Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

A general noninterference policy for polynomial time

Emmanuel Hainry and Romain Péchoux
Inria team Mocqua - CNRS, Inria, Université de Lorraine - LORIA

POPL23

January 19th, 2023

a” UNIVERSITE
lreia — DE LORRAINE

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 1/19

oria
Laboratolre loain de recherche
en Informatique et ses applcations




Motivations NI-based techni s A general NI criterion ape-ana ased instance Conclusion

Program complexity analysis

Implicit Computational Complexity (ICC):
> analyzes resource usage
> time/space, communications, energy, ...
> provides complexity classes characterizations:

» machine-independent
> implicit (no prior knowledge)

Tractability gives an automatic Static Analyzer.

State of the art:

> 30 years of intensive research,

» hundreds of publications,
» some academic tools (Costa, SPEED, TcT, ...).

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 2/19



Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

The ICC approach

|CC criterion

Take your favourite Programming Language £ and your favorite complexity class C:

R C L is an ICC criterion if {[p] |pe R} =C.

Examples of complexity class C Examples of programming language £

> P, FP, » lambda-calculi, process calculi, ...
> PSPACE, FPSPACE, » imperative and OO programs,

> EXP, 2-EXP, ..., ELEMENTARY, » probabilistic and quantum programs.
> NP, .

» PP, BPP, EQP, BQRP, ... P types, interpretations, ...

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 3/19



Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

What about Noninterference (NI)?
Noninterference [Smith, AlS 08]

» M is a memory configuration; M, /My being its projections on low/high parts.
» A program P is noninterfering if VM, VN,

(ML= N, A (P,M) —* M A (P,N) —* N') = M, =N,

» The underlying security order is L C H.

NI for complexity [Marion, LICS 11]

» M is a memory configuration; My/M; being its projections on low and high levels.
» A program P is noninterfering if VM, VN,

(My =Ny A (P,M) —* M A (P,N) —»* N') = M| =N,

» The underlying complexity order is 0 < 1.

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 4/19



Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

Polynomial time: NI + complexity restrictions

SAFE program

» 1 is the level of data that:

» can drive iteration/recursion
P cannot increase
> lies in a space of size polynomial in the input size

» 0 is the level of data that:

» cannot drive iteration/recursion
> can increase (by at most a constant)

» There is no flow from 0 to 1.

Theorem [Polytime Soundness & Completeness]

[SAFE N SN] = FP.

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 5/19



Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

Type system for safety
7€ {0,1}, with 0 < 1.

MNx)=r Ml-e:r l-e:r
M-x:7 lFe—1:7 lFe+1:0

rex:7 Trhe:7 7<7 MEstiir [hsty:r
lFx=e:T Fstysty:T

lFe:7 Thksti:7 [hksty:7 Ne:1 M=st:T
I+ if(e){sti}else{sty}: 7 I+ while(e){st}: 1

Theorem [Hainry, Marion, P., FoSSaCS 23]

Type inference is tractable.

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 6/19



NI-based techniques

lllustrating toy examples

Assume that add :: 1 x 0 — 0

mult(int x, int y) exp(int x)
int z=0; int y=1;
while (x>0)'{ while (x>0)'{
xt = x—1': xt = x—1';
20 = add(y*,2°)°; Y = add(yl,y?)o;
} }
return z; return y;

can be typed asmult ::1x1—0 cannot be typed...

A general NI policy for polytime 7/19

E. Hainry & R. Péchoux POPL23



Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

Adaptation to OO: not like taking candy off a baby (1/2)

> primitive data (pass—by—value):

D o ®

> reference data (pass- by—reference
X
bt - &

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 8/19



Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

Adaptation to OO: not like taking candy off a baby (2/2)

Major problems on complex data structures (graphs or objects)

» NI can be broken by side effect (using a pass-by-reference strategy).

» The space of level 1 configurations is no longer polynomial in the size of the
inputs.

Two solutions

> A syntactical restriction in [Leivant-Marion, ICALP 13]:
» the number (up to isomorphism) of digraphs of outdegree 1 with n vertices and a
generator of size k, is at most n2<".
» A restricted flow in [Hainry-P., 1&C 18]:
> only cloned data can flow from 1 to 0: (x'.clone())°.

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 9/19



Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

A simple counterexample

reverse on List {int hd; List t1}

y = null;
while (x # null)'{
z = y;
y° = x'; //Prohibited: needs explicit cloning
X = x.tl;
y.tl0 S 73

‘

Theorem [Héjek, TCS 79]

Providing an intensionally-complete characterization of FP is a Zg—complete problem.

— But there might be some happy medium...

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 10/19



Motivations NI-based techniques A general NI criterion

Shape-analysis-based instance Conclusion

Stratification

» Conf £ {(st, H)} € Statements x MemoryGraphs
—n € Conf — Conf.

v

» with n the minimal level of a while loop guard encompassing the executed
statement.

» C, = subgraph relation on nodes of level > n.
» R(P) C Conf, the reachable configurations of P.

