
A type system for analyzing the complexity of
Object Oriented programs

Romain Péchoux
(joint work with Emmanuel Hainry)

Université de Lorraine, LORIA, Nancy, France

University of Dundee

R. Péchoux UL – Loria Type system for analyzing OO program complexity 1/28

Introduction OO Language Typing Result Conclusion

OutOfMemoryError and StackOverflowError

In Java,

I OutOfMemoryError is “thrown when the JVM cannot allocate
an object because it is out of memory”, that is when the heap
is full.

I StackOverflowError is “thrown when a stack overflow
occurs because an application recurses too deeply.”

R. Péchoux UL – Loria Type system for analyzing OO program complexity 2/28

Introduction OO Language Typing Result Conclusion

Heap

I Where objects are created and kept in memory.

I Maximal heap space is defined at the launch of the JVM.

I Pointers to the objects, arrows between objects and their
attributes.

B C

D

B

A

A

x1

x2 y1

z1
x1

x2

bc

d

e

R. Péchoux UL – Loria Type system for analyzing OO program complexity 3/28

Introduction OO Language Typing Result Conclusion

Stack

I Where arguments of a method call are put.

I Primitive types are put by value.

I Object types are put by reference, i.e. a pointer to the heap.

I May grow indefinitely because of recursive calls.

f x: true y

g z: true w

f x: false y

R. Péchoux UL – Loria Type system for analyzing OO program complexity 4/28

Introduction OO Language Typing Result Conclusion

Objectives

Practical motivations:
I Bound the memory (Heap and Stack) Usage

I using a polynomial algorithm;
I in an object oriented language;
I with advanced OO features (inheritance, recursion)

Theoretical motivations:
I Characterize well known complexity classes

I FPtime,
I FPspace, ...

R. Péchoux UL – Loria Type system for analyzing OO program complexity 5/28

Introduction OO Language Typing Result Conclusion

Non exhaustive state of the art

On imperative programs:

I Matrix calculus (Ben Amram, Jones & Kristiansen, Moyen)

I Graph language (Hofmann & Schoepp)

On Object Oriented Languages:

I Amortised analysis for linear heap (Hofmann & Jost)

I “Costa” for analyzing Java bytecode (Albert, Arenas, Genaim,
Puebla & Zanardini)

I “Speed” for C++ (Gulwani et al.)

I “ResAna” analyzes Java programs (Shkaravska et al.)

R. Péchoux UL – Loria Type system for analyzing OO program complexity 6/28

Introduction OO Language Typing Result Conclusion

Tiered based ”type systems” for resource analysis

I Bellantoni & Cook 1992
I Functional setting
I Two kinds of arguments: Safe and Normal
I Characterizing FPTIME

I Leivant & Marion 1993
I λ-calculus
I n tiers (but 2 suffice)
I Characterizing FPTIME

I Marion 2011
I Imperative setting
I 4 sorts ((α, β) with α, β ∈ {0, 1})
I Characterizing FPTIME under Termination assumption

R. Péchoux UL – Loria Type system for analyzing OO program complexity 7/28

Introduction OO Language Typing Result Conclusion

Tiers for imperative languages revisited

Expressions, variables, instructions are given a tier in {0, 1}.
I Expressions:

I op(y) may be of tier 1 if ∀x, #{opn(x) | ∀n ∈ N} ≤ P(|x |).
I op(y) may be of tier 0 if ∀x, |JopK(x)| ≤ |x |+ k, k ∈ N.

I Assignation
I Xα := eβ : α provided that α ≤ β.
I Non-interference like typing rule (flows from 1 to 0 only).

I Conditional
I if eα then I1: α else I2: α

I Loop
I While e1 do I: α

If a terminating program can be tiered, it is in FPTIME.

