Higher-order Interpretations for Higher-order Complexity

Emmanuel Hainry & Romain Péchoux

DICE-FOPARA, 22-23 april 2017

CNRS, INRIA, Université de Lorraine & LORIA, Nancy, France

Introduction

First-order computability and complexity

- First-order **computability** is well understood:
 - Agreed upon definitions
 - Hierarchies layering the Turing degree of problems
 - Church-Turing's thesis
- First-order computational Complexity is well understood:
 - Agreed upon definitions
 - Classes and hierarchies layering the difficulty of problems
 - Various characterizations:
 - machine based characterizations
 - machine independent characterizations
 - → Implicit Computational Complexity

Higher-order computability and complexity

- Higher-order computability is (well) understood:
 - Order 2 = computations over reals.
 - No Church-Turing's thesis!
 - General Purpose Analog Computer by Shannon,
 - Blum-Shub-Smale model,
 - Computable Analysis (CA) by Weihrauch,
 - Oracle TM,
 - ...

Higher-order computability and complexity

- **Higher-order computability** is (well) understood:
 - Order 2 = computations over reals.
 - No Church-Turing's thesis!
 - General Purpose Analog Computer by Shannon,
 - Blum-Shub-Smale model,
 - Computable Analysis (CA) by Weihrauch,
 - Oracle TM,
 - ...
- **Higher-order complexity** is **not** well understood.
 - Polytime complexity on OTM = Basic Feasible Functions (BFF) by Constable, Melhorn
 - ullet Polytime complexity in $\mathsf{CA} = P(\mathbb{R})$ by Ko
 - No homogeneous theory for higher-order:

Objectives of this talk:

- not developping a new complexity theory for higher-order,
- adapting first-order tools for program complexity analysis,
- validating the theory by capturing existing higher-order complexity classes

Objectives of this talk:

- not developping a new complexity theory for higher-order,
- adapting first-order tools for program complexity analysis,
- validating the theory by capturing existing higher-order complexity classes

Framework:

- tool = (polynomial) interpretations
- target = BFF_i , the Basic Feasible Functionals at any order.

First-order interpretations

- Defined in the 70s for showing TRS **termination**:
 - $\forall b$ of arity n, (b) : $\mathbb{N}^n \to^{\uparrow} \mathbb{N}$
 - $\forall I \rightarrow r \in R, \ (I) > (r)$
- Quasi-interpretation (QI) for **complexity** analysis:
 - $\forall b$ of arity n, (b) : $\mathbb{N}^n \to \mathbb{N}$
 - $\forall I \rightarrow r \in R, \ (I) \geq (r)$

Theorem (Bonfante et al. 2011)

Let QI_{add}^{poly} be the set of functions computed by TRS admitting an additive and polynomial QI.

- $QI_{add}^{poly} \cap RPO \equiv FSPACE$
- $QI_{add}^{poly} \cap RPO^{prod} \equiv FPTIME$

$$double(\epsilon) \rightarrow \epsilon$$
 $double(s(x)) \rightarrow s(s(double(x)))$

$$double(\epsilon) \rightarrow \epsilon$$
 $double(s(x)) \rightarrow s(s(double(x)))$

$$(\epsilon) = 0, (s)(X) = X + 1, (double)(X) = 3X + 1$$

$$double(\epsilon) \rightarrow \epsilon$$
 $double(s(x)) \rightarrow s(s(double(x)))$

$$(\epsilon) = 0, \ (s)(X) = X + 1, \ (double)(X) = 3X + 1$$

$$(|double \ 0|) = 1 > 0 = (|\epsilon|)$$

 $(|double \ s(x)|) = 3X + 4 > 3X + 3 = (|s(s(double(x)))|)$

Example

$$double(\epsilon) \rightarrow \epsilon$$
 $double(s(x)) \rightarrow s(s(double(x)))$

$$(\epsilon) = 0, (s)(X) = X + 1, (double)(X) = 3X + 1$$

$$(|double \ 0|) = 1 > 0 = (|\epsilon|)$$

$$(|double \ s(x)|) = 3X + 4 > 3X + 3 = (|s(s(double(x)))|)$$

Termination by $RPO^{prod} \Rightarrow \llbracket double \rrbracket : x \mapsto 2x \in FPTIME$

Higher-order interpretations of TRS: State of the art

• Termination:

 Van De Pol (1993) adapted interpretations for showing termination of higher-order TRS.

Higher-order interpretations of TRS: State of the art

• Termination:

 Van De Pol (1993) adapted interpretations for showing termination of higher-order TRS.