A program P € Nir is stratified if for any (st, H) € R(P),

(st, H) —nso (st’, H') implies H' C,, H.

Let STR be the set of stratified programs.

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 11/19



Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

lllustrating example
Nx)=1,T(y)=TI(z)=0.

reverse € NI

y = null;
while (x # null)'{

20 = 40 ;
y° = x'; //using (subE)

1 1

X' = x.tl; t1 tl t1
g @D2@ e
. ; d

} O @

Consequently, reverse € STR.

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 12/19



Motivations NI-based techniques A general NI criterion Shape-analysis-based instance

lllustrating example
Nx)=1,T(y)=TI(z)=0.

reverse € NI

y = null;
while (x # null)'{
20 = y0;
y° = x' ; //using (subE)
x! = x.tll;
y.tlo = 2z0;
Consequently, reverse € STR.
E. Hainry & R. Péchoux POPL23 A general NI policy for polytime

Conclusion

12/19



Motivations NI-based techniques A general NI criterion Shape-analysis-based instance

lllustrating example
MNx)=1,T(y)=TI(z)=0.

reverse € NI

y = null;

while (x # null)'{

20 = y0,

y° = x'; //using (subE)
x! = x.t1! ;

y.tl0 = 20;

}

Consequently, reverse € STR.

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime

Conclusion

12/19



Motivations NI-based techniques A general NI criterion Shape-analysis-based instance

lllustrating example
MNx)=1T(y)=T(z)=0.

reverse € NI

y = null;

while (x # null)’{

A =
x'; //using (subE)
x' = x.t1l;

y.tlo = U 5

<
I

Consequently, reverse € STR.

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime

Conclusion

12/19



Motivations NI-based techniques A general NI criterion Shape-analysis-based instance

Characterization of Polytime

Conclusion

Theorem [Soundness & Completeness]

[STR N SN] = FP.

Theorem [A proper generalization]

SAFEN SN C STR N SN.

We capture reverse but also many algorithmic patterns, e.g.,
» on inductive data,
> algorithms with destructive updating,

> in-place algorithms.

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime

13/19



Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

In the arithmetical hierarchy

Theorem [Arithmetical hierarchy]
STR is M§-complete.

— using a reduction of the blank tape non-halting problem [Endrullis et al.2011].

Reminder on Hajek Theorem [Héjek, TCS 79]

Providing an intensionally-complete characterization of FP is a Z%—complete problem.

Comparison with Hajek's Theorem:
» STR is incomplete (there are false negative): ®, but expected
> STR is one level below Hajek in the arithmetical hierarchy: ©
> STR(undecidable) vs SAFE(tractable): © and ®

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 14/19



Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

A decidable instance based on shape-analysis

We abstract graphs using standard Shape-Analysis techniques:

y° x! t1# z

3 -
N ()

st P e B e B e

On difficulty to face for complexity analysis is that we quantify over each input:

0

— 7

P> we use a separability hypothesis on inputs.

— The abstract graphs preserve stratification.

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 15/19



Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

A new type system: SA
Fye:n THyst:n 1<n
I3y while(e){st} : n

Vi, TFyei:n n<m MNx.a)=n TFfe:n n<m xeEngr

M3y new C(€) : n Mg, f:xa=e;:n

where x € nyr iff x only points to abstract nodes of level smaller than n in the ASG of

‘

Theorem [Soundness & Completeness]

SAFENSN € SANSN € STRNSN

Theorem [Type inference]

Deciding whether P € SA can be done in time 200PD.

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 16/19



Motivations Nl-based techniques A general NI criterion Shape-analysis-based instance Conclusion

lllustrating example

MNx)=1T(y)=T(z)=0. .
y x! t1# z
i R
£1# £l 1%
y = null; @ @ 77

while (x # null)!

z = y;
0 = x'; //allowed

k=7«

— Yy E Ogyr

Mytl)=0 TH{z:0 0<1 yeOr
. £10 = 20, My £y tl=12:0

— reverse € SA

G oM<
[}
b4
ct
e

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 17/19



Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

Conclusion

A summary

We have designed a new NI-based technique for FP:

> separating clearly NI and Complexity requirements,
» generalizing previous Nl-based techniques (SAFE),
> [M3-complete

» and with decidable instances based on SA

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime 18/19



Motivations NI-based techniques A general NI criterion Shape-analysis-based instance Conclusion

A fruitful technique

This technique can be adapted to finitely many levels: 0, 1, 2, ...
This technique has been used to characterize:

» FPSPACE on fork processes [Hainry-Marion-P., FoSSaCS 13]
» FP on multi-threads [Marion-P., TAMC 14]
» BFF on imperative programs [Hainry-Kapron-Marion-P. LICS 20, FoSSaCS 22]

This technique has been extended to:
» programs on Graphs [Leivant-Marion, ICALP 13]

» Object-Oriented programs [Hainry-P., APLAS 15]

» Java programs: COMPLEXITYPARSER [Hainry-Jeandel-P.-Zeyen, ICTAC 21]

E. Hainry & R. Péchoux POPL23 A general NI policy for polytime

19/19