R. Péchoux UL – Loria Type system for analyzing OO program complexity 8/28

Introduction OO Language Typing Result Conclusion

Example: addition

i n t add (i n t x , i n t y)
{
w h i l e (x>0)

{
x−−;
y++;
}

r e t u r n y
}

I y is necessarily of tier 0

I x is necessarily of tier 1

I and, consequently, add :: 1× 0→ 0

R. Péchoux UL – Loria Type system for analyzing OO program complexity 9/28

Introduction OO Language Typing Result Conclusion

Example: multiplication

i n t mult (i n t x , i n t y)
{
i n t z =0;
w h i l e (x>0)

{
x−−;
z = add (y , z) ;
}

r e t u r n z ;
}

I the output of add is 0. Consequently, z is of tier 0.

I both x and y are of tier 1

I and, consequently, mult :: 1× 1→ 0

R. Péchoux UL – Loria Type system for analyzing OO program complexity 10/28

Introduction OO Language Typing Result Conclusion

Example: exponential

i n t expo (i n t x)
{
i n t y =1;
w h i l e (x>0)

{
x−−;
y = add (y , y) ;
}

r e t u r n y ;
}

I x is of tier 1,

I the output of add is of tier 0,

I but y has to be of tier 1 in the first argument of add !!!

R. Péchoux UL – Loria Type system for analyzing OO program complexity 11/28

Introduction OO Language Typing Result Conclusion

Core Java

I Expressions
E ::= x | null | this | n | true | false

| op(E) | new C(E) | E .m(E)

I Instructions
I ::= ; | [τ] x:=E ; | I1 I2 | while(E){I}

| x++; | x--; | break;
| if(E){I1}else{I2} | E .m(E);

I Methods
MC ::= τ m(τ1 x1, . . . , τn xn){I [return x;]}

I Constructors
KC ::= C(τ1 y1, . . . , τn yn){x1:=y1; . . . xn:=yn; }

I Classes
C ::= D extends C{τ1 x1; . . . ; τn xn; KC M1

C . . .M
k
C}

R. Péchoux UL – Loria Type system for analyzing OO program complexity 12/28

Introduction OO Language Typing Result Conclusion

Core Java Programs

Definition [Core Java Program]

A Core Java Program is a collection of classes and exactly one
executable:

Exe{main(){τ1 x1 := E1; . . . ; τn xn := En;︸ ︷︷ ︸
Initialization

I︸︷︷︸
Computation

}}.

R. Péchoux UL – Loria Type system for analyzing OO program complexity 13/28

Introduction OO Language Typing Result Conclusion

Exe {

main() {

boolean x = true;

BList b1 = new BList(x, null);

BList b2 = new BList(false, b1);

// End of initialization

while (true) {

b2 = new BList(false, b2);

}

}

}

BList {

boolean value;

BList queue;

BList(boolean v, BList q) {

value = v;

queue = q;

}

}

R. Péchoux UL – Loria Type system for analyzing OO program complexity 14/28

Introduction OO Language Typing Result Conclusion

Tiered types

I Expressions, Instructions, Constructors and Methods are
annotated by tiered types τ(α) (i.e. a type τ and a tier α).

I For instructions, the tier types will always be void(α).

I For methods, the tiered type is functional and the of the caller
object tiered type is included:
e.g. for void setQueue(BList q) {...}

BList(0)× BList(1)→ void(0)

R. Péchoux UL – Loria Type system for analyzing OO program complexity 15/28

Introduction OO Language Typing Result Conclusion

Typing Expressions

w ∈ {true, false}
(True/False)

Γ ` w : boolean(α)

n :: int
(Cst)

Γ ` n : int(α)

Γ ` x : int(α)
(Dec)

Γ ` x-- : void(α)

Γ ` x : int(0)
(Inc)

Γ ` x-- : void(0)

α � min{tiers of the attributes}
(Self)

(mC,∆) ` this : C(α)

∆(mC)(x) = τ(α)
(Var)

(mC,∆) ` x : τ(α)

∀i Γ ` Ei : τi (α) op :: τ1 × · · · × τn → boolean
(Op)

Γ ` op(E1, . . . ,En) : boolean(α)

