Type systems for |CC analysis of imperative
programs

Romain Péchoux

Université de Lorraine, LORIA, INRIA team Carte, Nancy, France

Dice & Fopara - Queen Mary University, London

Péchoux UL - Loria Type systems for ICC analysis of imperative programs 1/38

Introduction Imperative langage Multi-threads Fork processes 00 Language Conclusion

ICC's last stand

The aim of ICC is to find machine independent characterizations of
complexity classes:

» Function algebra (Bellantoni, Cook, Leivant, Marion, ...)

» Lights logics (Girard, Lafont, Baillot, Gaboardi, Ronchi Della
Rocca, ...)

» Interpretations of TRS (Bonfante, Marion, Moyen, Péchoux,

)

» Non-size increasing principle (Hofmann, ...)

» Matrices calculus for imperative programs(Jones, Kristiansen,
Waunderlich, Moyen,...)

» Imperative pointer graph languages for subpolynomial classes
(Hofmann, Schoepp, ...)

Péchoux UL - Loria Type systems for ICC analysis of imperative programs 2/38

Introduction Imperative langage Multi-threads Fork processes 0O Language Conclusion

Mixture

Marion’s idea (Lics 2011) is to take advantage of two well-known
lines of work:

» Safe (or tiered) recursion by Bellantoni and Cook [1992]

» Non-interference by Volpano et al [1996]

in order to obtain a polynomial time characterization on imperative
languages.

Péchoux UL - Loria Type systems for ICC analysis of imperative programs 3/38

Introduction Imperative langage Multi-threads Fork processes 0O Language Conclusion

Safe recursion

The class of functions that can be defined using:

» constants, projections, successor, predecessor, conditional,

» safe composition:
f(x;a) = h(r(x;); t(x;3))
» and safe recursion (on notation):

f(0,x;a) = g(x;3)
f(i(x),y:a) = hi(x,y; f(x,y:3)) i€{0,1},

provided h, r, t, g, h; are already defined in the class,

is exactly the set of functions computable in polynomial time
(FPtime).

Péchoux UL - Loria Type systems for ICC analysis of imperative programs

Multi-threads Fork processes 00 Language Conclusion

Introduction Imperative langage

The tiered viewpoint

The class of functions that can be defined using:
> constants, projections, successor, predecessor, conditional,

» safe composition:
f(x4 3% = h(r(x4;); t(x"3)?)
» and safe recursion (on notation):
70.53°) = 8(x": ")
(/(x)l,yl,é) = hi(<" 7 (v a)) e {01},
provided h,r,t, g, h; are already defined in the class,

is exactly the set of functions computable in polynomial time
(FPtime).

Péchoux UL - Loria Type systems for ICC analysis of imperative programs 5/38

Introduction Imperative langage Multi-threads Fork processes 0O Language Conclusion

Non-interference

Two security levels:
» H for high
> L for low

and typing rules of the shape:

r'-E:7 IT'e=1/l:7 Cmd

Wh)
[+ while(E){/}: 7 Cmd
+ command subtyping:
Fr=1:7Cmd <7
(Sub)

Fr=1:7" Cmd

Péchoux UL - Loria Type systems for ICC analysis of imperative programs 6/38

Introduction Imperative langage Multi-threads Fork processes 0O Language Conclusion

Non-interference example

It prevent us from typing the following program:
while(x>0 : H) {
Xx = x-— ; : H Cmd
y = y++ ; : L Cmd
}

if x is High and y is Low (Indeed there is a flow from x to y) and
provided that H < L.

Péchoux UL - Loria Type systems for ICC analysis of imperative programs 7/38

Introduction Imperative langage Multi-threads Fork processes 0O Language Conclusion

Duality of non-interference and tiering

We would like to type following program:
while(x>0 : 1) {
x =x-—- ; : 1 Cmnd
y = y++ ; : 0 Cmd
}

if x is of tier 1 (High) and y is of tier 0 Low (preventing flows
from y to x) and provided that 0 < 1.

Péchoux UL - Loria Type systems for ICC analysis of imperative programs 8/38

Introduction Imperative langage Multi-threads Fork processes 00 Language Conclusion

Small imperative language

Every data type is encoded by words over W.
The size |w| of a word w € W is standard.

» Expressions :

E:= x|c|true| false | op(E)
» Instructions :
I == ; |[r] x=E; | h k| while(E){/}
| if(E){h}else{h}

The types 7 will be tiers in {0,1} such that 0 < 1.

