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Abstract—Reducing energy consumption of embedded systems re-
quires careful memory management. It has been shown that Scratch-
Pad Memories (SPMs) are low size, low cost, efficient (i.e. energy
saving) data structures directly managed at the software level. In
this paper, we focus on heuristic methods for SPMs management. A
method is efficient if the number of accesses to SPM is as large as
possible and if all available space (i.e. bits) is used. We propose a
Tabu Search (TS) approach for memory management which is, to the
best of our knowledge, a new original alternative to the best known
existing heuristic (BEH). In fact, experimentations performed on our
benchmarks show that our Tabu Search method is as efficient as BEH
(in terms of energy consumption) but BEH requires a sorting which
can be computationally expensive for a large amount of data. TS is
easy to implement and since no sorting is necessary, unlike BEH, we
save the corresponding sorting time. In addition to that, in a dynamic
perspective where the maximum capacity of the SPM is not known
in advance, our TS heuristic will perform better than BEH.

Keywords—Energy consumption, memory allocation management,
optimization, Tabu Search heuristic.

I. INTRODUCTION

EMBEDDED systems are everywhere. Due to technology
evolution, these systems must integrate more complex

functionalities (video, audio, Internet, videophone, etc.) which
needs more and more battery and memory.

Depending on that, memory will become the major en-
ergy consumer in an embedded system. Numerous options
to economize energy, hence increase autonomy, exist. These
various approaches can be classified in two main categories:
hardware optimizations and software optimizations. Hardware
techniques fall beyond the scope of this paper, but a large
amount of literature about them is available (see first parts of
[1]). In this paper, we will focus on software optimizations.
Some techniques and algorithms, synthesized in [2], try to
optimally allocate application code and/or data to one memory
kind called Scratch-Pad Memory in order to reduce the energy
consumption of embedded systems.

Cache memory is random access memory (RAM) that a
computer microprocessor can access more quickly than it can
access regular RAM. As the microprocessor processes data,
it looks first in the cache memory and if it finds the data
there (from a previous reading of data), it does not have to do
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the more time-consuming reading of data from larger memory
[3]. Cache memories, although they help a lot with program
speed, do not always fit in embedded systems: they increase
the system size and its energy cost (cache area plus managing
logic).

Scratch-Pad Memory (SPM), also known as scatchpad
RAM or local store in computer terminology, is a high-
speed internal memory used for temporary storage of
calculations, data, and other work in progress. In reference to
a microprocessor, SPM refers to a special high-speed memory
circuit used to hold small items of data for rapid retrieval.
It can be considered as similar to an L1 cache in that it
is the memory next closest to the ALU’s after the internal
registers, with explicit instructions to move data from and to
main memory. Like caches so, SPMs consist of small, fast
SRAM, but the main difference between them is that SPMs
are directly and explicitly managed at the software level,
either by the developer or by the compiler, whereas caches
require extra dedicated circuits. SPM’s software management
makes it more predictable (by avoiding cache miss cases
which is an important feature in real-time embedded systems).
Compared to cache, SPM thus has several advantages [4].
SPM requires up to 40% less energy and 34% less area than
cache [5]. Further, the run-time with an SPM using a simple
static knapsack-based [5] allocation algorithm is 18% better
as compared to a cache. Contrarily to [5], [6] distinguish
between static and dynamic energy. They also show the
effectiveness of using an SPM in a memory architecture
where a saving about 35% in energy consumption is achieved
when compared to a memory architecture without an SPM.
[7] use statistical methods and the Independent Reference
Model (IRM) to prove that SPMs, with an optimal mapping
based on access probabilities, will always outperform the
direct-mapped cache, irrespective of the layout influencing
the cache behavior.

The rest of the paper is organized as follows. Section II
describes some existing heuristics for managing memory data
allocation. Section III presents our approach based on a Tabu
Search heuristic to find the optimized memory data allocation
in order to reduce energy consumption. Section IV gives the
memory energy consumption model we propose in order to
estimate the energy consumed by our different heuristics.
Section V shows the experimental results obtained. Finally,
Section VI concludes and gives some perspectives.

II. EXISTING HEURISTICS

In general, authors try to answer the following question:
which kind of application data should be allocated to which



kind of memory? In order to solve this problem, data
placement could be guided on one hand by the features of
the considered memory (access speed, energy cost, large
number of miss access cases, etc.), and on the other hand by
the information collected either statistically by analyzing the
benchmark’s code or dynamically by profiling benchmarks
(number of times that data is accessed, data size, access
frequency, etc.).
Due to the reduced size of SPMs, one tries to optimally
allocate data in it in order to realize energy savings. Thus,
most of the authors use one of these three following strategies.

