Tiered complexity at higher order

Emmanuel Hainry Bruce Kapron* Jean-Yves Marion
Romain Péchoux

LORIA, Université de Lorraine and University of Victoria*

DICE-FOPARA 2019
Introduction

Study of polynomial time complexity:

- **Type-1** ($\mathbb{N} \rightarrow \mathbb{N}$):
 - Several tools for program analysis:
 - type systems (light logics),
 - interpretations (abstract, polynomial, ...),
 - ...

- **Type-2** ($((\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N})$) and above:
 - No tools.
 - Programming languages with restrictions:
 - BTLP, ITLP (Irwin-Kapron-Royer [2001])

Goal: a static analysis tool for certifying **Type-2** polynomial time complexity
Introduction to type-2 complexity

Type-2 polynomial time FP_2 has been defined by Mehlhorn [1976].

Theorem [Cook and Urquhart [1993]]

$$FP_2 = \lambda(FP_1 \cup \{R\})_2$$

- FP_1 is the class of type-1 polynomial time functions,
- $R : \Sigma^* \times \Sigma^* \times (\Sigma^* \rightarrow \Sigma^*) \times (\Sigma^* \rightarrow \Sigma^*) \rightarrow \Sigma^*$ is defined by:
 $$R(\epsilon, a, \phi, \psi) = a$$
 $$R(ix, a, \phi, \psi) = \min(\phi(ix, R(x, a, \phi, \psi)), \psi(ix)),$$

- \min returns the operand of minimal size.
Basic Feasible Functionals

Theorem [OTM based characterization by Cook-Kapron[1990]]

The set of type-2 functionals computable by an Oracle Turing Machine (OTM) M in time $P(|\phi|, |a|)$ is exactly FP_2.

- OTM are Turing Machines with an oracle ϕ,
- P is a type-2 polynomial defined by:

$$P(X_1, X_0) ::= c \in \mathbb{N} | X_0 | X_1(P) | P + P | P \times P,$$

- $|\phi|(n) = \max_{|x| \leq n}(|\phi(x)|)$.

The class FP_2 is called BFF for Basic Feasible Functionals.
How to get rid of type-2 polynomials?

One option: Oracle Polynomial Time (OPT) by Cook[1992]:

Definition

\[m^M_{\phi,a} \] is the maximum of the size of the input \(a \) and of the biggest oracle’s answer in the run of \(M(\phi, a) \).

Definition

An OTM is in OPT if it runs in time bounded by \(P(m^M_{\phi,a}) \) on any input, for some type-1 polynomial \(P \).

However \(BFF \subsetneq OPT \) as it contains exponential functions.
How to recover FP$_2$: finite length revision

Definition [Finite Length Revision]

An OTM has **Finite Length Revision** (FLR), if, for any input, the number of times the oracle answer is bigger than all of the previous oracle answers is bounded by a constant.

Example

```plaintext
while (x > 0) {
    y = \phi(x);
    x = x - 1;
}
```

not (FLR) if $\phi \downarrow$

Example

```plaintext
x = 0;
while (x < n && y < 8) {
    y = \phi(x);
    x = x + 1;
}
```

(FLR) with constant 8
How to recover \(FP_2 \): finite lookahead revision

Definition [Finite LookAhead Revision]

An OTM has **Finite LookAhead Revision** (FLAR), if, for any input, the number of times a query is posed whose size exceeds the size of all previous queries is bounded by a constant.

Example

```plaintext
while (x > 0) {
    y = \phi(x);
    x = x - 1;
}
```

(FLAR) with constant 0

Example

```plaintext
x = 0;
while (x < n && y < 8) {
    y = \phi(x);
    x = x + 1;
}
```

not (FLAR) for \(\phi = \lambda n.4 \)
How to recover FP_2?

Definition

- $SPT = OPT \cap \text{FLR}$
- $MPT = OPT \cap \text{FLAR}$

Both $SPT \subset \text{FP}_2$ and $MPT \subset \text{FP}_2$.

Theorem [Kapron and Steinberg[2018]]

$$\text{FP}_2 = \lambda(SPT)_2 = \lambda(MPT)_2$$
Motivations

- Find a criterion for complexity certificates.
- Provide a characterization of FP_2 on imperative languages.
- Develop a static analysis technique with polynomial bounds:
 - of type-1 (Hilbert’s 10th pb, Tarski’s Quantifier Elimination)
 - implicit (not explicitly provided)

Objective: **Adapt Implicit Computational Complexity** techniques to an imperative setting with oracles.

Tool: Safe recursion and **Tiering**
Theorem [Bellantoni-Cook[1992]]

The class of functions:

- constants, projections, successor, predecessor, conditional,
- defined by safe composition:

\[
\begin{align*}
 f(x^1; a^0) &= s(r(x^1); t(x^1; a)^0) \\
 f(\epsilon, y^1; a^0) &= g(y^1; a^0) \\
 f(i(x)^1, y^1; a) &= h_i(x^1, y^1; f(x^1, y^1; a)^0) \quad i \in \{0, 1\},
\end{align*}
\]

- provided \(s, r, t, g, h_i \) are already defined in the class,

is exactly FP\(_1\).
Tiering

Imperative language over binary words Σ^*

\[
E ::= x \mid \text{true} \mid \text{false} \mid \text{op}(E, \ldots, E) \\
I ::= [x := E]; \mid I I \mid \text{while}(E)\{I\} \mid \text{if}(E)\{I\}\text{else}\{I\}
\]

Tier $\tau \in \{0, 1\}$ with $0 < 1$.