Péchoux UL - Loria Type systems for ICC analysis of imperative programs 9/38

Introduction Imperative langage Multi-threads 00 Language

Typing rules : expressions

Variable
MNx)=r
Ne=x:7
Constant
M=n:71
Destructor
MN-e:7
I'-op(e): 7
Constructor
lFe:T
- op(e):0
Péchoux UL - Loria Type systems for ICC analysis of imperative programs

Conclusion

Introduction Imperative langage Multi-threads Fork processes 00 Language

Typing rules : commands

Assign
MN-x:71 r-e:r
<7
MN-x:=E:71
Compose
Eh:r Trh:7
Frhb:1v T
If
lFe:T Fr=1rh:r
e if(E){h}else{h}: 7
While
rM-££:1 Fr=1:7
I+ while(E){/}:1
Péchoux UL - Loria Type systems for ICC analysis of imperative programs

Conclusion

Introduction Imperative langage Multi-threads Fork processes 00 Language Conclusion

Improvements

We can extend the type system to more general operators
op::T X ...XTp— 7 such that 7 < Aj7;.
» Neutral operators:

> either a computable predicate
> or a subword operator:

vW7 di e {1a AR n}’ [[OPH(W) < w;
» Positive operators:

Vw, |[op](w)| < _max] |wi| + ¢, for c >0
e

,n

» |n this case 7 = 0.

We can also add procedure calls.

Péchoux UL - Loria Type systems for ICC analysis of imperative programs 12/38

Introduction Imperative langage Multi-threads 00 Language Conclusion

Example: addition

int add(int x,int y)

while (x>0)
{

X——;
y++
}

return vy

}

> v is necessarily of tier 0
> x is necessarily of tier 1

» and, consequently, add :: 1 x 0 — 0

Péchoux UL - Loria Type systems for ICC analysis of imperative programs 13/38

Introduction Imperative langage Multi-threads Fork processes 00 Language

Example: multiplication

Conclusion

int mult(int x,int y)

{

int z=0;

while (x)
{
X——;

z = add(y,z);

return z;

}

> the output of add is 0. Consequently, z is of tier 0.
» both x and y are of tier 1
» and, consequently, mult :: 1 x1—0

Péchoux UL - Loria Type systems for ICC analysis of imperative programs

Introduction Imperative langage Multi-threads Fork processes 00 Language

Example: exponential

Conclusion

int expo(int x)
{
int y=1;
while (x)
{
X——
y = add(y.y);
}

return vy,

}

> x is of tier 1,
> the output of add is of tier 0,
» but y has to be of tier 1 in the first argument of add !!!

Péchoux UL - Loria Type systems for ICC analysis of imperative programs

Introduction Imperative langage Multi-threads Fork processes 00 Language Conclusion

Results

We have a (weak) subject reduction property:

Theorem [Marion and Péchoux (TAMC 2014)]

IfoEl =o' El"andlT=1:7then T - /": 7" where 7/ < 7.

We obtain a characterization of FPtime:

Theorem [Marion (Lics 2011)]

The set of functions computable by a typable and terminating
program with FPtime computable operators is exactly FPtime.

Moreover, type inference is decidable:

Theorem [Hainry, Marion and Péchoux (Fossacs 2013)]

Type inference can be done in polynomial time.

Péchoux UL - Loria Type systems for ICC analysis of imperative programs 16/38

Introduction Imperative langage Multi-threads Fork processes 00 Language Conclusion

Mechanism

FPtime soundness:

» No flow from 0 to 1: tier 1 variables cannot increase

> Only tier 1 arguments in the guards

» At most n¥ configurations under termination assumption
FPtime completeness:

» Any polynomial can be computed

» We simulate polynomial time TMs by an imperative typable
(and terminating) program

Type inference:
» All the constraints are inequalities over 2 tiers
» That can be reduced to a 2-SAT formula

Péchoux UL - Loria Type systems for ICC analysis of imperative programs

Introduction Imperative langage Multi-threads Fork processes 00 Language Conclusion

Multi-threaded

Now we consider multi-threads M to be a fixed collection of

commands:
M(a) =1, a € dom(M)

and non-deterministic reduction:
M(a)=1 oEIl—o1EFh M)=1 oEIl—o

Step Stop
JhM—)Ul':M[aizll]) U':M—>O'1':M—C¥()

and we extend the typing rule by:

Va € dom(M), 31, T+ M(a) : 7
r=Mm:o

(Multi)

Péchoux UL - Loria Type systems for ICC analysis of imperative programs 18/38

Introduction Imperative langage Multi-threads Fork processes 00 Language Conclusion

Results
We obtain a polynomial time soundness criterion:

Theorem [Marion and Péchoux (TAMC 2014)]

A typable and strongly normalizing multi-thread terminates in a
polynomially bounded number of transitions.

