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ICC’s last stand
The aim of ICC is to find machine independent characterizations of
complexity classes:

I Function algebra (Bellantoni, Cook, Leivant, Marion, ...)

I Lights logics (Girard, Lafont, Baillot, Gaboardi, Ronchi Della
Rocca, ...)

I Interpretations of TRS (Bonfante, Marion, Moyen, Péchoux,
...)

I Non-size increasing principle (Hofmann, ...)

I Matrices calculus for imperative programs(Jones, Kristiansen,
Wunderlich, Moyen,...)

I Imperative pointer graph languages for subpolynomial classes
(Hofmann, Schoepp, ...)
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Mixture

Marion’s idea (Lics 2011) is to take advantage of two well-known
lines of work:

I Safe (or tiered) recursion by Bellantoni and Cook [1992]

I Non-interference by Volpano et al [1996]

in order to obtain a polynomial time characterization on imperative
languages.
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Safe recursion

The class of functions that can be defined using:

I constants, projections, successor, predecessor, conditional,

I safe composition:

f (x ; a) = h(r(x ; ); t(x ; a))

I and safe recursion (on notation):

f (0, x ; a) = g(x ; a)

f (i(x), y ; a) = hi (x , y ; f (x , y ; a)) i ∈ {0, 1},

provided h, r , t, g , hi are already defined in the class,

is exactly the set of functions computable in polynomial time
(FPtime).
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The tiered viewpoint

The class of functions that can be defined using:

I constants, projections, successor, predecessor, conditional,

I safe composition:

f (x1; a0) = h(r(x1; ); t(x1; a)0)

I and safe recursion (on notation):

f (0, x1; a0) = g(x1; a0)

f (i(x)1, y1; a) = hi (x
1, y1; f (x1, y1; a)0) i ∈ {0, 1},

provided h, r , t, g , hi are already defined in the class,

is exactly the set of functions computable in polynomial time
(FPtime).
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Non-interference

Two security levels:

I H for high

I L for low

and typing rules of the shape:

Γ ` E : τ Γ ` I : τ Cmd
(Wh)

Γ ` while(E ){I} : τ Cmd

+ command subtyping:

Γ ` I : τ Cmd τ < τ ′

(Sub)
Γ ` I : τ ′ Cmd
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Non-interference example

It prevent us from typing the following program:

while(x>0 : H) {

x = x-- ; : H Cmd

y = y++ ; : L Cmd

}

if x is High and y is Low (Indeed there is a flow from x to y) and
provided that H < L.
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Duality of non-interference and tiering

We would like to type following program:

while(x>0 : 1) {

x = x-- ; : 1 Cmd

y = y++ ; : 0 Cmd

}

if x is of tier 1 (High) and y is of tier 0 Low (preventing flows
from y to x) and provided that 0 < 1.
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Small imperative language

Every data type is encoded by words over W.
The size |w | of a word w ∈W is standard.

I Expressions :
E ::= x | c | true | false | op(E )

I Instructions :
I ::= ; | [τ ] x:=E ; | I1 I2 | while(E ){I}

| if(E ){I1}else{I2}
The types τ will be tiers in {0, 1} such that 0 < 1.
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Typing rules : expressions

Variable
Γ(x) = τ

Γ ` x : τ

Constant

Γ ` n : τ

Destructor
Γ ` e : τ

Γ ` op(e) : τ

Constructor
Γ ` e : τ

Γ ` op(e) : 0
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Typing rules : commands

Assign
Γ ` x : τ Γ ` E : τ ′

τ ≤ τ ′
Γ ` x := E : τ

Compose
Γ ` I1 : τ Γ ` I2 : τ ′

Γ ` I1 I2 : τ ∨ τ ′

If
Γ ` e : τ Γ ` Ii : τ

Γ ` if(E ){I1}else{I2} : τ

While
Γ ` E : 1 Γ ` I : τ

Γ ` while(E ){I} : 1
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Improvements

We can extend the type system to more general operators
op :: τ1 × . . .× τn → τ such that τ ≤ ∧iτi .
I Neutral operators:

I either a computable predicate
I or a subword operator:

∀w , ∃i ∈ {1, . . . , n}, JopK(w) E wi

I Positive operators:

∀w , |JopK(w)| ≤ max
i∈[1,n]

|wi |+ c, for c ≥ 0

I In this case τ = 0.