Complexity:

• Férée et al. (2010) adapted interpretations to **first-order** stream programs for characterizing BFF (BFF₂) and $P(\mathbb{R})$.

Higher-order interpretations of TRS: State of the art

• Termination:

 Van De Pol (1993) adapted interpretations for showing termination of higher-order TRS.

Complexity:

- Férée et al. (2010) adapted interpretations to first-order stream programs for characterizing BFF (BFF₂) and P(R).
- Baillot & Dal Lago (2016) adapted interpretations to higher-order Simply Typed TRS for characterizing FPtime.
 - ightarrow a first step towards a better expressivity

Higher-order language

Higher Order Programming Language

Definition (Functional Language)

```
\begin{array}{lll} \mathit{M} & := & x \\ & \mid & c \\ & \mid & \mathit{op} \\ & \mid & \mathit{M}_1 \; \mathit{M}_2 \\ & \mid & \lambda x. \mathit{M} \\ & \mid & \mathsf{case} \; \mathit{M} \; \mathsf{of} \; c_1 \to \mathit{M}_1 | c_2 \to \mathit{M}_2 | ... | c_n \to \mathit{M}_n \\ & \mid & \mathsf{let} \mathsf{Rec} \; \mathit{f} = \mathit{M} \end{array}
```

+ Inductive Typing

Example

$$\mbox{letRec map} = \lambda \mbox{g.} \lambda \mbox{x.case} \times \mbox{of} \ \mbox{c} \ \mbox{y} \ \mbox{z} \to \mbox{c} \ (\mbox{g} \ \mbox{y}) \ (\mbox{map} \ \mbox{g} \ \mbox{z}) \\ | \ \mbox{nil} \ \to \mbox{nil}$$

$$List(A) ::= nil \mid c \land List(A)$$

map: $(A \rightarrow B) \rightarrow List(A) \rightarrow List(B)$

Semantics

Four kinds of reductions:

• β reduction:

$$\lambda x.M \ N \longrightarrow_{\beta} M\{N/x\}$$

case reduction:

case
$$c_p j N_j$$
 of $c_1 \rightarrow M_1 | ... | c_n \rightarrow M_n \longrightarrow_{\mathsf{case}} M_j N_j$

• letRec reduction:

$$letRec f = M \longrightarrow_{letRec} M\{letRec f = M/f\}$$

Operator reduction (total functions over terms):

$$opM \rightarrow_{op} \llbracket op \rrbracket (M)$$

+Left-most outermost reduction strategy

Higher-order interpretations

Definition

- $(b) = \overline{\mathbb{N}} = \mathbb{N} \cup \{\top\}$
- $(T \rightarrow T') = (T) \rightarrow^{\uparrow} (T')$

Definition

• $f: A \rightarrow^{\uparrow} B$ a strictly monotonic function from A to B:

$$\forall x, y \in A, \ x <_A y \implies f(x) <_B f(y).$$

- $x <_{\bar{\mathbb{N}}} y$ iff x < y or $y = \top$
- $f <_{A \to \uparrow B} g$ iff $\forall x \in A$, $f(x) <_B g(x)$

Example (map: $(A \to B) \to List(A) \to List(B)$) (map) is in $(\bar{\mathbb{N}} \to \uparrow \bar{\mathbb{N}}) \to \uparrow \bar{\mathbb{N}} \to \uparrow \bar{\mathbb{N}}$.

Lattices

$$\begin{split} & \perp_{\bar{\mathbb{N}}} = 0 & \top_{\bar{\mathbb{N}}} = \top \\ & \perp_{(\!(T \to T')\!)} = \Lambda X^{(\!(T)\!)}. \perp_{(\!(T')\!)} & \top_{(\!(T \to T')\!)} = \Lambda X^{(\!(T)\!)}. \top_{(\!(T')\!)} \\ & \sqcup^{(\!(T \to T')\!)} (F, G) = \Lambda X^{(\!(T)\!)}. \sqcup^{(\!(T')\!)} (F(X), G(X)) \\ & \sqcap^{(\!(T \to T')\!)} (F, G) = \Lambda X^{(\!(T)\!)}. \sqcap^{(\!(T')\!)} (F(X), G(X)) \end{split}$$

Lemma

For any type T, $((T), \leq, \sqcup, \sqcap, \top, \bot)$ is a complete lattice.

