
BRπ using Int

R. Péchoux

Motivations

Process calculus

Interpretations

Resource upper
bounds

Extensions

Conclusion

Bounding Reactions in the π-calculus
using Interpretations

Romain Péchoux

Université de Lorraine
Inria project Carte, Loria

FOPARA&WST,
August 29, 2013

BRπ using Int

R. Péchoux

Motivations

Process calculus

Interpretations

Resource upper
bounds

Extensions

Conclusion

Outline

1 Motivations

2 Process calculus

3 Interpretations

4 Resource upper bounds

5 Extensions

6 Conclusion

BRπ using Int

Motivations

Process calculus

Interpretations

Resource upper
bounds

Extensions

Conclusion

Implicit Computational Complexity

ICC aims at studying "programs" resource consumption.

On sequential models:
1 Function algebra (Bellantoni, Cook, Leivant ...)

2 Lambda-calculi:
Light logics (Baillot, Dal Lago, Gaboardi, Girard,
Lafont, Ronchi Della Rocca, ...)

3 TRS:
Interpretations methods (Bonfante, Marion, Moyen,
Péchoux, ...)

4 Imperative programs:
Matrices (Ben-Amram, Jones, Kristiansen, Moyen),
Tiered types (Hainry, Marion, Péchoux,...)

and what for concurrent models ?

BRπ using Int

Motivations

Process calculus

Interpretations

Resource upper
bounds

Extensions

Conclusion

Concurrent resources

Candidates for time:
the reduction length
the reduction length on a given set of channels
...

Candidates for space:
the number of concurrent processes
the size of sent values
the number of channel creations
...

Candidates for complexity classes : Pspace, NP,...
if all reduction length are polynomially bounded
depending on the considered semantics

BRπ using Int

Motivations

Process calculus

Interpretations

Resource upper
bounds

Extensions

Conclusion

State of the art: time

If time = reduction length: a polynomial upper bound can
be enforced

using type systems
Demangeon, Hirschkoff and Sangiorgi
Deng and Sangiorgi

using linear and light logics
Yoshida, Berger and Honda
Dal Lago, Martini and Sangiorgi
Madet and Amadio

BRπ using Int

Motivations

Process calculus

Interpretations

Resource upper
bounds

Extensions

Conclusion

State of the art: space

If space = the number of active processes: an upper
bound can be obtained:

using abstract interpretations and relational domains
Kobayashi et al
Féret

using lattice ordered monoids
Konig

Other approaches (Hennessy, Pym et al) have tried to
develop bisimilarity theory wrt a notion of resource
process

BRπ using Int

Motivations

Process calculus

Interpretations

Resource upper
bounds

Extensions

Conclusion

Our approach

We make use of previous notions of interpretations on
TRS to study processes.

the pros:
a complete analysis wrt strongly normalizing
processes
with a greater expressivity on both time and space

the cons:
the analysis is undecidable and needs to be
restricted to be automated

Nice side effect:
It shows the portability of existing techniques on TRS

BRπ using Int

Motivations

Process calculus

Interpretations

Resource upper
bounds

Extensions

Conclusion

Methodology

A two steps static analysis:

Processes
[−] // (R,&)

J−K // (NNames∪{∗},�)

1 Interpretation [−]
R is the set of resource processes, processes with
no recursion and no replication abilities
& is a preorder on resource processes (e.g.
simulation, bisimulation, ...)

2 A fixed semantics J−K
* is a special symbol not in Names, for recursion
� is the standard order on functions of codomain N

BRπ using Int

Motivations

Process calculus

Interpretations

Resource upper
bounds

Extensions

Conclusion

The considered process calculus

Standard π-calculus with inductive data:

e ::= n
∣∣ 0,1,2, . . .

∣∣ op(−→e) (Expressions)
v ::= x

∣∣ e (Values)
P ::= 0 | x(y).P

∣∣ xv .P
∣∣ P|P (Processes)

| (νx)P
∣∣ P + P

∣∣ F (
−→v)

but with no replication : replaced by process calls
and process definitions:

F (
−→
X) = Case

−→
X of

−→v1 → P1, . . . ,
−→vk → Pk

BRπ using Int

Motivations

Process calculus

Interpretations

Resource upper
bounds

Extensions

Conclusion

Why not considering replication ?