We can also add procedure calls.
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Example: addition

i n t add ( i n t x , i n t y )
{
wh i l e ( x>0)

{
x−−;
y++;
}

r e t u r n y
}

I y is necessarily of tier 0

I x is necessarily of tier 1

I and, consequently, add :: 1× 0→ 0
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Example: multiplication

i n t mult ( i n t x , i n t y )
{
i n t z=0;
wh i l e ( x )

{
x−−;
z = add ( y , z ) ;
}

r e t u r n z ;
}

I the output of add is 0. Consequently, z is of tier 0.

I both x and y are of tier 1

I and, consequently, mult :: 1× 1→ 0
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Example: exponential

i n t expo ( i n t x )
{
i n t y=1;
wh i l e ( x )

{
x−−;
y = add ( y , y ) ;
}

r e t u r n y ;
}

I x is of tier 1,

I the output of add is of tier 0,

I but y has to be of tier 1 in the first argument of add !!!
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Results

We have a (weak) subject reduction property:

Theorem [Marion and Péchoux (TAMC 2014)]

If σ � I → σ′ � I ′ and Γ ` I : τ then Γ ` I ′ : τ ′ where τ ′ ≤ τ .

We obtain a characterization of FPtime:

Theorem [Marion (Lics 2011)]

The set of functions computable by a typable and terminating
program with FPtime computable operators is exactly FPtime.

Moreover, type inference is decidable:

Theorem [Hainry, Marion and Péchoux (Fossacs 2013)]

Type inference can be done in polynomial time.
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Mechanism

FPtime soundness:

I No flow from 0 to 1: tier 1 variables cannot increase

I Only tier 1 arguments in the guards

I At most nk configurations under termination assumption

FPtime completeness:

I Any polynomial can be computed

I We simulate polynomial time TMs by an imperative typable
(and terminating) program

Type inference:

I All the constraints are inequalities over 2 tiers

I That can be reduced to a 2-SAT formula
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Multi-threaded

Now we consider multi-threads M to be a fixed collection of
commands:

M(α) = I , α ∈ dom(M)

and non-deterministic reduction:

M(α) = I σ � I → σ1 � I1

σ � M → σ1 � M[α := I1]
(Step)

M(α) = I σ � I → σ1

σ � M → σ1 � M − α
(Stop)

and we extend the typing rule by:

∀α ∈ dom(M), ∃τ, Γ ` M(α) : τ
(Multi)

Γ ` M : �
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Results
We obtain a polynomial time soundness criterion:

Theorem [Marion and Péchoux (TAMC 2014)]

A typable and strongly normalizing multi-thread terminates in a
polynomially bounded number of transitions.

The strong normalization assumption can be weakened under a fair
scheduling policy (depending only on M and tier 1 values):

Theorem [Marion and Péchoux (TAMC 2014)]

A typable a multi-thread terminating under a fair scheduling policy
terminates in a polynomially bounded number of transitions.

Moreover, type inference remains decidable:

Theorem [Hainry, Marion and Péchoux (Fossacs 2013)]

Type inference can be done in polynomial time.
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Forks: motivation

I May the analysis be generalized to more expressive languages ?

I Can we analyze parallelism ?

I Is it possible to jump from time (FPtime) to space (Pspace or
FPspace) ?

In [Fossacs 2013], we have presented an extension to forks.
The syntax of the language is extended by two commands:

X = fork() | X = wait{E}

Péchoux UL – Loria Type systems for ICC analysis of imperative programs 20/38



Introduction Imperative langage Multi-threads Fork processes OO Language Conclusion

Forks informal semantics

On the execution of X = fork(); I in a parent process:

I a new son of (fresh) pid n and instruction I is created (by
default, X := 0)

I the father has instruction I and knows the pid of its new son
(X := n)

On the execution of X = wait(E ); I in a parent process:

I if E evaluates to n and the process of pid n returns v then
X := v in the parent process

I otherwise the father has to wait.
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Forks typing rules

We need to add an extra tier −1 (−1 < 0 < 1) in order to prevent
accumulation.