$$n \oplus_{\bar{\mathbb{N}}} = \Lambda X.(n+X)$$

$$n \oplus_{(T \to T')} : \Lambda F.\Lambda X.(n \oplus_{(T')} F(X))$$

$$\begin{array}{rcl} (|x|) & = & X \\ (|c|) & = & 1 \oplus (\Lambda X_1 \dots \Lambda X_n \cdot \sum_{i=1}^n X_i) \\ (|M| N|) & = & (|M|) (|N|) \end{array}$$

$$n \oplus_{\bar{\mathbb{N}}} = \Lambda X.(n+X)$$

$$n \oplus_{\{T \to T'\}} : \Lambda F.\Lambda X.(n \oplus_{\{T'\}} F(X))$$

$$\begin{array}{rcl} (|x|) & = & X \\ (|c|) & = & 1 \oplus (\Lambda X_1 \dots \Lambda X_n \cdot \sum_{i=1}^n X_i) \\ (|M| N|) & = & (|M|) (|N|) \\ (|\lambda x \cdot M|) & = & 1 \oplus (\Lambda (|x|) \cdot (|M|)) \end{array}$$

$$n \oplus_{\bar{\mathbb{N}}} = \Lambda X.(n+X)$$

$$n \oplus_{\{T \to T'\}} : \Lambda F.\Lambda X.(n \oplus_{\{T'\}} F(X))$$

$$\begin{array}{rcl} (|x|) & = & X \\ (|c|) & = & 1 \oplus (\Lambda X_1, \ldots, \Lambda X_n, \sum_{i=1}^n X_i) \\ (|M| N|) & = & (|M|) (|N|) \\ (|\lambda x, M|) & = & 1 \oplus (\Lambda (|x|), (|M|)) \\ (|case \ M \ of \ \ldots c_i \to M_i \ldots) & = & 1 \oplus \sqcup_i \{ (|M_i|) R_i \mid (|c_i|) R_i \leq (|M|) \} \\ \end{array}$$

$$n \oplus_{\bar{\mathbb{N}}} = \Lambda X.(n+X)$$

$$n \oplus_{(T \to T')} : \Lambda F.\Lambda X.(n \oplus_{(T')} F(X))$$

$$\begin{array}{rcl} (|x|) & = & X \\ (|c|) & = & 1 \oplus (\Lambda X_1 \dots \Lambda X_n \cdot \sum_{i=1}^n X_i) \\ (|M| N|) & = & (|M|) (|N|) \\ (|\lambda x \cdot M|) & = & 1 \oplus (\Lambda (|x|) \cdot (|M|)) \\ (|case \ M \ of \ \dots c_i \to M_i \dots |) & = & 1 \oplus \sqcup_i \{ (|M_i|) R_i \mid (|c_i|) R_i \leq (|M|) \} \\ (|letRec \ f = M|) & = & \sqcap \{ F \mid F \geq 1 \oplus (\Lambda (|f|) \cdot (|M|) |F \} \end{array}$$

$$n \oplus_{\bar{\mathbb{N}}} = \Lambda X.(n+X)$$

$$n \oplus_{(T \to T')} : \Lambda F.\Lambda X.(n \oplus_{(T')} F(X))$$

Properties of interpretations

Theorem

Any term M has an interpretation.

Knaster-Tarski: $Ifp(\Lambda X.1 \oplus ((\Lambda (f).(M))X))$

ightarrow monotonic function over a complete lattice

Lemma

If $M \longrightarrow N$, then $(M) \ge (N)$.

If $M \longrightarrow_{\alpha} N$, $\alpha \neq op$, then (M) > (N).

Lemma

If M :: B and $M \neq T$ then M terminates in time O((M)).