Allocate data into SPM by size: the smaller data are
allocated into SPM as there is space available else they
are allocated in main memory (DRAM). This method has
the advantage of being simple to implement since it only
considers the size of the data but has the disadvantage of
allocating the largest data in the DRAM. These largest data
could be often accessed, which will imply a very few energy
economy.

Allocate data into SPM by number of accesses: the
most frequently accessed/used data are allocated into SPM
as there is space available else they are allocated in DRAM.
This strategy is optimal than the previous one, since the
most frequently accessed/used data will be allocated in a
memory that consumes less energy and therefore will achieve
more savings as explained and demonstrated in [8] and [9].
However, we can note granularity problems in some cases
such as a structure with only one part is often accessed/used.

Allocate data memory into SPM by number of accesses
and size (BEH): this is somehow a combination of the
two previous strategies. The idea here is to combine their
advantages. If we consider the example of a structure in which
only a part is the most frequently accessed/used, we take into
account the average number of access to this structure. This
avoids granularity problems. Here, data are sorted according
to their ratio (access number/size) in descending order. The
data with the highest ratio is allocated first into SPM as there
is space available. Otherwise it is allocated in DRAM. This
heuristic uses a sorting method which can be computationally
expensive for a large amount of data. In addition to that,
this sorting method will not work very well in a dynamic
perspective where the maximum capacity of the SPM is not
known in advance. This is, so far, the best known existing
heuristic (BEH).

In the rest of this paper, we will refer to the strategy BEH
as a basis for our memory energy optimizations.

III. OUR APPROACH

The problem we try to solve is a combinatorial optimization
problem like the famous knapsack problem [10]. Suppose
memory is a big knapsack and data are items. We want to fill
this knapsack that can hold a total weight of W with some
combination of items from a list of N possible items each

Generate an initial solution.
loop

Identify neighbourhood set.
Identify tabu set.
Identify aspirant set.
Choose the best move.
exit when goal is satisfied or
the stopping condition is reached.

end loop

Fig. 1. A Generic Tabu Search Algorithm.

with weight wi and value vi so that the value of the items
packed into the knapsack is maximized. This problem has
a single linear constraint, a linear objective function which
sums the values of the items in the knapsack, and the added
restriction that each item will be in the knapsack or not. If N
is the total number of items, then there are 2N subsets of the
item collection. So an exhaustive search for a solution to this
problem generally takes exponential running time. Therefore,
the obvious brute-force approach is infeasible. Here, we
investigate the problem using the Tabu Search method.

In this paper, we propose a heuristic based on the Tabu
Search approach to solve the problem of optimizing the
memory data allocation. This heuristic is an alternative to the
best known existing heuristic (BEH) presented in Section II.
Tabu Search (TS) is a local search metaheuristic introduced
by Glover (1986). Details about Tabu Search can be found
in [11]. TS explores the solution space by moving at each
iteration from a solution s to the best solution in a subset of
its neighborhood N(s). Contrary to classical descent methods,
the current solution may deteriorate from one iteration to the
next. New, poorer solutions are accepted only to avoid paths
already investigated. This insures new regions of a problem
solution space will be investigated with the goal of avoiding
local minima and ultimately finding the desired solution. To
avoid cycling, solutions possessing some attributes of recently
explored solutions are temporarily declared tabu or forbidden.
The duration that an attribute remains tabu is called its tabu
tenure, and it can vary over different intervals of time. The
tabu status can be overridden if certain conditions are met;
this is called the aspiration criterion and it happens, for
example, when a tabu solution is better than any previously
seen solution. Finally, various techniques are often employed
to diversify or to intensify the search process. A generic Tabu
Search algorithm is summarized in Figure 1.

We want to fill the memory (SPM) that can hold a
maximum capacity of C with a combination of data from a
list of N possible data each with size sizei and access number
ani so that the access number of the data allocated into SPM
is maximized. In our implemented TS algorithm, we first
start by generating an initial solution randomly. If N is the
total number of data, then a solution is just a finite sequence
s of N terms such that s[n] is either 0 or the size of the nth

data. s[n] = 0 if and only if the nth data is not selected in



the solution. This solution must satisfy the constraint of not
exceeding the maximum SPM capacity (i.e.

∑N
i=1 s[i] ≤ C).

We also set a maximum number of iterations and a lifespan
on the tabu list. Initially, the optimal solution equals the initial
solution, the optimal access number is the access number of
the initial solution and the tabu list is empty. As long as the
number of iterations is not exceeded, we repeat the following :

• We generate the eth neighborhood of the current solution.
• We compute a new matrix containing the neighboring

vectors.
• Based on the solutions contained in this matrix, we

calculate a vector of corresponding current size values
and a vector of corresponding current access number
values.

