
Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

A general noninterference policy for polynomial time

Emmanuel Hainry and Romain Péchoux
Inria team Mocqua - CNRS, Inria, Université de Lorraine - LORIA

POPL23

January 19th, 2023

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 1/19

Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

Program complexity analysis

Implicit Computational Complexity (ICC):
I analyzes resource usage

I time/space, communications, energy, ...

I provides complexity classes characterizations:
I machine-independent
I implicit (no prior knowledge)

Tractability gives an automatic Static Analyzer.

State of the art:

I 30 years of intensive research,

I hundreds of publications,

I some academic tools (Costa, SPEED, TcT, ...).

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 2/19

Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

The ICC approach

ICC criterion

Take your favourite Programming Language L and your favorite complexity class C:

R ⊆ L is an ICC criterion if {JpK | p ∈ R} = C.

Examples of complexity class C
I P, FP,

I PSPACE, FPSPACE,

I EXP, 2-EXP, . . ., ELEMENTARY,

I NP,

I NC0, NC1, . . ., NC

I PP, BPP, EQP, BQP, . . .

Examples of programming language L
I lambda-calculi, process calculi, . . .

I imperative and OO programs,

I probabilistic and quantum programs.

Examples of techniques

I types, interpretations, . . .

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 3/19

Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

What about Noninterference (NI)?

Noninterference [Smith, AIS 08]

I M is a memory configuration; ML/MH being its projections on low/high parts.

I A program P is noninterfering if ∀M, ∀N,

(ML = NL ∧ 〈P,M〉 →∗ M ′ ∧ 〈P,N〉 →∗ N ′) =⇒ M ′L = N ′L.

I The underlying security order is L ⊆ H.

NI for complexity [Marion, LICS 11]

I M is a memory configuration; M0/M1 being its projections on low and high levels.

I A program P is noninterfering if ∀M, ∀N,

(M1 = N1 ∧ 〈P,M〉 →∗ M ′ ∧ 〈P,N〉 →∗ N ′) =⇒ M ′1 = N ′1.

I The underlying complexity order is 0 ≤ 1.
E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 4/19

Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

Polynomial time: NI + complexity restrictions

SAFE program

I 1 is the level of data that:
I can drive iteration/recursion
I cannot increase
I lies in a space of size polynomial in the input size

I 0 is the level of data that:
I cannot drive iteration/recursion
I can increase (by at most a constant)

I There is no flow from 0 to 1.

Theorem [Polytime Soundness & Completeness]

JSAFE ∩ SNK = FP.

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 5/19

Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

Type system for safety

τ ∈ {0, 1}, with 0 ≤ 1.

Γ(x) = τ

Γ ` x : τ

Γ ` e : τ

Γ ` e − 1 : τ

Γ ` e : τ

Γ ` e + 1 : 0

Γ ` x : τ Γ ` e : τ ′ τ ≤ τ ′

Γ ` x:=e : τ

Γ ` st1 : τ Γ ` st2 : τ

Γ ` st1 st2 : τ

Γ ` e : τ Γ ` st1 : τ Γ ` st2 : τ

Γ ` if(e){st1}else{st2} : τ

Γ ` e : 1 Γ ` st : τ

Γ ` while(e){st} : 1

Theorem [Hainry, Marion, P., FoSSaCS 23]

Type inference is tractable.

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 6/19

Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

Illustrating toy examples

Assume that add :: 1× 0→ 0

mult(int x, int y)

i n t z =0;
whi le (x>0)1{

x1 = x−11 ;
z0 = add (y1 , z0) 0 ;

}
r e t u r n z ;

can be typed as mult :: 1× 1→ 0

exp(int x)

i n t y =1;
whi le (x>0)1{

x1 = x−11 ;

y0 = add (y1 , y?) 0 ;
}
r e t u r n y ;

cannot be typed...

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 7/19

Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

Adaptation to OO: not like taking candy off a baby (1/2)

x0 := y1

I primitive data (pass-by-value):

42

y1

25

x0

7→0 42

y1

42

x0

I reference data (pass-by-reference):

C

y1

. . . C

x0

7→0 C

y1

. . . C

x0

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 8/19

Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

Adaptation to OO: not like taking candy off a baby (2/2)

Major problems on complex data structures (graphs or objects)

I NI can be broken by side effect (using a pass-by-reference strategy).

I The space of level 1 configurations is no longer polynomial in the size of the
inputs.

Two solutions

I A syntactical restriction in [Leivant-Marion, ICALP 13]:
I the number (up to isomorphism) of digraphs of outdegree 1 with n vertices and a

generator of size k , is at most n2k2

.

I A restricted flow in [Hainry-P., I&C 18]:
I only cloned data can flow from 1 to 0: (x1.clone())0.

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 9/19

Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

A simple counterexample

reverse on List {int hd; List tl}

y = null;

while (x 6= null)1{
z = y;

y0 = x1; //Prohibited: needs explicit cloning

x = x.tl;

y.tl0 = z;

}

Theorem [Hájek, TCS 79]

Providing an intensionally-complete characterization of FP is a Σ2
0-complete problem.

→ But there might be some happy medium...
E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 10/19

Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

Stratification

I Conf , {(st,H)} ∈ Statements ×MemoryGraphs

I 7→n ∈ Conf→ Conf.

I with n the minimal level of a while loop guard encompassing the executed
statement.

I ⊆n = subgraph relation on nodes of level ≥ n.

I R(P) ⊆ Conf, the reachable configurations of P.

Definition

A program P ∈ NIΓ is stratified if for any (st,H) ∈ R(P),

(st,H) 7→n>0 (st′,H ′) implies H ′ ⊆n H.

Let STR be the set of stratified programs.