$$(\textit{letRec map} = \lambda g. \lambda x. \textit{case x of } \textbf{c} \ \textit{y} \ \textit{z} \rightarrow \textbf{c} \ (\textit{g} \ \textit{y}) \ (\textit{map g z})))$$

```
(letRec map = \lambda g.\lambda x.case x \text{ of } \mathbf{c} \text{ } y \text{ } z \rightarrow \mathbf{c} \text{ } (g \text{ } y) \text{ } (map \text{ } g \text{ } z))
= \sqcap \{F \mid F \geq 1 \oplus (\Lambda(f).(\lambda g.\lambda x.case x \text{ of } \mathbf{c} \text{ } y \text{ } z \rightarrow \mathbf{c} \text{ } (g \text{ } y) \text{ } (f \text{ } g \text{ } z)))F\}
(letRec)
```

```
(letRec map = \lambda g.\lambda x.case \times of \mathbf{c} y z \rightarrow \mathbf{c} (g y) (map g z))

= \Box \{F \mid F \geq 1 \oplus (\Lambda(f).(\lambda g.\lambda x.case \times of \mathbf{c} y z \rightarrow \mathbf{c} (g y) (f g z)))F\}

(letRec)

= \Box \{F \mid F \geq 3 \oplus ((\Lambda(f).\Lambda(g).\Lambda(x).(case \times of \mathbf{c} y z \rightarrow \mathbf{c} (g y) (f g z)))F)\}

(lambda \times 2)
```

```
(letRec map = \lambda g.\lambda x.case x of c y z \rightarrow \mathbf{c} (g y) (map g z))
= \sqcap \{F \mid F \geq 1 \oplus (\Lambda(f), (\lambda g, \lambda x, case \ x \ of \ \mathbf{c} \ y \ z \rightarrow \mathbf{c} \ (g \ y) \ (f \ g \ z)\}\}
(letRec)
= \sqcap \{F \mid F \geq 3 \oplus ((\Lambda(f)).\Lambda(g)).\Lambda(x).(case \times of \mathbf{c} y z \rightarrow \mathbf{c} (g y) (f g z))\}\}
(lambda \times 2)
= \bigcap \{F \mid F \geq 4 \oplus (\Lambda(f).\Lambda(g).\Lambda(x)). \sqcup \{(\mathbf{c} (g y) (f g z)) \mid (x) \geq (\mathbf{c} y z)\}\}F\}\}
(case)
= \sqcap \{F \mid F \geq 4 \oplus (\Lambda(f).\Lambda(g).\Lambda(x). \sqcup \{1 \oplus ((g), (y)) + ((f), (g), (z))\}\}
| (|x|) > 1 \oplus (|y|) + (|z|) \}F)
(cons \times 2)
```

```
(letRec map = \lambda g.\lambda x.case x of c y z \rightarrow \mathbf{c} (g y) (map g z))
= \sqcap \{F \mid F \geq 1 \oplus (\Lambda(f), (\lambda g, \lambda x, case \ x \ of \ \mathbf{c} \ y \ z \rightarrow \mathbf{c} \ (g \ y) \ (f \ g \ z)\}\}
(letRec)
= \sqcap \{F \mid F \geq 3 \oplus ((\Lambda(f)).\Lambda(g)).\Lambda(x).(case \times of \mathbf{c} y z \rightarrow \mathbf{c} (g y) (f g z))\}\}
(lambda \times 2)
= \bigcap \{F \mid F \geq 4 \oplus (\Lambda(f).\Lambda(g).\Lambda(x)). \sqcup \{(\mathbf{c} (g y) (f g z)) \mid (x) \geq (\mathbf{c} y z)\}\}F\}\}
(case)
= \sqcap \{F \mid F \geq 4 \oplus (\Lambda(f)) \cdot \Lambda(g) \cdot \Lambda(x) \cdot \sqcup \{1 \oplus ((g) \mid (y)) + ((f) \mid (g) \mid (z))\}
| (|x|) > 1 \oplus (|y|) + (|z|) \}F)
(cons \times 2)
= \sqcap \{F \mid F \geq 5 \oplus (\Lambda(g), \Lambda(x), \sqcup \{(((g), (y))) \oplus (F, (g), (z))\}\}
| (|x|) > 1 \oplus (|y|) \oplus (|z|) \}
```

Relaxing interpretations

$$(\textit{letRec map} = \lambda g. \lambda x. \textit{case x of } \textbf{c} \textit{ y } z \rightarrow \textbf{c} \textit{ (g y) (map g z)})$$

$$= \sqcap \{ \textit{F} \mid \textit{F} \geq \texttt{5} \oplus (\land \textit{G}. \land \textit{X}. \sqcup \{((\textit{G} \textit{Y}) \oplus (\textit{F} \textit{G} \textit{Z})) | \textit{X} \geq \texttt{1} \oplus \textit{Y} \oplus \textit{Z} \} \}$$

Relaxing interpretations

(constraint upper bound)

(letRec map =
$$\lambda g.\lambda x.case \ x \ of \ \mathbf{c} \ y \ z \to \mathbf{c} \ (g \ y) \ (map \ g \ z)$$
)
$$= \sqcap \{ F \mid F \geq 5 \oplus (\Lambda G.\Lambda X. \sqcup \{((G \ Y) \oplus (F \ G \ Z)) | \ X \geq 1 \oplus Y \oplus Z \} \}$$

$$\leq \sqcap \{ F \mid F \geq 5 \oplus (\Lambda G.\Lambda X. ((G \ (X - 1)) \oplus (F \ G \ (X - 1)))) \}$$

Relaxing interpretations

(min upper bound)

