
A Categorical Treatment of Malicious Behavioral
Obfuscation

Romain Péchoux and Thanh Dinh Ta

Université de Lorraine & Inria Grand-Est, LORIA, Nancy, France

TAMC 2014

Péchoux - Ta UL – Loria A Categorical Treatment of Malicious Behavioral Obfuscation 1/19



Motivations Syscalls interaction category Obfuscation Obfuscated path generation

Traditional malware’s writers techniques

Use of program transformation to bypass malwares detectors:

I Useless code injection,

I Function call order change,

I Code encryption, ...

In order to obtain a program having the same malicious behavior
(semantically equivalent wrt some formal semantics).

Péchoux - Ta UL – Loria A Categorical Treatment of Malicious Behavioral Obfuscation 2/19



Motivations Syscalls interaction category Obfuscation Obfuscated path generation

Relative view of obfuscation

Obfuscation as information lost

P P

Props Props

O

A A

⊇

I P: set of programs,

I O: obfuscation function,

I A: abstraction (or analysis) function,

I Props: set of interested properties,

I ⊇: information ordering,

Péchoux - Ta UL – Loria A Categorical Treatment of Malicious Behavioral Obfuscation 3/19



Motivations Syscalls interaction category Obfuscation Obfuscated path generation

Code obfuscation

P ∼io O (P)

Semantic equivalence is undecidable (by Rice’s Theorem).
Consequently, detectors have to handle code obfuscation
conveniently and with a good tractability. Current works:

I semantics-based detection [Christodorescu, Della Preda et al.]:

Program = Abstraction independent from code transformation

I behavior-based detection [Forrest, Kolbitsch et al.]:

Program abstraction = Observable behaviors

I Detection bypassing [Filiol, Wagner & Soto, ...]

Péchoux - Ta UL – Loria A Categorical Treatment of Malicious Behavioral Obfuscation 4/19



Motivations Syscalls interaction category Obfuscation Obfuscated path generation

Behavioral obfuscation

I only a few works

I a lack of formalism and general methods

I difficulty to handle new attacks

I the strength of a behavior-based detector might be
overestimated (bad resilience to code obfuscation)

Consequently there is a strong need of:

I high level formalisms

I allowing to obtain formal proofs on malicious behaviors

I while keeping practical considerations in mind !

Péchoux - Ta UL – Loria A Categorical Treatment of Malicious Behavioral Obfuscation 5/19



Motivations Syscalls interaction category Obfuscation Obfuscated path generation

Trojan Dropper as Motivating example

The trojan Dropper.Win32.Dorgam works in 3 consecutive stages:

1. It unpacks 2 files whose paths are added in the registry value
AppInit_DLLs.

2. It creates a key SOFTWARE/AD and adds some entries.

3. It calls the function URLDownloadToFile of MSIE to
download malicious codes from some addresses in the stored
values.

File unpacking at stage 1 and File downloading at stage 3 are too
general to expect any behavior-based detection...

Péchoux - Ta UL – Loria A Categorical Treatment of Malicious Behavioral Obfuscation 6/19



Motivations Syscalls interaction category Obfuscation Obfuscated path generation

Motivating example

Stage 2: we look at the malware behaviors (syscalls):

NtOpenKey, NtSetValueKey, NtClose, NtOpenKey, . . .

However each NtOpenKey syscall associated to each
NtSetValueKey syscall is verbose:

NtOpenKey, NtSetValueKey, NtSetValueKey, . . .

Moreover, the key handler can be obtained by duplicating a key
handler located in another process, so the call NtOpenKey is not
mandatory:

NtDuplicateObject, NtSetValueKey, NtSetValueKey, . . .

Péchoux - Ta UL – Loria A Categorical Treatment of Malicious Behavioral Obfuscation 7/19



Motivations Syscalls interaction category Obfuscation Obfuscated path generation

Achievements

I We introduce an abstract model based on monoidal categories

I where observable behaviors are morphisms

I we show the principle of obfuscation on such a model

I we use semantics-preserving transformations on such model

I and show that they allow us to capture malwares in practice.