R. Péchoux UL – Loria Type system for analyzing OO program complexity 16/28

Introduction OO Language Typing Result Conclusion

Typing Instructions

(Skip)
Γ ` ; : void(0)

Γ ` x : τ(α) Γ ` E : τ(β) α � β
(Ass)

Γ ` [τ] x:=E ; : void(α)

Γ ` I : void(α) α � β
(Sub)

Γ ` I : void(β)

∀i Γ ` Ii : void(αi)
(Seq)

Γ ` I1 I2 : void(α1 ∨ α2)

Γ ` E : boolean(α) ∀i Γ ` Ii : void(α)
(If)

Γ ` if(E){I1}else{I2} : void(α)

Γ ` E : boolean(1) Γ ` I : void(1)
(Wh)

Γ ` while(E){I} : void(1)

R. Péchoux UL – Loria Type system for analyzing OO program complexity 17/28

Introduction OO Language Typing Result Conclusion

Typing Constructors

Consider a constructor of the shape:

C(. . . τi yi . . .){. . . xi := yi ; . . .}

∀i (mC,∆) ` Ei : τi (αi) (ε,∆) ` yi : τi (αi)
(New)

(mC,∆) ` new C(E1, . . . ,En) : C(0)

Constructors make the heap increase, hence output something of tier 0.

R. Péchoux UL – Loria Type system for analyzing OO program complexity 18/28

Introduction OO Language Typing Result Conclusion

Typing Methods

Given a method m of the class C of the shape:

τ m(. . . , τi xi , . . .){I return x; }

∀i (mC1
1 ,∆) ` Ei : τi (αi) (mC1

1 ,∆) ` E : C(β)
(mC,∆) ` m : C(β)× τ1(α1)× · · · × τn(αn)→ τ(α)

(Call)
(mC1

1 ,∆) ` E .m(E1, . . . ,En) : τ(α)

(mC,∆) ` this : C(β) ∀i (mC,∆) ` xi : τi (αi)
(mC,∆) ` x : τ(α) (mC,∆) ` I : void(α)

(MC)
(ε,∆) ` m : C(β)× · · · × τi (αi)× · · · → τ(α)

The tier of the output is that of the returned value and of the instruction
(modulo subtyping).
Note that the tier of this must be known for tiering the method.

R. Péchoux UL – Loria Type system for analyzing OO program complexity 19/28

Introduction OO Language Typing Result Conclusion

Example

Concatenation is typable:

v o i d c o n c a t (B L i s t o t h e r){
B L i s t o = t h i s ;
w h i l e (o . getQueue () != n u l l){

o = o . getQueue () ;
}

o . setQueue (o t h e r) ;
}

I other has to be of type BList(1) in the setQueue call

I getQueue is of type BList(α)→ BList(1) in the while guard

I o may be of tier 0 or 1

I concat has type BList(α)× BList(1)→ void(1)

R. Péchoux UL – Loria Type system for analyzing OO program complexity 20/28

Introduction OO Language Typing Result Conclusion

Example

List generation is typable:

v o i d g e n e r a t e (i n t n){
B L i s t o = n u l l ;
w h i l e (n>0){

o = new B L i s t (t r u e , o) ;
n−−;

}
r e t u r n o ;

}

I n has type int(1) because of the while guard

I o has tier 0 because of the new

I n −− is typable

I generate has type C(α)× int(1)→ BList(0)

R. Péchoux UL – Loria Type system for analyzing OO program complexity 21/28

Introduction OO Language Typing Result Conclusion

Example

Creation is typable:

v o i d c o n c a t (B L i s t o t h e r){
B L i s t o = t h i s ;
w h i l e (o . getQueue () != n u l l){

o = o . getQueue () ;
}

o . setQueue (o t h e r) ;
}

I other has to be of type BList(1) in the setQueue call

I getQueue is of type BList(α)→ BList(1) in the while guard

I o may be of tier 0 or 1

R. Péchoux UL – Loria Type system for analyzing OO program complexity 22/28

Introduction OO Language Typing Result Conclusion

Safety assumption

Definition [Safety]

A well-typed program with respect to a typing environment ∆ is
safe if for each recursive method MC = τ m(. . .){I [return x;]}:

I there is exactly one call (even nested) to m,

I there is no while loop inside I ,

I and the following judgment can be derived:

(ε,∆) ` MC : C(1)× τ1(1)× · · · × τn(1)→ τ(1).