A characterization of BFF_i

Order

```
Order 1 f: \mathbb{N} \to \mathbb{N}
Order 2 f: (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}
Order n \ f : (((\mathbb{N} \to \mathbb{N}) \to \mathbb{N}) \dots \to \mathbb{N}) \to \mathbb{N}
      Formally:
      order(b) = 0 order(T \rightarrow T') = max(order(T) + 1, order(T'))
      Example
      map is of order 2.
      apply: f, x \mapsto f(x) is of order 2.
      compose : f, g \mapsto (x \mapsto f(g(x))) is of order 2.
      isNorm: f \mapsto \begin{cases} 1 & \text{if } f \text{ is a norm} \\ 0 & \text{otherwise} \end{cases} is of order 3.
```

Order

```
Order 1 f: \mathbb{N} \to \mathbb{N}
Order 2 f: (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}
Order n f: (((\mathbb{N} \to \mathbb{N}) \to \mathbb{N})... \to \mathbb{N}) \to \mathbb{N}
      Formally:
      order(b) = 0 order(T \rightarrow T') = max(order(T) + 1, order(T'))
      Example
      map is of order n.
      apply: f, x \mapsto f(x) is of order n.
      compose: f, g \mapsto (x \mapsto f(g(x))) is of order n.
     isNorm: f \mapsto \begin{cases} 1 & \text{if } f \text{ is a norm} \\ 0 & \text{otherwise} \end{cases} is of order 3.
```

Higher-order polynomial

$$P_1 ::= c \in \mathbb{N}|X_0|P_1 + P_1|P_1 \times P_1$$

$$P_{i+1} ::= P_i|P_{i+1} + P_{i+1}|P_{i+1} \times P_{i+1}|X_i(P_{i+1})$$

Definition

Let FP_i , i > 0, be the class of polynomial functionals at order i that consist in functionals computed by closed terms M such that:

- order(M) = i
- (M) is bounded by an order i polynomial $(\exists P_i, (M) \leq P_i)$.

Bounded Typed Loop Program (BTLP)

Definition (BTLP)

A Bounded Typed Loop Program (BTLP) is a non-recursive and well-formed procedure defined by the following grammar:

```
\begin{split} &(\mathsf{Procedures})\ni P \quad ::= v^{\tau_1\times \dots \times \tau_n \to \mathbb{N}}(v_1^{\tau_1},\dots,v_n^{\tau_n})P^*VI^* \; \mathbf{Return} \; v_r^{\mathbb{N}} \; \mathbf{End} \\ &(\mathsf{Declarations})\ni V \quad ::= \mathbf{var} \; v_1^{\mathbb{N}},\dots,v_n^{\mathbb{N}}; \\ &(\mathsf{Instructions})\ni I \quad ::= v^{\mathbb{N}} := E; \; | \; \mathbf{Loop} \; v_0^{\mathbb{N}} \; \mathbf{with} \; v_1^{\mathbb{N}} \; \mathbf{do} \; I^* \; \mathbf{EndLoop} \; ; \\ &(\mathsf{Expressions})\ni E \quad ::= 1 \; | \; v^{\mathbb{N}} \; | \; v_0^{\mathbb{N}} + v_1^{\mathbb{N}} \; | \; v_0^{\mathbb{N}} - v_1^{\mathbb{N}} \; | \; v_0^{\mathbb{N}} \# v_1^{\mathbb{N}} \; | \\ & \qquad \qquad \qquad v^{\tau_1\times \dots \times \tau_n \to \mathbb{N}}(A_1^{\tau_1},\dots,A_n^{\tau_n}) \\ &(\mathsf{Arguments})\ni A \quad ::= v \; | \; \lambda v_1,\dots,v_n.v(v_1'\dots,v_m') \quad \text{with} \; v \notin \{v_1,\dots,v_n\} \end{split}
```

BFF $_i$ is the class of order i functionals computable by a BTLP program.

Results

Define the Safe Feasible Functionals at order i, SFF_i by:

$$SFF_1 = BFF_1,$$

$$\forall i \geq 1, \ SFF_{i+1} = BFF_{i+1} \upharpoonright SFF_i$$

Theorem (Hainry Péchoux)

For any order i, $FP_i = SFF_i$.

In particular, FP_1 is FPtime and FP_2 is BFF with FPtime oracles.

Conclusion

Conclusion

Results

- An interpretation theory for higher-order functional languages
- A characterization of well-known classes: BFF_i

Issues and future work

- BFF; is known to be restricted
 - \rightarrow see Férée's phD manuscript (2014)
- The interpretation synthesis problem is known to be very hard.
- Interpretations for complexity analysis of real operators and real-based languages.
- Adapt the results to space: does it make sense?
- Adapt ICC techniques to characterize $P(\mathbb{R})$.