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Abstract

We present an original algebraic method for cycle enumeration which is
well-suited for symbolic computations. Nilpotent adjacency matrix meth-
ods are employed to enumerate k-cycles in simple graphs on n vertices for
any k ≤ n. Experimental results detailing computation times (in seconds)
are compared with algorithms based on the approaches of Bax and Tarjan
for perspective.

1 Introduction

In earlier theoretical work, the current authors have shown that the complexity
of enumerating k-cycles in any graph on n vertices requires a polynomial number
of operations in a 2n-dimensional commutative algebra denoted by C`nnil [4].
The authors have applied nilpotent adjacency methods to the study of random
graphs [2] and explored connections between nilpotent adjacency matrices and
quantum random variables [3].

While counting the number of C`nil
n operations used by an algorithm may

be a natural measure of complexity if one assumes the existence of a computer
architecture capable of naturally dealing algebraic elements, it is not natural in
the context of classical computing.

The algebra C`nnil, referred to as a “zeon algebra” does however lend itself to
convenient symbolic computations. The focus of the current work is to illustrate
these symbolic computations and consider some practical advantages for doing
so.

Section 2 contains a brief discussion of the theory underlying the nilpotent
adjacency approach, as well as a brief review of the work of Bax [1] and Tar-
jan [5].
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Practical examples generated with Mathematica are found in Section 3. Cy-
cle enumeration is accomplished using the nilpotent adjacency matrix approach,
Bax’s approach, and the HamiltonianCycle procedure found in the Mathemat-
ica package Combinatorica. Time plots comparing the three approaches are
included. Mathematica code used to generate examples can be found in Section
5.

2 Theoretical Considerations

Bax’s approach to cycle enumeration uses powers of a graph’s adjacency ma-
trix with the principle of inclusion-exclusion to count all Hamiltonian cycles in
O(2npoly(n)) time [1]. Implementing this approach to enumerate only those
cycles of length k requires applying the algorithm to all k-vertex subgraphs.
Consequently, the complexity for counting k-cycles is O(

(
n
k

)
2k poly(k)). For

fixed k, this is still O(2npoly(n), since
(
n
k

)
≤ nk for all n ≥ k. Bax’s approach

is also known to be of storage complexity O(poly(n)).
On the other hand, applying Bax’s approach to the enumeration of bn/2c-

cycles in a graph on n vertices is O(22npoly(n)), since
(
n
n/2

)
= O(2n).

Tarjan’s algorithm enumerates all cycles in a graph on n vertices with time
complexity O((n+ |E|)(C + 1)) when applied to a graph with C cycles [5]. The
storage complexity is O(n + |E| + S), where S is the sum of the lengths of all
cycles. Note that the number of cycles on a k-vertex subgraph is potentially of
order k!, while the number of such subgraphs is of order

(
n
k

)
.

A convenient and practical Tarjan-type implementation is the Hamiltonian-
Cycle procedure found in the Mathematica package Combinatorica. The algo-
rithm uses backtracking and look-ahead to enumerate all Hamiltonian cycles in
a graph on n vertices. When cycles of length k ≤ n are to be enumerated, the
procedure must be applied to all k-vertex subgraphs, contributing a factor of(
n
k

)
to the time-complexity.
Implementations of this Tarjan-like approach are referred to henceforth as

“CombiTarjan.”

2.1 Nilpotent adjacency matrices

Definition 2.1. The n-particle zeon algebra, denoted by C`nnil, is defined as
the real abelian algebra generated by the collection {ζi} (1 ≤ i ≤ n) along with
the scalar 1 = ζ0 subject to the following multiplication rules:

ζi ζj = ζj ζi for i 6= j, and (2.1)

ζi
2 = 0 for 1 ≤ i ≤ n. (2.2)

It is evident that a general element α ∈ C`nnil can be expanded as

α =
∑
I∈2[n]

αI ζI , (2.3)
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where I ∈ 2[n] is a subset of [n] = {1, 2, . . . , n} used as a multi-index, αI ∈ R,
and ζI =

∏
ι∈I

ζι.

