Tiered complexity at higher order

Emmanuel Hainry Bruce Kapron* Jean-Yves Marion
Romain Péchoux

LORIA, Université de Lorraine and Victoria University*

MLA 2019
Introduction

Study of polynomial time complexity:

- **Type-1** ($\mathbb{N} \rightarrow \mathbb{N}$):
 - Several tools for program analysis:
 - type systems (light logics),
 - interpretations (abstract, polynomial, ...),
 - ...

- **Type-2** ($((\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N})$) and above:
 - No tools.
 - Programming languages with restrictions:
 - BTLP, ITLP (Irwin-Kapron-Royer [2001])

Goal: a static analysis tool for certifying **Type-2** polynomial time complexity
Introduction to type-2 complexity

Type-2 polynomial time FP_2 has been defined by Mehlhorn [1976].

Theorem [Cook and Urquhart [1993]]

$$\text{FP}_2 = \lambda(\text{FP}_1 \cup \{R\})_2$$

- FP_1 is the class of type-1 polynomial time functions,
- $R : \Sigma^* \times \Sigma^* \times (\Sigma^* \rightarrow \Sigma^*) \times (\Sigma^* \rightarrow \Sigma^*) \rightarrow \Sigma^*$ is defined by:
 $$R(\epsilon, a, \phi, \psi) = a$$
 $$R(ix, a, \phi, \psi) = \min(\phi(ix, R(x, a, \phi, \psi)), \psi(ix)),$$
- \min returns the operand of minimal size.
Basic Feasible Functionals

Theorem [OTM based characterization by Cook-Kapron[1990]]

The set of type-2 functionals computable by an Oracle Turing Machine (OTM) M in time $P(|\phi|,|a|)$ is exactly FP_2.

- OTM are Turing Machines with an oracle ϕ,
- P is a type-2 polynomial defined by:

 \[
 P(Y, X) ::= c \in \mathbb{N} \mid X_0 \mid X_1(P) \mid P + P \mid P \times P,
 \]

 \[
 |\phi|(n) = \max_{|x| \leq n}(|\phi(x)|).
 \]

The class FP_2 is called BFF for Basic Feasible Functionals.
How to get rid of type-2 polynomials?

One option: Oracle Polynomial Time (OPT) by Cook[1992]:

Definition

\[m^M_{\phi, a} \] is the maximum of the size of the input \(a \) and of the biggest oracle’s answer in the run of \(M(\phi, a) \).

Definition

An OTM is in OPT if it runs in time bounded by \(P(m^M_{\phi, a}) \) on any input, for some type-1 polynomial \(P \).

However \(BFF \subsetneq OPT \) as it contains exponential functions.
How to recover FP_2: finite length revision

Definition [Finite Length Revision]

An OTM has **Finite Length Revision** (FLR), if, for any input, the number of times the oracle answer is bigger than all of the previous oracle answers is bounded by a constant.

Example

```plaintext
while (x>0){
    y = \phi(x);
    x = x-1;
}
```

not (FLR) if $\phi \downarrow$

Example

```plaintext
x = 0;
while (x<n && y<8){
    y = \phi(x);
    x = x+1;
}
```

(FLR) with constant 8
How to recover FP_2: finite lookahead revision

Definition [Finite LookAhead Revision]

An OTM has Finite LookAhead Revision (FLAR), if, for any input, the number of times a query is posed whose size exceeds the size of all previous queries is bounded by a constant.

Example

```plaintext
while (x>0){
    y = φ(x);
    x = x-1;
}
(FLAR) with constant 0
```

Example

```plaintext
x = 0;
while (x<n && y<8){
    y = φ(x);
    x = x+1;
}
not (FLAR) for φ = \lambda n.4
```
How to recover FP_2?

Definition

- $SPT = \text{OPT} \cap \text{FLR}$
- $MPT = \text{OPT} \cap \text{FLAR}$

Both $SPT \subset \text{FP}_2$ and $MPT \subset \text{FP}_2$.

Theorem [Kapron and Steinberg[2018]]

$$\text{FP}_2 = \lambda(SPT)_2 = \lambda(MPT)_2$$
Motivations

- Find a criterion for complexity certificates.
- Provide a characterization of \mathbb{FP}_2 on imperative languages.
- Develop a static analysis technique with polynomial bounds:
 - of type-1 (Hilbert’s 10th pb, Tarski’s Quantifier Elimination)
 - implicit (not explicitly provided)

Objective: Adapt Implicit Computational Complexity techniques to an imperative setting with oracles.

