Higher-order Interpretations for Higher-order
Complexity

Emmanuel Hainry & Romain Péchoux
DICE-FOPARA, 22-23 april 2017

CNRS, INRIA, Université de Lorraine & LORIA, Nancy, France

Introduction

First-order computability and complexity

e First-order computability is well understood:
e Agreed upon definitions
e Hierarchies layering the Turing degree of problems
e Church-Turing's thesis

e First-order computational Complexity is well understood:

e Agreed upon definitions
e Classes and hierarchies layering the difficulty of problems
e Various characterizations:
e machine based characterizations
e machine independent characterizations
— Implicit Computational Complexity

computability and complexity

e Higher-order computability is (well) understood:

e Order 2 = computations over reals.
e No Church-Turing's thesis!

General Purpose Analog Computer by Shannon,
Blum-Shub-Smale model,

Computable Analysis (CA) by Weihrauch,
Oracle TM,

computability and complexity

e Higher-order computability is (well) understood:

e Order 2 = computations over reals.
e No Church-Turing's thesis!

General Purpose Analog Computer by Shannon,
Blum-Shub-Smale model,

Computable Analysis (CA) by Weihrauch,

e Oracle TM,

e Higher-order complexity is not well understood.

e Polytime complexity on OTM = Basic Feasible
Functions (BFF) by Constable, Melhorn

e Polytime complexity in CA = P(R) by Ko

e No homogeneous theory for higher-order:

P(R) # BFF

Objectives of this talk:

e not developping a new complexity theory for higher-order,
e adapting first-order tools for program complexity analysis,

e validating the theory by capturing existing higher-order

complexity classes

Objectives of this talk:

e not developping a new complexity theory for higher-order,
e adapting first-order tools for program complexity analysis,

e validating the theory by capturing existing higher-order

complexity classes

Framework:

e tool = (polynomial) interpretations

e target = BFF;, the Basic Feasible Functionals at any order.

First-order interpretations

First-order interpretations of TRS

e Defined in the 70s for showing TRS termination:
e Vb of arity n, (b) : N" =T N
e Vi—=reR, (I)>(r)

e Quasi-interpretation (QIl) for complexity analysis:
e Vb of arity n, (b) : N” -7 N
e Vi—reR, () >(r)

Theorem (Bonfante et al. 2011)
Let Q/fi’,y be the set of functions computed by TRS admitting an
additive and polynomial QI.

o QIP%% N RPO = FSPACE

o QIP%% N RPOP™d = FPTIME

First-order interpretations of TRS

Example

double(e) — €
double(s(x)) — s(s(double(x))

First-order interpretations of TRS

Example

double(e) — €
double(s(x)) — s(s(double(x))

() =0, (s)(X) =X+ 1, (double)(X)=3X+1

First-order interpretations of TRS

Example

double(e) — €
double(s(x)) — s(s(double(x))

() =0, (s)(X) =X+ 1, (double)(X)=3X+1

(double 0) =1 > 0 = (¢)
(double s(x)) = 3X 4+ 4 > 3X + 3 = (s(s(double(x)))

First-order interpretations of TRS

Example

double(e) — €
double(s(x)) — s(s(double(x))

() =0, (s)(X) =X+ 1, (double)(X)=3X+1

(double 0) =1 > 0 = (¢)
(double s(x)) = 3X 4+ 4 > 3X + 3 = (s(s(double(x)))

Termination by RPOP™? = [double] : x +— 2x € FPTIME

Higher-order interpretations of TRS: State of the art

e Termination:

e Van De Pol (1993) adapted interpretations for showing
termination of higher-order TRS.

Higher-order interpretations of TRS: State of the art

e Termination:
e Van De Pol (1993) adapted interpretations for showing
termination of higher-order TRS.
o Complexity:

e Férée et al. (2010) adapted interpretations to first-order
stream programs for characterizing BFF (BFF;) and P(R).

Higher-order interpretations of TRS: State of the art

e Termination:
e Van De Pol (1993) adapted interpretations for showing
termination of higher-order TRS.
o Complexity:

e Férée et al. (2010) adapted interpretations to first-order
stream programs for characterizing BFF (BFF;) and P(R).

e Baillot & Dal Lago (2016) adapted interpretations to
higher-order Simply Typed TRS for characterizing FPtime.