• We keep best solution from neighborhood.
• We update the tabu list to make a transition back to the

old solution impossible for a period.
• Finally, we update if this new access number is better

than the existing optimal access number.

IV. OUR MEMORY ENERGY ESTIMATION MODEL

In order to compute the energy cost of the system for
each configuration, we propose in this section an energy
consumption estimation model for our considered memory
architecture composed by an SPM, a DRAM and an instruction
cache memory. In our model, we distinguish between the
two cache write policies: write-through and write-back. In a
Write-Through cache (WT), every write to the cache causes
a synchronous write to the DRAM. Alternatively, in a Write-
Back cache (WB), writes are not immediately mirrored to the
main memory. Instead, the cache tracks which of its locations
have been written over and marks these locations as dirty.
The data in these locations is written back to the DRAM when
those data are evicted from the cache [3]. Our proposed energy
consumption estimation model is presented below:

E = Etspm + Etic + Etdram

E = Nspmr ∗ Espmr (1)
+ Nspmw ∗ Espmw (2)

+

Nicr∑
k=1

[hik ∗ Eicr + (1− hik) ∗ [Edramr + Eicw

+(1−WPi) ∗DBik ∗ (Eicr + Edramw)]] (3)

+

Nicw∑
k=1

[WPi ∗ Edramw + hik ∗ Eicw + (1−WPi) ∗

(1− hik) ∗ [Eicw +DBik ∗ (Eicr + Edramw)]] (4)
+ Ndramr ∗ Edramr (5)
+ Ndramw ∗ Edramw (6)

Lines (1) and (2) represent respectively the total energy
consumed during a reading and during a writing from/into
SPM. Lines (3) and (4) represent respectively the total energy
consumed during a reading and during a writing from/into
instruction cache. When, lines (3) and (4) represent respec-
tively the total energy consumed during a reading and during

TABLE I
LIST OF TERMS.

Term Meaning
Etspm Total energy consumed in SPM.
Etic Total energy consumed in instruction cache.
Etdram Total energy consumed in DRAM.
Espmr Energy consumed during a reading from SPM.
Espmw Energy consumed during a writing into SPM.
Nspmr Reading access number to SPM.
Nspmw Writing access number to SPM.
Eicr Energy consumed during a reading from instruction cache.
Eicw Energy consumed during a writing into instruction cache.
Nicr Reading access number to instruction cache.
Nicw Writing access number to instruction cache.
Edramr Energy consumed during a reading from DRAM.
Edramw Energy consumed during a writing into DRAM
Ndramr Reading access number to DRAM.
Ndramw Writing access number to DRAM.
WPi The considered cache write policy: WT or WB.

In case of WT, WPi = 1 else in case of WB then
WPi = 0.

DBik Dirty Bit used in case of WB to indicate during the access
k if the instruction cache line has been modified before
(DBi = 1) or not (DBi = 0).

hik Type of the access k to the instruction cache. In case of
cache hit, hik = 1. In case of cache miss, hik = 0.

a writing from/into DRAM. The various terms used in our
energy consumption estimation model are explained in Table
I.

V. EXPERIMENTAL RESULTS

For our experiments, we consider a memory architecture
composed by a Scratch-Pad Memory, a main memory
(DRAM) and an instruction cache memory. We make sure
to take similar features for the cache memory and the
SPM in order to compare their energy performance fairly.
We performed experiments with eleven benchmarks from
six different suites: MiBench [12], SNU-RT, Mälardalen,
Mediabenchs, Spec 2000 and Wcet Benchs. Table II gives a
description of these benchmarks.

In order to compute the energy cost of the system for each
configuration, we used our developed energy consumption
estimation model presented in Section IV. This model is
based on the OTAWA framework [13] to collect information
about number of accesses and on the energy consumption
estimation tool CACTI [14] in order to collect information
about energy per access to each kind of memory. OTAWA
(Open Tool for Adaptative WCET Analysis) is a framework
of C++ classes dedicated to static analyses of programs
in machine code and to the computation of Worst Case
Execution Time (WCET). OTAWA is freely available (under
the LGPL licence) and is designed to support different
architectures like PowerPC, ARM or M68HC. In our case, we
focus on PowerPC architectures. In our model, we distinguish
between the two cache write policies: Write-Through (WT)
and Write-Back (WB) as explained before. Our presented
Tabu Search algorithm and the BEH strategy have been
implemented with the C language on a PC Intel Core 2 Duo,
with a 2.66 Ghz processor and 3 Gbytes of memory running



TABLE II
LIST OF BENCHMARKS.