The strong normalization assumption can be weakened under a fair
scheduling policy (depending only on M and tier 1 values):

Theorem [Marion and Péchoux (TAMC 2014)]

A typable a multi-thread terminating under a fair scheduling policy
terminates in a polynomially bounded number of transitions.

Moreover, type inference remains decidable:

Theorem [Hainry, Marion and Péchoux (Fossacs 2013)]

Type inference can be done in polynomial time.

Péchoux UL - Loria Type systems for ICC analysis of imperative programs 19/38

Introduction Imperative langage Multi-threads Fork processes 00 Language Conclusion

Forks: motivation

» May the analysis be generalized to more expressive languages ?

» Can we analyze parallelism ?

» Is it possible to jump from time (FPtime) to space (Pspace or
FPspace) ?

In [Fossacs 2013], we have presented an extension to forks.
The syntax of the language is extended by two commands:

X =fork() | X = wait{E}

Péchoux UL - Loria Type systems for ICC analysis of imperative programs 20/38

Introduction Imperative langage Multi-threads Fork processes 00 Language Conclusion

Forks informal semantics

On the execution of X = fork(); / in a parent process:

> a new son of (fresh) pid n and instruction / is created (by

default, X :=0)
» the father has instruction / and knows the pid of its new son
(X :=n)

On the execution of X = wait(E); [in a parent process:

» if E evaluates to n and the process of pid n returns v then
X := v in the parent process

» otherwise the father has to wait.

Péchoux UL - Loria Type systems for ICC analysis of imperative programs 21/38

Introduction Imperative langage Multi-threads Fork processes 00 Language Conclusion

Forks typing rules

We need to add an extra tier —1 (—1 < 0 < 1) in order to prevent
accumulation.

N==x:0 F) r’-E:0 Mx:-1

I x:=fork():0 I x=wait(E): —1

W)

Operators op :: 71 X ... X T, — T are extended to max operations :

YW, [lopl(W)l < max |wil

n
provided that 7 < 1.

> It means that forks’ pid cannot be used as guards

» The values returned by sons cannot be accumulated (at most
max or neutral operators).

Péchoux UL - Loria Type systems for ICC analysis of imperative programs 22/38

Introduction Imperative langage Multi-threads Fork processes 00 Language Conclusion

Example "rien que pour les yeux”

max_reduce(nt, A?) := 0 := 0: 0; f ! := A[r]%: —1;
flag? = tt: 0;
while (n* #1)! do {
if flag?® then { // not finished
pidl® := fork (): 0
if (pidl >0)° then { // father process
r® = 2xr+2: 0;
pidr® := fork (): 0}
else { r® := 2%r41: 0 } //left son
if (pidr==0)0r(pidl==0)° then { f ' := A[r]?:
else {
flag? := ff: 0; // father
x|t = wait(pidl): 0;
xr~! = wait(pidr): 0;
f!l = max(f ', max(xl,xr)): 0; } }
n! := half(n)': 1 } //end of while
return f:—-1

Péchoux UL - Loria Type systems for ICC analysis of imperative programs 23/38

Introduction Imperative langage Multi-threads Fork processes 00 Language Conclusion

Results
We obtain a characterization of Pspace computable functions:

Theorem [Hainry, Marion and Péchoux (Fossacs 2013)]

The set of functions computed by typable, strongly normalizing
and confluent processes is exactly the set of polynomial space
computable functions FPspace.

Soundness:
» As for multi-threads, the computation tree has a polynomially
bounded depth
» tier —1 prevents accumulation
» the considered programs are confluent, consequently, we can
perform a "in depth” evaluation
Completeness:
» Each FPspace function can be bitwise computed
» We show that QBF can be encoded and typed in our
formalism.