— a first step towards a better expressivity

Higher-order language

Higher Order Programming Language

Definition (Functional Language)

case M of ¢ — Mi|ca — Ma|...|ch, — M,
letRec f = M

+ Inductive Typing

Example

letRec map = Ag.Ax.case x of cy z — c (g y) (map g 2)

| nil — nil

List(A) - = nil | c A List(A)
map: (A — B) — List(A) — List(B)

Semantics

Four kinds of reductions:

e [reduction:
AX.M N —5 M{N/x}

e case reduction:

case cpjN; of ci = Mi]...|[ch = My —case Mj N
e |etRec reduction:
letRec f = M —|etrec M{letRec f = M/f}
e Operator reduction (total functions over terms):
0pM 0, [op](M)
+Left-most outermost reduction strategy

10

Higher-order interpretations

Interpretations of types

Definition
e (B)=N=NU{T}
o (T—=T)=(T) =" (T
Definition
e f: A—T B a strictly monotonic function from A to B:
Vx,y €A, x<ay = f(x) <p f(y).
o x <gyiffx<yory=T

o <, 1ggiff Vx €A f(x)<pg(x)

Example (map: (A — B) — List(A) — List(B))
(map)) is in (N -TN) TN =T N. 11

=0 s =1
Loy =AM Ly Teromy = AXT Ty

LT=T(F, 6) = AXTT) LT (F(X), G(X))
nT=TF, 6) = AXT nl™) (F(X), G(X))

Lemma
For any type T, ((T),<,U,M, T, L) is a complete lattice.

12

Interpretations of terms

ndg = AX.(n + X)
H@QT_H—ID : /\F/\X(n D) F(X))

Definition (Interpretations)

(&) = 1&AXi.....AX. Xy X))

13

Interpretations of terms

ndg = AX.(n + X)
H@QT_H—ID : /\F/\X(n D) F(X))

Definition (Interpretations)

< = X

(&) = 1&AXi.....AX. Xy X))
(M N = (M(ND
(M) = 1& (Ax).(M))

13

Interpretations of terms

ndg = AX.(n + X)
H@QT_H—ID : /\F/\X(n D) F(X))

Definition (Interpretations)

(x) X
() = 1a&(AX..... AXy. 301 X0)
M N) I)(I/VD
(l/\X M) = 1 (A(x).(MD)
(case M of ...ci—M;..)) = 1oU{(M)Ri | (c)Ri < (M)}

13

Interpretations of terms

ndg = AX.(n + X)
H@QT_H—ID : /\F/\X(n D) F(X))

Definition (Interpretations)

x) = X
() = 1®(AXp.....AXn. 201 X))
(M N) = (M)(N)
(Ax.M) = 1a& (A(x).(M))
(case M of ...ci—M;..)) = 1oU{(M)Ri | (c)Ri < (M)}
(letRec f = M) = 1{F | F > 1&(A(f).(M))F}

13

Interpretations of terms

ndg = AX.(n + X)
H@QT_H—ID : /\F/\X(n D) F(X))

Definition (Interpretations)

x) = X
() = 1®(AXp.....AXn. 201 X))
(M N) = (M)(N)
(Ax.M) = 1a& (A(x).(M))
(case M of ...ci—M;..)) = 1oU{(M)Ri | (c)Ri < (M)}
(letRec f = M) = 1{F | F > 1&(A(f).(M))F}

13

Properties of interpretations

Theorem

Any term M has an interpretation.
Knaster-Tarski: Ifp(AX.1 & ((A(f).(M))X))
— monotonic function over a complete lattice

Lemma
If M — N, then (M) > (N).

If M —o N, a # op, then (M) > (N).

Lemma
If M :: B and M # T then M terminates in time O((M))).

14

Example of Interpretation

(letRec map = Ag.\x.case x of c y z—c (g y) (map g z))

5

Example of Interpretation

(letRec map = Ag.\x.case x of c y z—c (g y) (map g z))
=MN{F | F>1d® (A(f).(Ag.\x.case x of cy z—c (g y) (f g 2)))F}
(letRec)

5

Example of Interpretation

(letRec map = Ag.\x.case x of c y z—c (g y) (map g z))

=M{F| F>1& (A(f).(A\g.Mx.case x of cy z—c (g y) (f g z)))F}
(letRec)

=TH{F | F>3® ((A(f)-Ng)-A(x).(case x of ey z—c (g y) (f g 2)))F)}
(lambda x 2)

5

Example of Interpretation

(letRec map = A\g.Ax.case x of c y z —c (g y) (map g z))

=MN{F| F>1® (A(f).(Ag.\x.case x of cy z—c (g y) (f g 2)))F}
(letRec)

=T{F | F>3® ((Af).Ng).A(x).(case x of cy z—c (g y) (f g 2)))F)}
(lambda x 2)

—1F | F > 4@ (MAMg) A U{lc (2 v) (F g 2) | (x) > (e y 2)}F)}

(case)

5

Example of Interpretation

(letRec map = Ag.\x.case x of c y z—c (g y) (map g z))

=M{F| F>1& (A(f).(A\g.Mx.case x of cy z—c (g y) (f g z)))F}
(letRec)

=T{F | F>3d((Af)-Ng)-N(x).(case x of cy z—c (g y) (f g 2)))F)}
(lambda x 2)

=TH{F | F =4 (Af)-Alg)-Nx)- U {lc (g y) (f g 2)) | (x) = (cy 2)}F)}
(case)