A canonical basis element ζI is referred to as a blade. The number of elements
in the multi-index I is referred to as the grade of the blade ζI .

The scalar sum evaluation of an element α ∈ C`nnil is defined by〈〈 ∑
I∈2[n]

αI ζI

〉〉
=
∑
I∈2[n]

αI . (2.4)

Definition 2.2. Let G be a graph on n vertices, either simple or directed with
no multiple edges, and let {ζi}, 1 ≤ i ≤ n denote the nilpotent generators of
C`nnil. Define the nilpotent adjacency matrix associated with G by

Aij =

{
ζj if (vi, vj) ∈ E(G)
0 otherwise.

(2.5)

Letting the vertices V = {v1, . . . , vn} be associated with the standard basis
of Rn and recalling Dirac notation, the ith row of A is conveniently denoted
by 〈vi| A, while the jth column is denoted by A |vj〉. Straightforward induction
establishes the following theorem.

Theorem 2.3. Let A be the nilpotent adjacency matrix of an n-vertex graph
G. For any k > 1 and 1 ≤ i, j ≤ n,〈

vi|Ak|vj
〉

=
∑

(w1,...,wk)∈V k

(wk=vj)∧(m6=`⇒wm 6=w`)

ζ{w1,...,wk} =
∑
I⊆V
|I|=k

ωIζI , (2.6)

where ωI ∈ N ∪ {0} denotes the number of k-step walks from vi to vj visiting
each vertex in I exactly once when initial vertex vi /∈ I, and revisiting vi exactly
once when vi ∈ I.

In light of this theorem, the name “nilpotent adjacency matrix” is justified
by the following corollary.

Corollary 2.4. Let A be the nilpotent adjacency matrix of a simple graph on
n vertices. For any positive integer k ≤ n, the entries of A are homogeneous
elements of grade k in C`nnil. Moreover, Ak = 0 for all k > n.

Corollary 2.5. Let A be the nilpotent adjacency matrix of an n-vertex graph
G. For any k ≥ 3 and 1 ≤ i ≤ n,〈

vi|Ak|vi
〉

=
∑
I⊆V
|I|=k

ωIζI , (2.7)

where ωI ∈ N ∪ {0} denotes the number of k-cycles on vertex set I based at
vi ∈ I.
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An immediate consequence of this corollary is that〈〈
Tr
(
Ak
)〉〉

= k |{k-cycles in G}| , (2.8)

since each k-cycle appears with k choices of base point along the main diagonal
of Ak.

3 Examples & Practical Considerations

Examples were computed on a 2.4 GHz MacBook Pro with 4 GB of 667 MHz
DDR2 SDRAM running Mathematica 6 for MAC OS X with the Combinatorica
package. Mathematica code used for generating the examples is included in
Section 5.

The nilpotent adjacency matrix approach was implemented by overloading
the Times operator of Mathematica to facilitate multiplication of blades from
C`nnil. Essentially, {ζi} is a collection of commuting variables with the null-
square property. All usual properties (distributivity, commutativity, etc) hold
for the algebra’s generators.

The Bax approach for counting k-cycles in a graph G was implemented as
in [1], with the exception that the algorithm enumerates Hamiltonian cycles on
all k-vertex subgraphs of G.

The CombiTarjan method was similarly implemented by first extracting all
k-vertex subgraphs and summing recovered numbers of Hamiltonian cycles on
them.

The results were generated as follows. For any given trial, a random sim-
ple graph is first generated using some fixed edge-existence probability p by
constructing a random symmetric binary matrix. The corresponding nilpotent
adjacency matrix is then constructed.

The Mathematica system cache was cleared before enumeration by each
method. The system time was stored in a variable, the appropriate method was
called, and the subsequent system time was stored in another variable. Relevant
data were then appended to a table.

Test points were incorporated after each method to ensure all three methods
were returning the same results.

Example 3.1. In Figure 1, run times in seconds are computed for enumeration
of bn/2c-cycles in n-vertex randomly generated graphs for n = 6, . . . , 17. The
graphs were generated assuming each pair of vertices has adjacency probability
p = 0.25.