Péchoux UL - Loria Type systems for ICC analysis of imperative programs 24/38

Introduction Imperative langage Multi-threads Fork processes 00 Language Conclusion

OO0 State of the art

Some techniques and programs to bound resource consumptions

v

Amortised analysis for linear heap (Hofmann & Jost)

» “Costa” for analyzing Java bytecode (Albert, Arenas, Genaim,
Puebla & Zanardini)

» “Speed” for C++ (Gulwani et al.)
» “ResAna" analyzes Java programs (Shkaravska et al.)

» Non-interference and tiering for a graph based imperative
language (Leivant & Marion)

Péchoux UL - Loria Type systems for ICC analysis of imperative programs 25/38

Introduction

v

v

v

v

Péchoux

Imperative langage Multi-threads Fork processes 00 Language

OO: motivation

Conclusion

Extend our results to a "daily-life” real programming language

Analyze the complexity of the OO paradigm
Obtain "practical” upper bound on both the heap and stack
space usage

Analyze OO features:

v

v

v

mixture of while loops and recursive method calls
objects in loop guards

inheritance

control flow statements such as break or continue

UL - Loria Type systems for ICC analysis of imperative programs

Introduction Imperative langage Multi-threads Fork processes 00 Language Conclusion

Core Java

In [FOPARA2013], we have considered the Java-like language:
» Expressions E ::= ... |null | this | new C(E) | E.m(E)
» Instructions /= ... | E.m(E);
» Methods Mc ::=7 m(71 x1,...,7y xp){/[return x;]}
» Cons Kc:i=C(T1 yq1,---sTn YX1:=Y1: - - Xni=Y i }
» Classes € ::= C{m x1;...;7p xn; Kc ML...ME}

Péchoux UL - Loria Type systems for ICC analysis of imperative programs

Introduction Imperative langage Multi-threads Fork processes 00 Language Conclusion

Core Java Programs

Definition [Core Java Program]

A Core Java Program is a collection of classes and exactly one
executable:

Exe{main(){r1 x1 := E1;...;7p xn 1= Ep; / 1

Initialization Computation

Péchoux UL - Loria Type systems for ICC analysis of imperative programs 28/38

Introduction Imperative langage Multi-threads

Fork processes 00 Language

Heap

» Where objects are created and kept in memory.

» Maximal heap space is defined at the launch of the JVM.
» Pointers to the objects, arrows between objects and their

attributes.
FLy oz v M
B - C—B
X2 IYl \XZ
E’\ﬁ D
Péchoux UL - Loria

Type systems for ICC analysis of imperative programs

Conclusion

Introduction Imperative langage Multi-threads Fork processes 00 Language Conclusion

v

v

v

v

Péchoux

Stack

Where arguments of a method call are put.
Primitive types are put by value.
Object types are put by reference, i.e. a pointer to the heap.

May grow indefinitely because of recursive calls.

P o[y Y
E
ey 3’

UL - Loria Type systems for ICC analysis of imperative programs 30/38

Introduction Imperative langage Multi-threads Fork processes 00 Language Conclusion

Péchoux

Tiered types

Expressions, Instructions, Constructors and Methods are
annotated by tiered types (i.e. a type and a tier (0 or 1)).

For instructions, the type will always be void.
For Constructors and methods the tiered type is functional:

boolean(l) x BList(1) — BList(0)

For methods, the tiered type of the caller object is included:
e.g. for void setQueue(BList q) {...}

BList(0) x BList(1) — void(0)

UL - Loria Type systems for ICC analysis of imperative programs

Introduction Imperative langage Multi-threads Fork processes 00 Language Conclusion

Typing Simple Expressions

(True) (False)
Ik true : boolean(1) I false : boolean(1)

Null
[null: C(1) (Nl

a = min{tiers of the attributes} , A(mO)(x) = 7(a)
e

(m©,A) F this : C(a) (7€ D) F 2 r(a) (Var)

ViTEFE: 7i(a) op:T X+ X T, —> boolean

I+ op(E,...,E,) :boolean(a)

(Op)

Péchoux UL - Loria Type systems for ICC analysis of imperative programs 32/38

Introduction Imperative langage Multi-threads Fork processes 00 Language Conclusion

Typing Instructions

M-x:7(a) r-e:7(8) a=p

i (Skip) Ass
MF: :void(0) It [7] x:=E;: void(«) (Ass)
M=1:void(er) a=p s Vil I void(ey) (5eq)
b
e 1:void(pB) (Sub) FEh b:void(an Vaz)

It E :boolean(w) ViTlF [;:void(«)
It if(E){h}else{h} : void(«)

(If)