=T{F | F >4 (A(f)-Alg)-Ax)- L {1 (lg) WyD) + ((£D (gD (2)))

| () > 1@ (y) + (2D} F)}

(cons x 2)

5

Example of Interpretation

(letRec map = Ag.\x.case x of c y z—c (g y) (map g z))

=MN{F| F>1® (A(f).(Ag.\x.case x of cy z—c (g y) (f g 2)))F}
(letRec)

=T{F | F>3d((Af)-Ng)-N(x).(case x of cy z—c (g y) (f g 2)))F)}
(lambda x 2)

=T{F | F >4 (A(f)-Ag)-Ax)- L {(c (g ¥) (f g 2)) | (x) > (c y 2)}F)}
(case)

=T{F | F >4 (A(f)-Alg)-Ax)- L {1 (lg) IyD) + ((£D (gD (2)))

| (x) = 1® (y) + (2D} F)}

(cons x 2)

=TH{F | F > 5 (Alg)-Alx). u{(((g) ¥D) ® (F (g) (2)))

[(x)z1e) o (2)}}

5

Relaxing interpretations

(letRec map = \g.\x.case x of cy z—c (g y) (map g z))

—M{F | F>5a(AGAX.U{((GY)®(FGZ) X>1aYaZ}}

16

Relaxing interpretations

(letRec map = \g.\x.case x of cy z—c (g y) (map g z))
=M{F|F>5&(AGAX.U{((GY)e(FG2) | X>1aYadZ}}

<T{F|F>5&(AGAX.((G(X-1)®(F G(X-1))))}

(constraint upper bound)

16

Relaxing interpretations

(letRec map = \g.\x.case x of cy z—c (g y) (map g z))
=M{F|F>5&(AGAX.U{((GY)e(FG2) | X>1aYadZ}}

<T{F|F>5&(AGAX.((G(X-1)®(F G(X-1))))}

(constraint upper bound)

< AGAX.(5+ G X)) x X
(min upper bound)

16

A characterization of BFF;

Order1 f:N— N
Order2 f: (N—-N)— N
Ordern f: ((N—N) - N)... - N) - N

n

Formally:
order(b) =0 order(T — T') = max(order(T) + 1, order(T"))

Example

map is of order 2.

apply : f,x — f(x) is of order 2.

compose : f, g +— (x — f(g(x))) is of order 2.

1 if fisanorm
isNorm : f — is of order 3.

0 otherwise
17

Order1 f:N— N
Order2 f: (N—-N)— N
Ordern f: ((N—N) - N)... - N) - N

n

Formally:
order(b) =0 order(T — T') = max(order(T) + 1, order(T"))

Example

map is of order n.

apply : f,x — f(x) is of order n.

compose : f, g+ (x — f(g(x))) is of order n.

1 if fisanorm
isNorm : f — is of order 3.

0 otherwise
17

Higher-order polynomial

Pii=ce N|X0‘P1 + P1|P1 x Py
Pit1 = Pi|Pit1 + Pit1|Pit1 x Pit1|Xi(Pit1)

Definition
Let FP;, i > 0, be the class of polynomial functionals at order i
that consist in functionals computed by closed terms M such that:

o order(M) =i
e (M) is bounded by an order i polynomial (3P;, (M) < P;).

18

Bounded Typed Loop Program (BTLP)

Definition (BTLP)
A Bounded Typed Loop Program (BTLP) is a non-recursive and
well-formed procedure defined by the following grammar:

(Procedures) > n=y T XX Ny YT P* VI Return v End
(Declarations) > V' z=var vj',..., v\,
(Instructions) > c=vN = E; > with v1 do /* EndLoop ;
(Expressions) =1 N g T S Y Y|
v XTI (AT .,A;n)
(Arguments) 3 A i=v | Avy,...,vov(vi ..., ve) with v {vi,...,v,}

BFF; is the class of order i functionals computable by a BTLP

program.
19

Define the Safe Feasible Functionals at order i, SFF; by:
SFF, =BFF,

Vi>1, SFFiy1 =BFFi 11sFF;

Theorem (Hainry Péchoux)
For any order i, FP; = SFF;.

In particular, FP; is FPtime and FP, is BFF with FPtime oracles.

20

Conclusion

Conclusion

Results

e An interpretation theory for higher-order functional languages

e A characterization of well-known classes: BFF;

Issues and future work

e BFF; is known to be restricted
— see Férée's phD manuscript (2014)

The interpretation synthesis problem is known to be very hard.

Interpretations for complexity analysis of real operators and
real-based languages.

Adapt the results to space: does it make sense?

Adapt ICC techniques to characterize P(R).

21

	Main
	Introduction
	First-order interpretations
	Higher-order language
	Higher-order interpretations
	A characterization of BFFi
	Conclusion