There is a need of well-founded structures to apply
TRS techniques.
Replication is not suitable for resource control as:

!P can be considered as equivalent to P| . . . |P︸ ︷︷ ︸
n

|!P, ∀n

process calls and definitions are standard :

recursion + pattern matching

Replication !P can be easily encoded in our fragment
by:

F () = F ()|P

BRπ using Int

Motivations

Process calculus

Interpretations

Resource upper
bounds

Extensions

Conclusion

Standard operational semantics

(In)
x(y).P xw→ P{w/y}

(Out)
xw .P xw→ P

P α→ P ′ bn(α) ∩ fn(Q) = ∅
(Par)

P | Q α→ P ′ | Q

P α→ P ′
(Sum)

P + Q α→ P ′

P α→ P ′ x /∈ n(α)
(Res)

(νx)P α→ (νx)P ′

P xw→ P ′ x 6= w
(Open)

(νw)P
(νw)xw→ P ′

P α→ P ′ Q ≡ P P ′ ≡ Q′
(Var)

Q α→Q′

BRπ using Int

Motivations

Process calculus

Interpretations

Resource upper
bounds

Extensions

Conclusion

Annotated operational semantics

We just keep into account the name of the reacting
channel τ(x) or the application of a process call x = ∗.

P xw→ P ′ Q xw→ Q′
(Com)

P | Q τ(x)→ P ′ | Q′

P
(νw)xw→ P ′ Q xw→ Q′ w /∈ fn(Q)

(Close)
P | Q τ(x)→ (νw)(P ′ | Q′)

−→vi σ =
−→v F (

−→vi) = Pi
(App)

F (
−→v)

τ(∗)→ Piσ

BRπ using Int

Motivations

Process calculus

Interpretations

Resource upper
bounds

Extensions

Conclusion

Example: factorial

fac(n, r) = Case n of

0→ r〈1〉
m + 1→ (νr ′)(fac(m, r ′)|r ′(x).r〈x × (m + 1)〉)

fac(3,a)
τ(∗)→ (νr ′)(fac(2, r ′)|r ′(x).a〈x × 3〉)
τ(∗)→ . . .

τ(∗)→︸ ︷︷ ︸
3 times

. . .
τ(r ′)→ . . .

τ(r ′)→︸ ︷︷ ︸
3 times

a〈6〉

The internal channels are abstracted as a whole.

BRπ using Int

Motivations

Process calculus

Interpretations

Resource upper
bounds

Extensions

Conclusion

Strongly normalizing channels and processes

For any substitution (in the usual sense) σ,

fac(n, r)σ = fac(k ,a)
τ(∗)→ . . .

τ(∗)→︸ ︷︷ ︸
k+1 times

. . .
τ(r ′)→ . . .

τ(r ′)→︸ ︷︷ ︸
k times

a〈k !〉

We write :
fac(n, r) ∈ SNτ(∗)(k + 1),
fac(n, r) ∈ SNτ(r ′)(k),
fac(n, r) ∈ SNτ(r)(0)
and fac(n, r) ∈ SN

BRπ using Int

Motivations

Process calculus

Interpretations

Resource upper
bounds

Extensions

Conclusion

Resource processes

Resource processes are trivial processes with no
recursion and no replication:

R 3 R,S ::= 0 | τn
χ .R | µ.R | R|R | R + R | (νx)R

where τn
χ .R will be able to perform n transitions

labeled by τ(χ)
structural congruence is extended by: τ0

χ.R ≡ R
operational semantics is extended by:

(n ≥ 0)
τn+1
χ .R

τ(χ)→ τn
χ .R

BRπ using Int

Motivations

Process calculus

Interpretations

Resource upper
bounds

Extensions

Conclusion

Assignments

Let D(P) = {F1, · · · ,Fm} be the definitions of P

Definition (Assignment)
Given a process P s.t. D(P) = {F1, · · · ,Fm}, an
assignment [−] is a total map from D(P) to Values → R.

i.e. [Fi] is a total function of arity n and
v1, · · · , vn ∈ Values implies that [Fi](v1, · · · , vn) ∈ R.

Definition (Process assignment)
Given an assignment [−] and a process P, the process
assignment [P] is the canonical extension of [−] to P:

[P|Q] = [P]|[Q] [F (
−→v)] = [F](

−→v) . . .