R. Péchoux UL – Loria Type system for analyzing OO program complexity 23/28

Introduction OO Language Typing Result Conclusion

Main result

Theorem

In the execution of a safe Core Java program terminating on input
C, the size of the heap and of the stack are in O(|C|n1((ν+1)λ)).

With

I n1 the number of variables and attributes of tier 1,

I λ the maximum number of nested while and

I ν the maximum number of nested methods.

Note that n1((ν + 1)λ) is a constant polynomial in the size of the
program.

R. Péchoux UL – Loria Type system for analyzing OO program complexity 24/28

Introduction OO Language Typing Result Conclusion

Idea of the proof

B

C

D

B

A

A

b1c1

d0

e0

I The subheap of tier 1 never grows.

I Only tier 1 variables control while
and recursive functions.

I The number of tier 1 configurations
is bounded by |C|2×n1 .

I Hence a bound on the stack and
heap.

R. Péchoux UL – Loria Type system for analyzing OO program complexity 25/28

Introduction OO Language Typing Result Conclusion

Idea of the proof

B

C

D

B

A

A

b1c1

d0

e0

I The subheap of tier 1 never grows.

I Only tier 1 variables control while
and recursive functions.

I The number of tier 1 configurations
is bounded by |C|2×n1 .

I Hence a bound on the stack and
heap.

R. Péchoux UL – Loria Type system for analyzing OO program complexity 25/28

Introduction OO Language Typing Result Conclusion

Idea of the proof

B

C

D

B

A

A

b1c1

d0

e0

I The subheap of tier 1 never grows.

I Only tier 1 variables control while
and recursive functions.

I The number of tier 1 configurations
is bounded by |C|2×n1 .

I Hence a bound on the stack and
heap.

R. Péchoux UL – Loria Type system for analyzing OO program complexity 25/28

Introduction OO Language Typing Result Conclusion

Idea of the proof

B

C

D

B

A

A

b1c1

d0

e0

I The subheap of tier 1 never grows.

I Only tier 1 variables control while
and recursive functions.

I The number of tier 1 configurations
is bounded by |C|2×n1 .

I Hence a bound on the stack and
heap.

R. Péchoux UL – Loria Type system for analyzing OO program complexity 25/28

Introduction OO Language Typing Result Conclusion

Type inference

Proposition [Type inference]

The type inference can be done in time polynomial in the size of
the program.

Note There being no typing does not preclude the program from
running in polynomial space or time.

R. Péchoux UL – Loria Type system for analyzing OO program complexity 26/28

Introduction OO Language Typing Result Conclusion

Extensional completeness

Theorem [FPtime]

Every function computable by a TM in polynomial time can be
computed by a safe, terminating and typable program.

I Soundness: every reduction is polynomial.

I Completeness: every polynomial can be computed and we
write a program simulating a TM.

R. Péchoux UL – Loria Type system for analyzing OO program complexity 27/28

Introduction OO Language Typing Result Conclusion

Conclusion

Result

I Static typing to guarantee memory bounds in OO Languages

I Explicit bounds (can be tightened)
I Expressivity:

I recursive functions
I inheritance and other Object Oriented features
I control flow statements such as break or continue

Drawbacks and Open questions

I Not intentionnally complete

I Obviously does not take memory leaks in the VM into account

I Thread Creation?

I Garbage Collecting?

R. Péchoux UL – Loria Type system for analyzing OO program complexity 28/28

	Main
	Introduction
	OO Language
	Typing
	Result
	Conclusion