Intuition:
- 0: data may grow and cannot control the program flow.
- 1: data cannot grow and may control the program flow.
Typing rules

\[\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau} \quad (\text{Des}) \quad \frac{\Gamma \vdash e : \tau}{\Gamma \vdash \text{op}(e) : \tau} \quad (\text{Cons}) \]

\[\frac{\Gamma \vdash c : \tau}{\Gamma \vdash \text{Cst} \, c : \tau} \quad (\text{Cst}) \quad \frac{\Gamma \vdash I : \tau \quad \tau \leq \tau'}{\Gamma \vdash I : \tau'} \quad (\text{Sub}) \]

\[\frac{\Gamma \vdash l_1 : \tau \quad \Gamma \vdash l_2 : \tau}{\Gamma \vdash l_1 \, l_2 : \tau} \quad (\text{Seq}) \quad \frac{\Gamma \vdash e : \tau \quad \Gamma \vdash l_i : \tau}{\Gamma \vdash \text{if}(E)\{l_i\} \text{else}\{l_2\} : \tau} \quad (\text{If}) \]

\[\frac{\Gamma \vdash x : \tau \quad \Gamma \vdash E : \tau' \quad \tau \leq \tau'}{\Gamma \vdash x := E : \tau} \quad (A) \quad \frac{\Gamma \vdash E : 1}{\Gamma \vdash \text{while}(E)\{l\} : 1} \quad (\text{Wh}) \]
Safe operators

Extension to polynomial time computable operators:

\[\text{op} :: \tau_1 \times \ldots \times \tau_n \rightarrow \tau \]

- Neutral operators computing a predicate:
 \[\tau \leq \min_{i \in [1,n]} \tau_i \]

- Positive operators satisfying:
 \[\forall w, |\lbrack \text{op} \rbrack(w_1, \ldots, w_n)| \leq \max_{i \in [1,n]} |w_i| + c, \text{ for } c \geq 0 \]
 \[\tau = 0 \]
Example: addition

Example \((\text{add} :: \text{int} \times \text{int} \rightarrow \text{int})\)

\[
\begin{align*}
\text{add}(x, y) & \{
\text{while } (x>0) \{
\quad x = x - 1; \\
\quad y = y + 1;
\}\} \\
\text{return } y;
\}
\end{align*}
\]

- \(y\) is necessarily of tier 0.
- \(x\) is necessarily of tier 1.
- Consequently, \(\text{add} :: 1 \times 0 \rightarrow 0\).
Example: multiplication

Example (\texttt{mult :: int \times int \rightarrow int})

\begin{verbatim}
mult(x, y)
 { int z = 0;
 while (x>0){
 x = x - 1;
 z = add(y, z); // add: 1 \times 0 \rightarrow 0
 }
 return z;
 }
\end{verbatim}

\begin{itemize}
 \item the output of add is 0. Consequently, z is of tier 0.
 \item both x and y are of tier 1.
 \item consequently, \texttt{mult :: 1 \times 1 \rightarrow 0}.
\end{itemize}
Counter-example: exponential

Example (\(\text{exp} :: \text{int} \rightarrow \text{int} \))

```plaintext
exp(x) {
    int  y = 1;
    while (x > 0) {
        x = x - 1;
        z = y;
        \( y^0 = add(y^1, z); \)  // \( add : 1 \times 0 \rightarrow 0 \)
    }
    return y;
}
```

▶ The tier of \(y \) cannot be defined!
Results

Theorem [Marion [2011]]

The set of functions computable by a typable and terminating program with safe operators is exactly FP_1.

- Soundness:
 - No flow from 0 to 1 (guards of tier 1)
 - At most n^k configurations under termination assumption

- Completeness:
 - Simulation of a polynomial time TM

Theorem [Hainry, Marion and Péchoux [2013]]

Type inference can be done in polynomial time.

- Reduction to 2-SAT
Imperative language with oracles

Design a type system ensuring that programs are in $MPT = OPT \cap FLAR$.

$$E ::= x \mid \text{true} \mid \text{false} \mid \text{op}(E, \ldots, E) \mid \phi(E \upharpoonright E)$$

$$I ::= [x:=E]; \mid I I \mid \text{while}(E)\{I\} \mid \text{if}(E)\{I\} \text{else}\{I\}$$

In $\phi(w \upharpoonright v)$:

- w is the oracle input
- v is the oracle input bound
- $w \upharpoonright v = w_1 \ldots w_{|v|}$, if $|v| \geq k$
Towards a type system for MPT

Observations:

1. The number of lookahead revisions can be controlled by tiers.
2. A restriction on the oracle input bound is needed.
3. Operators are in need of a more flexible treatment.