Tool: Safe recursion and Tiering
Safe recursion

The class of functions:

- constants, projections, successor, predecessor, conditional,
- defined by safe composition:

\[f(x^1; a^0) = s(r(x^1); t(x^1; a)^0) \]

- and defined by safe recursion:

\[
\begin{align*}
 f(\epsilon, y^1; a^0) &= g(y^1; a^0) \\
 f(i(x)^1, y^1; a) &= h_i(x^1, y^1; f(x^1, y^1; a)^0) \quad i \in \{0, 1\},
\end{align*}
\]

provided \(s, r, t, g, h_i \) are already defined in the class,

is exactly \(\text{FP}_1 \).
Tiering

Imperative language over binary words \(\Sigma^* \)

\[
E ::= x \mid \text{true} \mid \text{false} \mid \text{op}(E, \ldots, E) \\
I ::= [x:=E]; \mid I I \mid \text{while}(E){I} \mid \text{if}(E){I}\text{else}{I}
\]

Tier \(\tau \in \{0, 1\} \) with \(0 < 1 \).

Intuition:
- \(0 \): data may grow and cannot control the program flow.
- \(1 \): data cannot grow and may control the program flow.
Typing rules

\[\Gamma(x) = \tau \quad \Gamma \vdash x : \tau \]

(Des)

\[\Gamma \vdash e : \tau \quad \Gamma \vdash op(e) : \tau \]

(Cons)

\[\Gamma \vdash c : \tau \]

(Cst)

\[\Gamma \vdash I : \tau \quad \tau \leq \tau' \]

(Sub)

\[\Gamma \vdash I_1 : \tau \quad \Gamma \vdash I_2 : \tau \]

(Seq)

\[\Gamma \vdash I_1 I_2 : \tau \]

(If)

\[\Gamma \vdash x : \tau \quad \Gamma \vdash E : \tau' \quad \tau \leq \tau' \]

(A)

\[\Gamma \vdash x := E : \tau \]

(Wh)
Safe operators

Extension to polynomial time computable operators:

\[\text{op} :: \tau_1 \times \ldots \times \tau_n \rightarrow \tau \]

- Neutral operators computing a predicate:
 \[\tau \leq \min_{i \in [1, n]} \tau_i \]

- Positive operators satisfying:
 \[\forall \bar{w}, \ |[\text{op}](w_1, \ldots, w_n)| \leq \max_{i \in [1, n]} |w_i| + c, \text{ for } c \geq 0 \]
 \[\tau = 0 \]
Example: addition

Example \((add :: int \times int \rightarrow int)\)

\[
\text{add}(x, y) \{
 \text{while } (x > 0) \{
 x = x - 1;
 y = y + 1;
 \}
 \text{return } y;
\}
\]

- \(y\) is necessarily of tier \(0\).
- \(x\) is necessarily of tier \(1\).
- Consequently, \(add :: 1 \times 0 \rightarrow 0\).
Example: multiplication

Example ($mult :: int \times int \rightarrow int$)

```c
mult(x, y) {
    int z = 0;
    while (x > 0) {
        x = x - 1;
        z = add(y, z);   // add: $1 \times 0 \rightarrow 0$
    }
    return z;
}
```

- the output of add is 0. Consequently, z is of tier 0.
- both x and y are of tier 1.
- consequently, $mult :: 1 \times 1 \rightarrow 0$.
Counter-example: exponential

Example \((\text{exp} :: \text{int} \rightarrow \text{int})\)

```plaintext
def exp(x):
    int y = 1;
    while (x > 0):
        x = x - 1;
        z = y;
        y^0 = add(y^1, z);  // add : \text{int} \times \text{int} \rightarrow \text{int}
    
return y;
```

▶ The tier of \(y\) cannot be defined!

Results

Theorem [Marion [2011]]

The set of functions computable by a typable and terminating program with safe operators is exactly FP_1.

- **Soundness:**
 - No flow from 0 to 1 (guards of tier 1)
 - At most n^k configurations under termination assumption

- **Completeness:**
 - Simulation of a polynomial time TM

Theorem [Hainry, Marion and Péchoux [2013]]

Type inference can be done in polynomial time.

- Reduction to 2-SAT
Imperative language with oracles

Design a type system ensuring that programs are in $MPT = OPT \cap FLAR$.

$E ::= x \mid \text{true} \mid \text{false} \mid \text{op}(E, \ldots, E) \mid \phi(E \upharpoonright E)$

$I ::= [x:=E]; \mid I I \mid \text{while}(E){I} \mid \text{if}(E){I}\text{else}{I}$

In $\phi(w \upharpoonright v)$:

- w is the oracle input
- v is the oracle input bound
- $w \upharpoonright v = w_1 \ldots w_{|v|}$, if $|v| \geq k$
Towards a type system for MPT

Observations:
1. The number of lookahead revisions can be controlled by tiers.
2. A restriction on the oracle input bound is needed.
3. Operators are in need of a more flexible treatment.

Solutions:
1. Use more than two tiers: \(\{0, 1, 2, 3, \ldots, k, \ldots\} \).
2. Keep track of the tier of the outermost while \(k_{out} \).
3. Keep track of the tier of the innermost while \(k_{in} \).