Γ ` x : 0
(F)

Γ ` x:=fork() : 0

Γ ` E : 0 Γ ` x : −1
(W)

Γ ` x:=wait(E ) : −1

Operators op :: τ1 × . . .× τn → τ are extended to max operations :

∀w , |JopK(w)| ≤ max
i∈[1,n]

|wi |

provided that τ < 1.

I It means that forks’ pid cannot be used as guards

I The values returned by sons cannot be accumulated (at most
max or neutral operators).
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Example ”rien que pour les yeux”
max reduce ( n1 , A0 ) : := r 0 := 0 : 0 ; f−1 := A [ r ] 0 : −1 ;

f l a g 0 := t t : 0 ;

whi le (n1 6= 1)1 do {
i f f l a g 0 then { // not finished

p i d l 0 := f o r k ( ) : 0

i f ( p i d l >0)0 then { // father process

r 0 := 2∗ r +2: 0 ;

p i d r 0 := f o r k ( ) : 0}
e l s e { r 0 := 2∗ r +1: 0 } // left son

i f ( p i d r ==0)0 o r ( p i d l ==0)0 then { f−1 := A [ r ] 0 : 0 ; }
e l s e {

f l a g 0 := f f : 0 ; // father

x l −1 := w a i t ( p i d l ) : 0 ;

x r−1 := w a i t ( p i d r ) : 0 ;

f−1 := max ( f−1 , max ( x l , x r ) ) : 0 ; } }
n1 := h a l f ( n ) 1 : 1 } // end of while

return f :−1
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Results
We obtain a characterization of Pspace computable functions:

Theorem [Hainry, Marion and Péchoux (Fossacs 2013)]

The set of functions computed by typable, strongly normalizing
and confluent processes is exactly the set of polynomial space
computable functions FPspace.

Soundness:
I As for multi-threads, the computation tree has a polynomially

bounded depth
I tier −1 prevents accumulation
I the considered programs are confluent, consequently, we can

perform a ”in depth” evaluation

Completeness:
I Each FPspace function can be bitwise computed
I We show that QBF can be encoded and typed in our

formalism.
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OO State of the art

Some techniques and programs to bound resource consumptions

I Amortised analysis for linear heap (Hofmann & Jost)

I “Costa” for analyzing Java bytecode (Albert, Arenas, Genaim,
Puebla & Zanardini)

I “Speed” for C++ (Gulwani et al.)

I “ResAna” analyzes Java programs (Shkaravska et al.)

I Non-interference and tiering for a graph based imperative
language (Leivant & Marion)
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OO: motivation

I Extend our results to a ”daily-life” real programming language

I Analyze the complexity of the OO paradigm

I Obtain ”practical” upper bound on both the heap and stack
space usage

I Analyze OO features:
I mixture of while loops and recursive method calls
I objects in loop guards
I inheritance
I control flow statements such as break or continue
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Core Java

In [FOPARA2013], we have considered the Java-like language:

I Expressions E ::= . . . | null | this | new C(E ) | E .m(E )

I Instructions I ::= . . . | E .m(E );

I Methods MC ::= τ m(τ1 x1, . . . , τn xn){I [return x; ]}
I Cons KC ::= C(τ1 y1, . . . , τn yn){x1:=y1; . . . xn:=yn; }
I Classes C ::= C{τ1 x1; . . . ; τn xn; KC M1

C . . .M
k
C}
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Core Java Programs

Definition [Core Java Program]

A Core Java Program is a collection of classes and exactly one
executable:

Exe{main(){τ1 x1 := E1; . . . ; τn xn := En;︸ ︷︷ ︸
Initialization

I︸︷︷︸
Computation

}}.
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Heap

I Where objects are created and kept in memory.

I Maximal heap space is defined at the launch of the JVM.

I Pointers to the objects, arrows between objects and their
attributes.

B C

D

B

A

A

x1

x2 y1

z1
x1

x2

bc

d

e
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Stack

I Where arguments of a method call are put.

I Primitive types are put by value.

I Object types are put by reference, i.e. a pointer to the heap.