Péchoux - Ta UL – Loria A Categorical Treatment of Malicious Behavioral Obfuscation 8/19



Motivations Syscalls interaction category Obfuscation Obfuscated path generation

Interaction category
I A memory state s : B → {0, 1}, with B ⊆ Adr
I A memory space m = {s | dom(s) = B}

Interaction category

An interaction category consists in 2 memory spaces mp, mk s.t.:

I objects: ni ⊆ mi , i ∈ {k, p}, np × nk , e, ...

I morphisms: πi , s
i : ni → o i , i ∈ {p, k},

sp−k : np × nk → op × ok (Syscall interactions)

I and with a tensor product ⊗ defined on objects by:

m1 ⊗m2 n1 ⊗m2

m1 ⊗ n2 n1 ⊗ n2

s1⊗1m2

1m1⊗s2 1n1⊗s2

s1⊗1n2

N.B.: Each interaction category is a (partial) monoidal category.
Péchoux - Ta UL – Loria A Categorical Treatment of Malicious Behavioral Obfuscation 9/19



Motivations Syscalls interaction category Obfuscation Obfuscated path generation

Example: Function and Syscall

Process internal computation and syscall interaction

char *src = 0x00150500;

char *dst = 0x00150770;

strncpy(dst ,src ,10);

...

char *buf = 0x0015C898;

HANDLE hdl = 0x00000730;

NtWriteFile(hdl ,...,buf ,1024);

strncpy is represented by a process internal computation:

strncpyp : [src]⊗ [dst] −→ [src]⊗ [dst],

NtWriteFile is represented by a syscall interaction:

NtWriteFilep-k : [buf ]× [hdl ] −→ [buf ]× [hdl ].

Péchoux - Ta UL – Loria A Categorical Treatment of Malicious Behavioral Obfuscation 10/19



Motivations Syscalls interaction category Obfuscation Obfuscated path generation

Observable paths

Definition [Observable path]

I An execution path is a finite list of morphisms
X = [s j11 , s

j2
2 , . . . ], with ji ∈ {p, p-k}

I The observable path O of an execution path X consists in
syscall interactions of X .
Let obs be the mapping from X to O.

strncpy(dst ,src1 ,10);

strncpy(dst+10,src1 +10 ,30);

NtOpenKey(h,...{...dst...});
memcpy(src2 ,src1 ,1024);

Its execution and observable paths are defined by:

X = [strncpyp1 , strncpy
p
2 ,NtOpenKey

p-k
3 ,memcpyp4 ]

O = [NtOpenKeyp-k
3 ] = obs(X )

Péchoux - Ta UL – Loria A Categorical Treatment of Malicious Behavioral Obfuscation 11/19



Motivations Syscalls interaction category Obfuscation Obfuscated path generation

Obsfuscation

Definition [Semantics]

The path, kernel and process semantics of X , s(X ), k(X ) and p(X )
resp. are the morphisms making the following diagram commute:

mp × nk

mp mp × ok ok

s(X )
p(X

) k(X )

πp πk

Definition [Behavioral obfuscation]

X2 obfuscates X1 if:

I s (X2)
(
vp0 × vk0

)
= s (X1)

(
vp0 × vk0

)
I and obs(X1) 6= obs(X2).

Péchoux - Ta UL – Loria A Categorical Treatment of Malicious Behavioral Obfuscation 12/19



Motivations Syscalls interaction category Obfuscation Obfuscated path generation

Obfuscation Theorem

Theorem [Camouflage]

Given X1 and vp × vk ∈ source (s (X1)), for each X1-2 such that
p(X1-2)[vk ] is monic (i.e. injective) and:

k (X1-2)
(
vp × vk

)
= k (X1)

(
vp × vk

)
,

there exists X2 ∈ X satisfying obs (X2) = obs (X1-2) and:

s (X2)
(
vp × vk

)
= s (X1)

(
vp × vk

)
.

I proved using path replaying techniques:
I replay= path with same kernel effect, distinct observations

I Can we use the categorical abstraction a bit further ?