Benchmarks Suite Description
Sha MiBench The secure hash algorithm that

produces a 160-bit message digest
for a given input.

Bitcount MiBench Tests the bit manipulation abilities of
a processor by counting the number
of bits in an array of integers.

Fir SNU-RT Finite impulse response filter (signal
processing algorithms) over a 700
items long sample.

Jfdctint SNU-RT Discrete-cosine transformation
on 8x8 pixel block.

Adpcm Mälardalen Adaptive pulse code modulation
algorithm.

Cnt Mälardalen Counts non-negative numbers in
a matrix.

Compress Mälardalen Data compression using lzw.
Djpeg Mediabenchs JPEG decoding.
Gzip Spec 2000 Compression.
Nsichneu Wcet Benchs Simulate an extended Petri net.

Automatically generated code with
more than 250 if-statements.

Statemate Wcet Benchs Automatically generated code.

Fig. 2. Energy consumed in standard benchmarks with WB mode.

under Mandriva Linux 2008.

In our experiments, we generate 30 different executions
for the Tabu Search heuristic as the solution given differs
from an execution to another. TS Mean refers to the average
results obtained on these 30 executions. In contrast, TS Best
refers to the best solution obtained from the thirty executions
performed. For BEH, the solution founded does not change
from a running to another one.

Figure 2, presents the results obtained when comparing
BEH and TS methods on the standard ANR benchmarks
assuming the write-back cache policy. In the following,
as the shape of curves obtained when comparing BEH
and TS methods on our benchmarks assuming the Write-
Through cache policy (WT) or the Write-Back cache
policy (WB) are slightly the same, we just plot the results
obtained with the write-back cache policy. Knowing that
EWTmode 6= EWBmode.

Fig. 3. Energy consumed in modified benchmarks with WB mode.

As we can see from this figure, TS Best achieves the same
performance as BEH on energy savings on the standard ANR
benchmarks. In addition to that, TS Mean produces nearly the
same energy gains. We are not able to save more energy as
we know that BEH already gives the optimal solution thanks
to our developed backtracking algorithm. This is true for the
standard ANR benchmarks we use as they contain uniform
data leading to a big number of local minima. Thus, in order
to put some trouble in the BEH strategy and see if it still
gives the best solution, we decided to modify slightly our
benchmarks. Concretely, our modification consists in adding
only one variable to each benchmark. This variable performs
an output and is big enough to provide relevant energy
savings if it is selected for a Scratch-Pad Memory allocation.
We referred to a modified benchmark as benchmarkCE.

Figure 3 presents the energy consumed in our modified
benchmarks assuming the write-back cache policy. Reminding
that EWTmode 6= EWBmode.

As we can notice from this figure, although we used the
modified benchmarks, we still obtain the same energy savings
as before. The BEH strategy didn’t give the optimal solution
anymore as one could expect as proven by our developed
backtracking algorithm. This is normal due to the fact that
BEH is a sort of access number/size of data as we explain
in Section II. The variable we add in each benchmark has
a given access number/size (this ratio depends on the data
profiling of each benchmark) so that this variable is not a
priority in the sorting made by the BEH method. This is done
on purpose so that when it will be the turn of this variable to
be treated by BEH, the remaining space in the SPM will not
be enough to take this variable and hence it will be allocated
in main memory. Whereas, an optimal solution would be to
start by allocating this variable first into the SPM. We can
see that our Tabu Search heuristic gives the same results as
BEH on the modified ANR benchmarks. As our problem is
a combinatorial optimization problem (NP-hard problem), an
exhaustive search for a solution generally takes exponential
running time. Therefore, the obvious brute-force approach
is infeasible. That’s why we are planning to investigate the



problem using evolutionary algorithms and, more specifically,
genetic methods.

VI. CONCLUDING REMARKS AND FURTHER RESEARCH
ASPECTS

In this paper, we have proposed a general energy con-
sumption estimation model able to be adapted to different
memory architecture configurations. We also have proposed a
Tabu Search heuristic (TS) for memory allocation management
which is, a new original alternative to the best known existing
method (BEH). We show that our TS heuristic is as efficient as
BEH in terms of energy consumption. TS is easy to implement
and since no sorting is necessary, unlike BEH, we save the
corresponding sorting time. In addition to that, in a dynamic
perspective where the maximum capacity of the SPM is not
known in advance, our TS heuristic will perform better than
BEH. In future work, we will explore evolutionary heuristics
(Genetic Algorithms, Markov Decision Processes, Simulated
Annealing, ANT method, Particle Swarm technique, etc.) and
hybrid heuristics for solving the problem of reducing memory
energy consumption.
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