Solutions:

1. Use more than two tiers: \(\{0, 1, 2, 3, \ldots, k, \ldots\} \).
2. Keep track of the tier of the outermost while \(k_{out} \).
3. Keep track of the tier of the innermost while \(k_{in} \).

Judgments: \(\Gamma, \Delta \vdash I : (k, k_{in}, k_{out}) \)
Type system (easy)

\[
\Gamma(x) = k \\
\frac{}{\Gamma, \Delta \vdash x : (k, k_{in}, k_{out})}
\]

\[
\forall i \in \{1, 2\}, \quad \vdash I_i : (k, k_{in}, k_{out})
\]

(SEQ)

\[
\vdash I_1 \quad \vdash I_2 : (k, k_{in}, k_{out})
\]

(SK)

\[
\vdash \{I_1\} \text{ else } \{I_2\} : (k, k_{in}, k_{out})
\]

(SUB)

\[
\vdash E : (k, k_{in}, k_{out}) \quad \forall i \in \{1, 2\}, \quad \vdash I_i : (k, k_{in}, k_{out})
\]

(ASG)

\[
\vdash x : (k_1, k_{in}, k_{out}) \\
\vdash E : (k_2, k_{in}, k_{out}) \\
k_1 \preceq k_2
\]

\[
\vdash x := E : (k_1, k_{in}, k_{out})
\]

HKMP LORIA-UL and VU Tiered complexity at higher order
Type system (hard)

\[\kappa_1 \rightarrow \cdots \rightarrow \kappa_n \rightarrow \kappa \in \Delta(\text{op})(\kappa_{\text{in}}) \quad \forall i, \quad \vdash E_i : (\kappa_i, \kappa_{\text{in}}, \kappa_{\text{out}}) \quad \text{(OP)} \]

with \(\kappa_1 \rightarrow \cdots \rightarrow \kappa_n \rightarrow \kappa \in \Delta(\text{op})(\kappa_{\text{in}}) \) if:

- \(\kappa \leq \min_{i \in [1,n]} \kappa_i \) and \(\max_{i \in [1,n]} \kappa_i \leq \kappa_{\text{in}} \)
- \(\kappa < \kappa_{\text{in}} \) for positive operators.

\[\vdash \phi(E \upharpoonright E') : (\kappa, \kappa_{\text{in}}, \kappa_{\text{out}}) \quad \text{(OR)} \]

\[\vdash \text{while}(E)\{I\} : (\kappa, \kappa_{\text{in}}, \kappa_{\text{out}}) \quad \text{(W)} \]
Example

The program computes the decision problem $\exists n \leq x, \phi(n) = 0$.

```plaintext
y = x;
z = false;
while(x^1 >= 0){
    if($\phi(y^0 \upharpoonright x^1) == 0$){
        z^0 = true;
    } else {
        x^1 = x^1 - 1;
    }
} return z;
```

The program is in MPT.

The program is typable and the inner command has tier $(1, 1, 1)$.

A more complex example

Example

\[\sum_{i=0}^{\max_n^x} \phi(x) \phi(i) \]

can be computed by:

\[
\begin{align*}
x & := n ; \\
y^2 & := x^3 ; \\
z^2 & := 0 ; \\
\text{while}(x^3 \geq 0)\{ \\
\quad z^2 & := \max(\phi(y^2 \restriction x^3)^2, z^2) ; \\
\quad x^3 & := x - 1^3 ; \\
\} ; \\
v^1 & := z^2 ; \\
u^0 & := 0 ; \\
\text{while}(z^2 \geq 0)\{ \\
\quad w^1 & := \phi(v^1 \restriction z^2)^1 ; \\
\quad \text{while}(w^1 \geq 0)\{ \\
\quad\quad u^0 & := u + 1^0 ; \\
\quad\quad w^1 & := w - 1^1 ; \\
\quad\quad}\} ; \\
\quad z^2 & := z^2 - 1 ; \\
\} \\
\text{return } u ;
\end{align*}
\]

This program can be typed by \((3, 0, 0)\).
False negative

Example

The program computes the decision problem $\exists n \leq x, \phi(n) = 0$.

\[
x := \epsilon ; \\
z := 0 ; \\
\text{while}(y \geq x)^k\{
 \text{if}(\phi(y \upharpoonright x) == 0)\{z := 1\} \text{ else } \{;\}
 x := x + 1 ; : (k, k, k')
\}
\]
return z ;

x and y have tier at least k in the guard.

x is of tier strictly less than the inner tier k as $+1$ is positive.

But it is not in $FLAR$.
Let ST be the class of typable and terminating programs.

Theorem [Soundness]

$ST \subseteq \lambda(MPT)_2$.

Theorem [Completeness]

$ST_1 = FP_1$

$\lambda(ST)_2 = FP_2$.

By simulating a variant of R.
Conclusion

We have presented:
- a completeness result at type-1,
- a completeness result at type-2 for a natural extension,
- a decidable type inference (in polynomial time).

Drawbacks and Open questions

- Termination is assumed.
- Completeness is obtained under lambda-closure.