Péchoux - Ta UL – Loria A Categorical Treatment of Malicious Behavioral Obfuscation 13/19



Motivations Syscalls interaction category Obfuscation Obfuscated path generation

Graphical representation

I nodes are morphisms and edges are objects:

m
s

n
> >

1m
>

m
>

I composition sj ◦ si :

mi
si

ni = mj

sj
nj

> > >

I tensor product si ⊗ sj :

mi
si

ni
> >

mj

sj
nj

> >

Péchoux - Ta UL – Loria A Categorical Treatment of Malicious Behavioral Obfuscation 14/19



Motivations Syscalls interaction category Obfuscation Obfuscated path generation

Path diagrams

s1

s2

s3

>
>
>

>

>

(a) (s2 ⊗ s3) ◦ s1

s1

s2

s3

>
>

>

>

>

(b) (1⊗ s3) ◦ (s2 ⊗ 1) ◦ s1

s1

s2

s3

>
>

>

>

>

(c) (s2 ⊗ 1) ◦ (1⊗ s3) ◦ s1

The string diagrams (b) and (c) are path diagrams but the string
diagram (a) is not.

Theorem [cf. Joyal-Street]

In monoidal category, term equivalence can be deduced from
axioms iff the corresponding string diagrams are planar isotopic.

Péchoux - Ta UL – Loria A Categorical Treatment of Malicious Behavioral Obfuscation 15/19



Motivations Syscalls interaction category Obfuscation Obfuscated path generation

Obfuscation by diagram deformation

Input: an observable path obs (rep (X1))

Output: a permutation Y satisfying s (Y ) = s (obs (rep (X1)))

begin
M1 ← a morphism term of s (obs (rep (X1)));
G1 ← a string diagram of M1;
(obs (rep (X1)) ,4)← a poset with order induced from G1;
(Y ,≤)← a linear extension of (obs (rep (X1)) ,4);

end

Péchoux - Ta UL – Loria A Categorical Treatment of Malicious Behavioral Obfuscation 16/19



Motivations Syscalls interaction category Obfuscation Obfuscated path generation

Obfuscation by node replacement

Input: an observable path obs (rep (X1))

Output: a new path Y satisfying s (Y ) = s (obs (rep (X1)))

begin
M1 ← a morphism term of obs (rep (X1));
s ← a morphism of M1;
X ← an execution path satisfying s(X ) = s;
M ← a morphism term of X ;
M2 ← the morphism term M1{M/s};
G2 ← a string diagram of M2;
((obs (rep (X1)) \ s) ∪ X ,4)← poset induced by G2;
(Y ,≤)← a linear extension of ((obs (rep (X1)) \ s) ∪ X ,4)

end

Péchoux - Ta UL – Loria A Categorical Treatment of Malicious Behavioral Obfuscation 17/19



Motivations Syscalls interaction category Obfuscation Obfuscated path generation

Obfuscation by node replacement

Input: an observable path obs (rep (X1))

Output: a new path Y satisfying s (Y ) = s (obs (rep (X1)))

begin
M1 ← a morphism term of obs (rep (X1));
s ← a morphism of M1;
X ← an execution path satisfying s(X ) = s;
M ← a morphism term of X ;
M2 ← the morphism term M1{M/s};
G2 ← a string diagram of M2;
((obs (rep (X1)) \ s) ∪ X ,4)← poset induced by G2;
(Y ,≤)← a linear extension of ((obs (rep (X1)) \ s) ∪ X ,4)

end

Péchoux - Ta UL – Loria A Categorical Treatment of Malicious Behavioral Obfuscation 18/19



Motivations Syscalls interaction category Obfuscation Obfuscated path generation

Detection and conclusion

I Algorithms 1 and 2 have been written in C++ and Haskell
using Pin (path tracing) and FGL (path transforming).

I They manage to capture obfuscated variants of well-known
malwares including:

I Dropper.Win32.Dorgam
I Gen:Variant.barys.159

I Verifying whether a path is equivalent to a path generated by
Algorithm 1 is tractable in polynomial time (an instance of
DAG automorphism problem).

I Algorithm 2 is more challenging and needs to use semantics
rewriting techniques to capture more obfuscated versions (left
as future work).

Péchoux - Ta UL – Loria A Categorical Treatment of Malicious Behavioral Obfuscation 19/19


	Main
	Motivations
	Syscalls interaction category
	Obfuscation
	Obfuscated path generation