I May grow indefinitely because of recursive calls.

f x: true y

g z: true w

f x: false y
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Tiered types

I Expressions, Instructions, Constructors and Methods are
annotated by tiered types (i.e. a type and a tier (0 or 1)).

I For instructions, the type will always be void.

I For Constructors and methods the tiered type is functional:

boolean(1)× BList(1)→ BList(0)

I For methods, the tiered type of the caller object is included:
e.g. for void setQueue(BList q) {...}

BList(0)× BList(1)→ void(0)

Péchoux UL – Loria Type systems for ICC analysis of imperative programs 31/38



Introduction Imperative langage Multi-threads Fork processes OO Language Conclusion

Typing Simple Expressions

(True)
Γ ` true : boolean(1)

(False)
Γ ` false : boolean(1)

(Null)
Γ ` null : C(1)

α � min{tiers of the attributes}
(Self)

(mC,∆) ` this : C(α)

∆(mC)(x) = τ(α)
(Var)

(mC,∆) ` x : τ(α)

∀i Γ ` Ei : τi (α) op :: τ1 × · · · × τn → boolean
(Op)

Γ ` op(E1, . . . ,En) : boolean(α)

Péchoux UL – Loria Type systems for ICC analysis of imperative programs 32/38



Introduction Imperative langage Multi-threads Fork processes OO Language Conclusion

Typing Instructions

(Skip)
Γ ` ; : void(0)

Γ ` x : τ(α) Γ ` E : τ(β) α � β
(Ass)

Γ ` [τ ] x:=E ; : void(α)

Γ ` I : void(α) α � β
(Sub)

Γ ` I : void(β)

∀i Γ ` Ii : void(αi )
(Seq)

Γ ` I1 I2 : void(α1 ∨ α2)

Γ ` E : boolean(α) ∀i Γ ` Ii : void(α)
(If)

Γ ` if(E ){I1}else{I2} : void(α)

Γ ` E : boolean(1) Γ ` I : void(1)
(Wh)

Γ ` while(E ){I} : void(1)
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Typing Constructors

∀i (mC,∆) ` Ei : τi (βi ) αi � βi
(ε,∆) ` C(. . . τi yi . . .){. . . xi := yi ; . . .} : · · · × τi (αi )× · · · → C(0)

(New)
(mC,∆) ` new C(E1, . . . ,En) : C(0)

∀i (ε,∆) ` yi : τi (αi )
(KC)

(ε,∆) ` C(. . . , τi yi , . . .){. . . xi := yi ; . . .} : · · · × τi (αi )× · · · → C(0)

Constructors make the heap increase, hence output something of tier 0.
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Safety assumption

Definition [Safety]

A well-typed program with respect to a typing environment ∆ is
safe if for each recursive method MC = τ m(. . .){I [return x; ]}:
I there is exactly one call (even nested) to m,

I there is no while loop inside I ,

I and the following judgment can be derived:

(ε,∆) ` MC : C(1)× τ1(1)× · · · × τn(1)→ τ(1).
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Results

Theorem [Hainry and Péchoux]

In the execution of a safe Core Java program terminating on input
C, the size of the heap and of the stack are in O(|C|n1((ν+1)λ)).

I n1 the number of variables and attributes of tier 1,
I λ the maximum number of nested while and
I ν the maximum number of nested methods.

We are still complete wrt FPtime and type inference is decidable:

Proposition [Hainry and Péchoux]

The set of functions computable by typable, safe and terminating
programs is exactly FPtime

Proposition [Type inference]

The type inference can be done in time linear in the size of the
program.
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Idea of the proof

B

C

D

B

A

A

b1c1

d0

e0

I The subheap of tier 1 never grows.

I Only tier 1 variables control while
and recursive functions.

I The number of tier 1 configurations
is bounded by |C|2×n1 .

I Hence a bound on the stack and
heap.
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Conclusion

Result

A static analysis for resource consumption dealing with:

I several languages (imperative, fork, multi-thread, OO, ...)

I several classes (FPtime, FPspace,...)

I both extensional and intensional (heap, stack) properties

Drawbacks and Open questions

I Not intentionnally complete: improve expressiveness by
program transformation

I Capture Thread creation (work in progress)

I Do the implementation

I Extend the characterizations (PP, BPP, ...)
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