BRπ using Int

Motivations

Process calculus

Interpretations

Resource upper
bounds

Extensions

Conclusion

Interpretation

Definition (Interpretation)
Given a process P, an assignment [−] is an interpretation
of P if for each process definition F ∈ D(P) of the shape:

F (
−→
X) = Case

−→
X of

−→v1 → P1, . . . ,
−→vk → Pk

for each ground substitution σ the following holds:

∀i ∈ {1, . . . , k}, [F (
−→vi)σ] & τ1

∗ .[Piσ]

where the partial preorder & on resource processes is
the standard simulation relation defined by:

R & R′ if ∀S′ s.t. R′ α→ S′, ∃S s.t. R α→ S and S & S′

BRπ using Int

Motivations

Process calculus

Interpretations

Resource upper
bounds

Extensions

Conclusion

Example of interpretation

fac(n, r) = Case n of

0→ r〈1〉
m + 1→ (νr ′)(fac(m, r ′)|r ′(x).r〈x × (m + 1)〉)

Setting [fac](n, r) = (νr ′)τn
r ′ |τn+1
∗ |r〈n!〉

[fac](0, r) = (νr ′)τ0
r ′ |r〈0!〉|τ

1
∗ ≡ r〈1〉|τ1

∗

& τ1
∗ .r〈1〉 = τ1

∗ .[r〈1〉]

[fac](m + 1, r) = (νr ′)τm+1
r ′ |τm+2

∗ |r〈(m + 1)!〉
& τ1
∗ .(νr ′)(((νr ′)τm

r ′ |τm+1
∗ |r ′〈m!〉)|(r ′(x).r〈x × (m + 1)〉)

= τ1
∗ .[(νr ′)(fac(m, r ′)|r ′(x).r〈x × (m + 1)〉)]

BRπ using Int

Motivations

Process calculus

Interpretations

Resource upper
bounds

Extensions

Conclusion

Resource algebra and semantics

Consider the max-plus algebra (NNames,⊗,⊕) defined by
∀δ, δ′ ∈ NNames, χ ∈ N :

(δ ⊗ δ′)(χ) = δ(χ) + δ′(χ)

(δ ⊕ δ′)(χ) = max(δ(χ), δ′(χ))

Define Reachχ(R) = {S | R τ(χ)→ S}.

Definition (Resource Process semantics)
The resource process semantics J−K is defined by:

JRK = ⊕{1{χ} ⊗ JSK | ∀χ ∈ D, ∀S ∈ Reachχ(R)}

provided that ⊕∅ = δ0.

BRπ using Int

Motivations

Process calculus

Interpretations

Resource upper
bounds

Extensions

Conclusion

Results

Define δ � δ′ iff δ ⊕ δ′ = δ.

Lemma (Resource consumption)
For each process P of interpretation [−],
if P

τ(χ)→ P ′, χ ∈ D, then J[P]K � 1χ ⊗ J[P ′]K.

Theorem (Soundness)
For each process P of interpretation [−], we have:

∀χ P ∈ SNτ(χ)(J[P]K(χ))

Theorem (Completeness)
A process P has interpretation [−] if and only if P ∈ SN.

BRπ using Int

Motivations

Process calculus

Interpretations

Resource upper
bounds

Extensions

Conclusion

Extensions

The methodology is not restricted to "finite time". We are
able to infer other results by playing on (&, J−K):

space :
upper bounds on the maximal value sent on a
channel (see the paper)
upper bounds on the numbers of active channels and
channel creations can be obtained (not in the paper)

time :
upper bounds even for non terminating processes
e.g. P =!a(x).bx |!av |b(x)

∈ SNτ(b)(1)
even if neither P ∈ SNτ(a),
nor P ∈ SNτ(∗) hold.

BRπ using Int

Motivations

Process calculus

Interpretations

Resource upper
bounds

Extensions

Conclusion

Conclusion

Nice adaptation of an existing technique to another
domain:

relating interpretation and simulation
that can be adapted to control several notions of
resources on processes
that can handle all inductive data types (lists, ...)

The synthesis problem is clearly undecidable
(but guessed to be decidable on restricted spaces).

	Motivations
	Process calculus
	Interpretations
	Resource upper bounds
	Extensions
	Conclusion