Example 3.2. In Figure 2, mean run times of enumerating bn/2c-cycles in
randomly generated graphs with adjacency probability p = .25 are computed
over 20 trials and plotted for comparison. The ratios of Bax time vs. zeon time
and CombiTarjan time vs. zeon time are plotted in Figure 3.

Example 3.3. Figure 4 compares run times of enumerating 5-cycles in ran-
domly generated graphs with adjacency probability p = 0.3.
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n p Zeon Time Graph Bax Time CombiTarjan time cycle size ð8k-cycles<

6 0.25 0.000769 0.011353 0.008018 3 0

7 0.25 0.000868 0.017107 0.011500 3 0

8 0.25 0.004128 0.074438 0.049099 4 0

9 0.25 0.006842 0.132695 0.084432 4 6

10 0.25 0.017969 0.731235 0.289137 5 0

11 0.25 0.008986 1.309326 0.272060 5 0

12 0.25 0.440138 6.656507 2.430623 6 46

13 0.25 0.604086 12.375748 3.868680 6 44

14 0.25 10.213879 70.912959 19.298738 7 798

15 0.25 3.579148 131.581892 18.267461 7 244

16 0.25 4.930064 480.486666 41.225817 8 182

17 0.25 85.121914 920.148837 168.200714 8 5260

Figure 1: Times (in secs) required to enumerate bn/2c-cycles in randomly gen-
erated n-vertex graphs having equiprobable edges (p = 0.25).
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Figure 2: Mean run times over twenty trials of counting bn/2c-cycles in n-vertex
graphs with edge probability p = 0.25. Plotmarkers: B–Bax, C–CombiTarjan,
•–Zeon.
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Figure 3: Ratios of mean Bax time to mean Zeon time and mean CombiTarjan
time to mean Zeon time over twenty trials of counting bn/2c-cycles in n-vertex
graphs with edge probability p = 0.25.
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n p Zeon Time Graph Bax Time CombiTarjan time cycle size ð8k-cycles<

6 0.3 0.006728 0.018172 0.027192 5 2

7 0.3 0.009988 0.059922 0.024014 5 0

8 0.3 0.006495 0.158501 0.056676 5 0

9 0.3 0.027682 0.356385 0.233036 5 12

10 0.3 0.028924 0.706564 0.354460 5 10

11 0.3 0.035650 1.307731 0.672940 5 18

12 0.3 0.105883 2.231612 1.489897 5 38

13 0.3 0.086538 3.629304 1.709008 5 22

14 0.3 0.337885 5.648002 3.460317 5 142

15 0.3 0.210731 8.480193 3.515150 5 66

Figure 4: Times (in secs) required to enumerate 5-cycles in randomly generated
n-vertex graphs.
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Example 3.4. Figure 5 compares mean run times of enumerating 5-cycles in
randomly generated graphs with adjacency probability p = 0.3 computed over
20 trials.
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Figure 5: Mean run times over twenty trials of counting 5-cycles in n-vertex
graphs with edge probability p = 0.3. Plotmarkers: B–Bax, C–CombiTarjan,
•–Zeon.

Example 3.5. In Figure 7, run times in seconds are computed for enumera-
tion of 6-cycles in 12-vertex randomly generated graphs for varying adjacency
probabilities from p = 0.1 to p = 0.3

Example 3.6. In Figure 8, mean run times of counting 6-cycles in 12-vertex
graphs are computed over 20 trials. Graphs are randomly generated with vary-
ing adjacency probability running from p = 0.1 to p = 0.5. The data indicate a
threshold probability p ≈ 0.4 beyond which the Bax method is advantageous.
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Figure 6: Ratios of mean Bax time to mean Zeon time and mean CombiTarjan
time to mean Zeon time over twenty trials of counting 5-cycles in n-vertex graphs
with edge probability p = 0.3.
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n p Zeon Time Graph Bax Time Combinatorica time cycle size ð8k-cycles<