Judgments: \(\Gamma, \Delta \vdash l : (k, k_{in}, k_{out}) \)
Type system (easy)

$$\Gamma(x) = k$$

$$\frac{}{\Gamma, \Delta \vdash x : (k, k_{in}, k_{out})}$$

$$\forall i \in \{1, 2\}, \quad \vdash l_i : (k, k_{in}, k_{out})$$

$$\frac{}{\vdash l_1 \ l_2 : (k, k_{in}, k_{out})}$$

$$\vdash ; : (0, k_{in}, k_{out})$$

$$\frac{}{\vdash l : (k, k_{in}, k_{out})}$$

$$\frac{}{\vdash l : (k+1, k_{in}, k_{out})}$$

$$\vdash E : (k, k_{in}, k_{out})$$

$$\forall i \in \{1, 2\}, \quad \vdash l_i : (k, k_{in}, k_{out})$$

$$\frac{}{\vdash \text{if}(E)\{l_1\} \ \text{else} \ \{l_2\} : (k, k_{in}, k_{out})}$$

$$\vdash x : (k_1, k_{in}, k_{out}) \quad \vdash E : (k_2, k_{in}, k_{out}) \quad k_1 \preceq k_2$$

$$\frac{}{\vdash x := E : (k_1, k_{in}, k_{out})}$$
Type system (hard)

\[k_1 \rightarrow \cdots \rightarrow k_n \rightarrow k \in \Delta(op)(k_{in}) \quad \forall i, \vdash E_i : (k_i, k_{in}, k_{out}) \]

\[\Gamma, \Delta \vdash op(E_1, \ldots, E_n) : (k, k_{in}, k_{out}) \]

with \(k_1 \rightarrow \cdots \rightarrow k_n \rightarrow k \in \Delta(op)(k_{in}) \) if:

- \(k \leq \min_{i \in [1,n]} k_i \) and \(\max_{i \in [1,n]} k_i \leq k_{in} \)
- \(k < k_{in} \) for positive operators.

\[\vdash E : (k, k_{in}, k_{out}) \vdash E' : (k_{out}, k_{in}, k_{out}) \quad k < k_{in} \quad k \leq k_{out} \]

\[\vdash \phi(E \mid E') : (k, k_{in}, k_{out}) \]

\[\vdash E : (k, k_{in}, k_{out}) \vdash I : (k, k, k_{out}) \quad 1 \preceq k \preceq k_{out} \]

\[\vdash \text{while}(E)\{I\} : (k, k_{in}, k_{out}) \]
Example

The program computes the decision problem $\exists n \leq x, \phi(n) = 0$.

\[
y = x; \\
z = false; \\
while(x^{1} >= 0)\{ \\
 if(\phi(y^{0} | x^{1}) == 0)\{ \\
 z^{0} = true; \\
 } else \{;\} \\
 x^{1} = x^{1} - 1; \\
\} \\
return z;
\]

The program is in MPT.

The program is typable and the inner command has tier $(1, 1, 1)$.
A more complex example

Example

\[\sum_{i=0}^{\max_{x=0}^{n} \phi(x)} \phi(i) \] can be computed by:

\[
\begin{align*}
x &:= n ; \\
y^2 &:= x^3 ; \\
z^2 &:= 0 ; \\
\text{while}(x^3 \geq 0)\{ \\
& \quad z^2 := \max(\phi(y^2 \upharpoonright x^3)^2, z^2) ; \\
& \quad x^3 := x - 1^3 ; \\
\} ; \\
v^1 &:= z^2 ; \\
u^0 &:= 0 ; \\
\end{align*}
\]

\[
\begin{align*}
\text{while}(z^2 \geq 0)\{ \\
&w^1 := \phi(v^1 \upharpoonright z^2)^1 ; \\
&\text{while}(w^1 \geq 0)\{ \\
& \quad u^0 := u + 1^0 ; \\
& \quad w^1 := w - 1^1 ; \\
& \} ; \\
&w^1 := z^2 - 1 ; \\
\} \\
\text{return } u ; \\
\end{align*}
\]

This program can be typed by \((3, 0, 0)\).
False negative

Example

The program computes the decision problem $\exists n \leq x, \phi(n) = 0$.

```plaintext
x := \epsilon;
z := 0;
while(y >= x)^k{
    if(\phi(y \upharpoonright x) == 0){z := 1} else {;}
x := x + 1 ; : (k, k, k')
}
return z;
```

x and y have tier at least k in the guard.

x is of tier strictly less than the inner tier k as $+1$ is positive.

But it is not in $FLAR$.

HKMP LORIA-UL and VU Tiered complexity at higher order
Let ST be the class of typable and terminating programs.

Theorem [Soundness]

$$ST \subseteq \lambda(MPT)_2.$$

Theorem [Completeness]

$$ST_1 = FP_1$$

$$\lambda(ST)_2 = FP_2.$$

By simulating a variant of R.

Conclusion

We have presented:

- a completeness result at type-1,
- a completeness result at type-2 for a natural extension,
- a decidable type inference (in polynomial time).

Drawbacks and Open questions

- Termination is assumed.
- Completeness is obtained under lambda-closure.