I E :boolean(l) Ik /:void(1)
I+ while(E){/} : void(1)

Wh)

Péchoux UL - Loria Type systems for ICC analysis of imperative programs 33/38

Introduction Imperative langage Multi-threads

Fork processes

00 Language Conclusion

Typing Constructors

Vi (mSA)FE:7i(B) o =B
(e, A)FC(..Try;..) .xi=y;5. .} - x () x -+ = C(0)
(New)
(mS, A) - new C(Ey, ..., E,) : C(0)

Vi (e, A) Fy,; i)
(e, A)FC(...,7ry;,--)

K
..x,-::y,-;...}:~~><T,-(a,-)><-~-—>C(0)()

Constructors make the heap increase, hence output something of tier 0.

Péchoux UL - Loria Type systems for ICC analysis of imperative programs 34/38

Introduction Imperative langage Multi-threads Fork processes 00 Language Conclusion

Safety assumption

Definition [Safety]

A well-typed program with respect to a typing environment A is
safe if for each recursive method M¢c = 7 m(...){/ [return x;]}:

> there is exactly one call (even nested) to m,

> there is no while loop inside /,

> and the following judgment can be derived:

(e, A) F Mc : C(1) x 74(1) x --- x 7p(1) — 7(1).

Péchoux UL - Loria Type systems for ICC analysis of imperative programs 35/38

Introduction Imperative langage Multi-threads Fork processes 00 Language Conclusion

Results

Theorem [Hainry and Péchoux]

In the execution of a safe Core Java program terminating on input
C, the size of the heap and of the stack are in O(|C|™((*+1)A)),

» ny the number of variables and attributes of tier 1,
»)\ the maximum number of nested while and
» v the maximum number of nested methods.

We are still complete wrt FPtime and type inference is decidable:

Proposition [Hainry and Péchoux]

The set of functions computable by typable, safe and terminating
programs is exactly FPtime

Proposition [Type inference]

The type inference can be done in time linear in the size of the
program.

Péchoux UL - Loria Type systems for ICC analysis of imperative programs 36/38

Introduction Imperative langage

B A
/
.-
/ \
D A
Ed
Péchoux UL - Loria

Multi-threads Fork processes 00 Language Conclusion

Idea of the proof

» The subheap of tier 1 never grows.

> Only tier 1 variables control while
and recursive functions.

» The number of tier 1 configurations
is bounded by |C|?*".

» Hence a bound on the stack and
heap.

Type systems for ICC analysis of imperative programs 37/38

Introduction Imperative langage

B A

/
e
/ \
D A
Ed
Péchoux UL - Loria

Multi-threads Fork processes 00 Language Conclusion

Idea of the proof

» The subheap of tier 1 never grows.

> Only tier 1 variables control while
and recursive functions.

» The number of tier 1 configurations
is bounded by |C|?*".

» Hence a bound on the stack and
heap.

Type systems for ICC analysis of imperative programs 37/38

Introduction Imperative langage

B A
/
e
/ \
D A
Ed
Péchoux UL - Loria

Multi-threads Fork processes 00 Language Conclusion

Idea of the proof

» The subheap of tier 1 never grows.

> Only tier 1 variables control while
and recursive functions.

» The number of tier 1 configurations
is bounded by |C|?*".

» Hence a bound on the stack and
heap.

Type systems for ICC analysis of imperative programs 37/38

Introduction

Imperative langage

Péchoux

UL - Loria

Multi-threads Fork processes 00 Language

Idea of the proof

Conclusion

» The subheap of tier 1 never grows.

> Only tier 1 variables control
and recursive functions.

while

» The number of tier 1 configurations

is bounded by |C|?*".

» Hence a bound on the stack and

heap.

Type systems for ICC analysis of imperative programs

Introduction Imperative langage Multi-threads Fork processes 00 Language Conclusion

Conclusion

A static analysis for resource consumption dealing with:

» several languages (imperative, fork, multi-thread, OO, ...)
» several classes (FPtime, FPspace,...)

» both extensional and intensional (heap, stack) properties

Drawbacks and Open questions

» Not intentionnally complete: improve expressiveness by
program transformation

» Capture Thread creation (work in progress)
» Do the implementation
» Extend the characterizations (PP, BPP, ...)

Péchoux UL - Loria Type systems for ICC analysis of imperative programs 38/38

	Main
	Introduction
	Imperative langage
	Multi-threads
	Fork processes
	OO Language
	Conclusion