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 11/19

Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

Illustrating example
Γ(x) = 1, Γ(y) = Γ(z) = 0.

reverse ∈ NIΓ

y = null;

while (x 6= null)1{
z0 = y0

z0 = y0

;

y0 = x1; //using (subE)

x1 = x.tl1;

y.tl0 = z0;

}

v1

x

v2 v3 ⊥

y

tl tl tl

1 2 3

hd hd hd

7→1

v1

x

v2 v3 ⊥

zy

tl tl tl

1 2 3

hd hd hd

Consequently, reverse ∈ STR.

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 12/19

Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

Illustrating example
Γ(x) = 1, Γ(y) = Γ(z) = 0.

reverse ∈ NIΓ

y = null;

while (x 6= null)1{
z0 = y0;

y0 = x1 ; //using (subE)

x1 = x.tl1;

y.tl0 = z0;

}

v1

x

v2 v3 ⊥

zy

tl tl tl

1 2 3

hd hd hd

7→1

v1

x

v2 v3 ⊥

zy

tl tl tl

1 2 3

hd hd hd

Consequently, reverse ∈ STR.

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 12/19

Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

Illustrating example
Γ(x) = 1, Γ(y) = Γ(z) = 0.

reverse ∈ NIΓ

y = null;

while (x 6= null)1{
z0 = y0;

y0 = x1; //using (subE)

x1 = x.tl1 ;

y.tl0 = z0;

}

v1

x

v2 v3 ⊥

zy

tl tl tl

1 2 3

hd hd hd

7→1

v1 v2 v3 ⊥

x zy

tl tl tl

1 2 3

hd hd hd

Consequently, reverse ∈ STR.

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 12/19

Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

Illustrating example
Γ(x) = 1, Γ(y) = Γ(z) = 0.

reverse ∈ NIΓ

y = null;

while (x 6= null)1{
z0 = y0;

y0 = x1; //using (subE)

x1 = x.tl1;

y.tl0 = z0 ;

}

v1 v2 v3 ⊥

x zy

tl tl tl

1 2 3

hd hd hd

7→1

v1 v2 v3 ⊥

x zy
tl

tl tl

1 2 3

hd hd hd

Consequently, reverse ∈ STR.

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 12/19

Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

Characterization of Polytime

Theorem [Soundness & Completeness]

JSTR ∩ SNK = FP.

Theorem [A proper generalization]

SAFE ∩ SN (STR ∩ SN.

We capture reverse but also many algorithmic patterns, e.g.,

I on inductive data,

I algorithms with destructive updating,

I in-place algorithms.

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 13/19

Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

In the arithmetical hierarchy

Theorem [Arithmetical hierarchy]

STR is Π1
0-complete.

→ using a reduction of the blank tape non-halting problem [Endrullis et al.2011].

Reminder on Hájek Theorem [Hájek, TCS 79]

Providing an intensionally-complete characterization of FP is a Σ2
0-complete problem.

Comparison with Hájek’s Theorem:

I STR is incomplete (there are false negative): /, but expected

I STR is one level below Hájek in the arithmetical hierarchy: ,
I STR(undecidable) vs SAFE(tractable): , and /

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 14/19

Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

A decidable instance based on shape-analysis

We abstract graphs using standard Shape-Analysis techniques:

ListList List List

y0
x1 z0

tl#tl# tl#

tl#

On difficulty to face for complexity analysis is that we quantify over each input:

I we use a separability hypothesis on inputs.

→ The abstract graphs preserve stratification.

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 15/19

Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

A new type system: SA

Γ `m
SA e : n Γ `n

SA st : n 1 ≤ n

Γ `m
SA while(e){st} : n

∀i , Γ `m
SA ei : n n < m

Γ `m
SA new C(e) : n

Γ(x.a) = n Γ `m
SA e : n n < m x ∈ n`,Γ

Γ `m
SA ` : x.a = e; : n

where x ∈ n`,Γ iff x only points to abstract nodes of level smaller than n in the ASG of
`.

Theorem [Soundness & Completeness]

SAFE ∩ SN (SA ∩ SN (STR ∩ SN

Theorem [Type inference]

Deciding whether P ∈ SA can be done in time 2O(|P|).

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 16/19

Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

Illustrating example

Γ(x) = 1, Γ(y) = Γ(z) = 0.

reverse ∈ NIΓ

y = null;

while (x 6= null)1

z = y;

y0 = x1; //allowed

x = x.tl;

` :y.tl0 = z0;

}

ListList List List

y0
x1 z0

tl#tl# tl#

tl#

→ y ∈ 0`,Γ

Γ(y.tl) = 0 Γ `1
SA z : 0 0 < 1 y ∈ 0`,Γ

Γ `1
SA ` : y.tl = z; : 0

→ reverse ∈ SA

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 17/19

Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

Conclusion

A summary

We have designed a new NI-based technique for FP:

I separating clearly NI and Complexity requirements,

I generalizing previous NI-based techniques (SAFE),

I Π1
0-complete

I and with decidable instances based on SA

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 18/19

Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

A fruitful technique

This technique can be adapted to finitely many levels: 0, 1, 2, . . .
This technique has been used to characterize:

I FPSPACE on fork processes [Hainry-Marion-P., FoSSaCS 13]

I FP on multi-threads [Marion-P., TAMC 14]

I BFF on imperative programs [Hainry-Kapron-Marion-P. LICS 20, FoSSaCS 22]

This technique has been extended to:

I programs on Graphs [Leivant-Marion, ICALP 13]

I Object-Oriented programs [Hainry-P., APLAS 15]

I Java programs: ComplexityParser [Hainry-Jeandel-P.-Zeyen, ICTAC 21]

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 19/19