12 0.1 0.004594 6.453515 0.388314 6 0

12 0.15 0.009137 6.446355 0.429561 6 0

12 0.2 0.025064 6.484507 0.855331 6 2

12 0.25 0.161041 6.504983 2.138450 6 32

12 0.3 0.763803 6.506115 3.488655 6 234

Figure 7: Times (in secs) required to enumerate 6-cycles in randomly generated
12-vertex graphs having equiprobable edges of varying probability.
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Figure 8: Mean run times of Bax, CombiTarjan, and Zeon methods over 20
trials of counting 6-cycles in 12-vertex graphs with varying edge probabilities.
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4 Conclusion

To summarize the experimental results, the nilpotent adjacency matrix method
offers practical advantages over Bax and CombiTarjan when enumerating k-
cycles in relatively sparse (edge probability p ≤ 0.4) n-vertex graphs with k < n.
The advantage is most striking in the case k ≈ n/2, since this case maximizes
the number of subgraphs being considered in both the Bax and CombiTarjan
methods.

The ratios of mean Bax time to mean Zeon time plotted in Figure 3 ranged
from 8.37 to 54.5987 with a mean ratio of 26.77. The ratios of mean CombiTar-
jan time to Zeon time plotted in Figure 3 ranged from 4.01858 to 15.04 with a
mean of 9.503.

5 Mathematica Code

For completeness, the Mathematica code used to generate all examples appears
here.

H* Define zeon multiplication *L
Unprotect@TimesD; Ζa_ Ζb_ := If@Length@a Ý bD > 0, 0, ΖaÜbD;
Protect@TimesD;
Unprotect@PowerD;
Hx_ �; ! FreeQ@x, Ζa_DLn_Integer :=

ModuleB8y, f<, y = Expand@xD;

SwitchBEvenQ@nD, True, IfAn � 0, Return@1D, Composition@ExpandD@Distribute@f@x, yDD �. f ® TimesDn�2E,

False, IfBn � 1, Return@xD, Composition@ExpandD@Distribute@f@y, yDD �. f ® TimesD
n-1

2 xFFF;
Protect@PowerD; Unprotect@ExpandD;
Expand@x_ �; ! FreeQ@x, Ζ_DD := DeleteCases@Distribute@x, Plus, TimesD, 0.` Ζ_D;
Protect@ExpandD;
H* Generate the adjacency matrix of an n-vertex random graph with edge probability p *L
GenRandGraph@n_, p_D := Module@8i, j, A, rw, co<, A = Table@0, 8i, 1, n<, 8j, 1, n<D;

For@rw = 1, rw £ n, rw++, For@co = 1, co < rw, co++, If@RandomReal@D < p, APrw, coT = 1; APco, rwT = 1;, NullD;DD;
Return@ADD;

H* Count k-cycles in graph using Combinatorica's HamiltonianCycle algorithm *L
KCycleCount@A_, k_D := Module@8list, Kset<,

list = Table@i, 8i, 1, Length@AD<D;
Kset = Subsets@list, 8k<D;
Return@Sum@Length@HamiltonianCycle@FromAdjacencyMatrix@A@@Kset@@ellDD, Kset@@ellDDDDD, AllDD,

8ell, 1, Length@KsetD<DDD
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H* Count H.C.'s using approach of E.T. Bax *L
HCycleCount@A_D := ModuleA8list, Kset, verts, nulltable, ell<,

list = Table@i, 8i, 1, Length@AD<D;
verts = Length@AD;
Kset = Subsets@listD;
nulltable = Table@0, 8i, 1, verts<, 8j, 1, verts<D;
ReturnA
SumAH-1LHverts-Length@Kset@@ellDDDL

MatrixPower@HA ReplacePart@nulltable, CartesianProduct@Kset@@ellDD, Kset@@ellDDD ® 1DL, vertsD,
8ell, 1, Length@KsetD<EEE

H* Count k-cycles in graph using Bax's algorithm *L
BaxKCycleCount@A_, k_D := Module@8list, Kset, ell<,

list = Table@i, 8i, 1, Length@AD<D;
Kset = Subsets@list, 8k<D;
Return@Sum@HCycleCount@A@@Kset@@ellDD, Kset@@ellDDDDD@@1, 1DD, 8ell, 1, Length@KsetD<DDD

