on a return instruction updates the current process to the father

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

CPSF

Notivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes

Completeness

We write a safe process computing QBF :

- when an ∃x (∀) is encoutered a fork instruction is called :
 - the son evaluates the remaining formula with x set to tt
 - whereas the father evaluates the remaining formula with x set to ff
 - at the end the father gets his son's result and computes the disjunction with its own result (conjunction)
- A calloc operator is used in order to store the processes id.

CPSF

Motivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes

Conclusions

- We have a characterization of Pspace combining non-interference and tiering methodologies
- The system is expressive (very close to C fork programs or Unix processes)
- It allows the programmer to simulate malloc/calloc operators (Polynomial operators)
- Possible extension on threads with creation

CPSF

Motivations

Semantics

Strong normalization, lock-freedom and confluence

Type system

Safe processes