H* Randomly-generated Graphs on n vertices *L
H* Cycles of length Floor@n�2D are enumerated first by nilpotent adjacency matrix method *L
H* then by Bax HC method applied to all n�2 subgraphs *L
H* then using Tarjan-type approach from Combinatorica package *L
H* Computation times in seconds are averaged over 20 trials and plotted *L

XZ = 8<;
XC = 8<;
XB = 8<;

For@Trials = 1, Trials £ 20, Trials++,
nstart = 6;
nend = 15;
Outputtable = 88"n", "p", "Zeon Time", "Graph", "Bax Time", "Combinatorica time", "cycle size", "ð8k-cycles<"<<;
EdgeProbability = .25;
Timetable = 8<;
Timetable3 = Timetable;
Timetable4 = Timetable;

For@n = nstart, n £ nend, n++,
k = Floor@n � 2D;

ClearSystemCache@D;
a = GenRandGraph@n, EdgeProbabilityD;
g = FromAdjacencyMatrix@aD;

H*Count cycles using zeon approach *L

A = a.DiagonalMatrix@Table@Ζ8i<, 8i, 1, n<DD;
starttime = AbsoluteTime@D;
nilnum = HSimplify@Tr@Expand@MatrixPower@A, kDDDD � kL �. 8Ζ_ ® 1<;
endtime = AbsoluteTime@D;

elapsed = endtime - starttime;
Timetable = Append@Timetable, elapsedD;
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ClearSystemCache@D;

H* Use Bax method *L
starttime = AbsoluteTime@D;
knum = BaxKCycleCount@a, kD;
endtime = AbsoluteTime@D;

H* Check that results agree *L
If@nilnum ¹ knum, Print@nilnum, " ", knumD,D;

elapsed3 = endtime - starttime; H* Time to count cycles *L
Timetable3 = Append@Timetable3, elapsed3D;

H* Combi-Tarjan method *L
ClearSystemCache@D;
starttime = AbsoluteTime@D;
Cknum = KCycleCount@a, kD;
endtime = AbsoluteTime@D;

H* Check that results agree *L
If@nilnum ¹ Cknum, Print@nilnum, " ", knum, " ", CknumD,D;

elapsed4 = endtime - starttime; H* Time to count cycles *L

Timetable4 = Append@Timetable4, elapsed4D;

H* Provide occasional runtime feedback *L
If@Mod@n, 5D � 1, Print@n, " of trial ", Trials, " done."D,D;

Outputtable = Append@Outputtable, 8 n, EdgeProbability, elapsed, Framed�GraphPlot@aD, elapsed3,
elapsed4, k, knum<D;D;

XB = Append@XB, Timetable3D;
XZ = Append@XZ, TimetableD;
XC = Append@XC, Timetable4D;

H* Provide occasional detailed feedback *L
If@Mod@Trials, 5D � 1, Print@Grid@OutputtableDD,D;D;

H* Given comparison summary *L
Print@" --- Complexity Record --- "D
Print@"RED Nilpotent adjacency matrix method"D;
Print@"BLUE Bax method"D;
Print@"GREEN Combinatorica method"D;
Show@8ListPlot@Mean@XZD, PlotRange ® All, PlotStyle ® 8RGBColor@.6, 0, 0D, AbsolutePointSize@5D<,

AxesLabel ® 8"vertices", "seconds"<, DataRange ® 8nstart, nend<, AxesOrigin ® 8nstart, 0<D,
ListPlot@Mean@XBD, PlotMarkers ® 8"B"<, PlotRange ® All, PlotStyle ® 8RGBColor@0, 0, .6D, AbsolutePointSize@5D<,
DataRange ® 8nstart, nend<, AxesOrigin ® 8nstart, 0<D,

ListPlot@Mean@XCD, PlotMarkers ® 8"C"<, PlotRange ® All, PlotStyle ® 8RGBColor@0, .5, 0D, AbsolutePointSize@5D<,
DataRange ® 8nstart, nend<, AxesOrigin ® 8nstart, 0<D <D
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