
Reductions in Computational Complexity using

Clifford Algebras
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Abstract

A number of combinatorial problems are treated using properties of
abelian nilpotent- and idempotent-generated algebras. For example, the
problem of deciding whether or not a graph contains a Hamiltonian cy-
cle is known to be NP-complete. By considering entries of Λk, where Λ
is an appropriate nilpotent adjacency matrix, the k-cycles in any finite
graph are recovered. Within the algebra context (i.e., considering the
number of multiplications performed within the algebra), these problems
are reduced to matrix multiplication, which is in complexity class P. The
Hamiltonian cycle problem is one of many problems moved from classes
NP-complete and ]P-complete to class P in this context. Other problems
considered include the set covering problem, counting the edge-disjoint
cycle decompositions of a finite graph, computing the permanent of an
arbitrary matrix, computing the girth and circumference of a graph, and
finding the longest path in a graph.

AMS subject classification: 68Q15, 05C38, 60B99, 81P68, 05C50
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NP-hard, NP-complete, cycle cover, set packing problem, set covering
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1 Introduction

Clifford methods have already been applied to problems in computer vision [16]
and automated geometry theorem proving [18]. In work having applications
to computer vision, Clifford algebra methods have been employed to estimate
points, lines, circles, and spheres from uncertain data while keeping track of the
uncertainty [21].

Extending Clifford-algebraic methods to graph theory (cf. [25], [26], [23])
opens the door to applications in theoretical computer science, symbolic dy-
namics, and coding theory. The methods can be applied to a graph-theoretic
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construction of multiple stochastic integrals from which stochastic integrals are
recovered from the limit in mean of a sequence of Berezin integrals in an as-
cending chain of Clifford algebras [27].

Clifford algebras have well-known connections with quantum physics and
quantum probability [3], [4], [5]. However, Aerts and Czachor have shown that
quantum-like computations can be performed within Clifford algebras without
the associated problem of noise and need for error-correction [2].

While Clifford algebra computations can be performed on general purpose
processors through the use of software libraries like CLU [19], GluCat [17],
Gaigen[14], and the Maple package CLIFFORD [1], direct hardware implemen-
tations of data types and operators is the best way to exploit the computational
power of Clifford algebras. To this end, a number of hardware implementations
have been developed [11], [12], [13], [20].

Given a computing architecture based on Clifford algebras, the natural con-
text for determining an algorithm’s time complexity is in terms of the number
of geometric (Clifford) operations required. This paper assumes the existence
of such a processor and examines a number of combinatorial problems known
to be of NP time complexity.

For example, the problem of determining whether or not a graph contains a
Hamiltonian cycle is known to be NP-complete. By considering entries of Λk,
where Λ is an appropriate nilpotent adjacency matrix associated with a finite
graph on n vertices, the k-cycles in the graph are recovered.

The nilpotent adjacency matrix of a graph on n vertices is defined using
elements of an abelian algebra generated by the collection {ζi}, 1 ≤ i ≤ n
satisfying ζi

2 = 0. In terms of the number of multiplications performed within
the algebra, the cycle enumeration problem is reduced to matrix multiplication.
While the algebras used here are not Clifford algebras themselves, they are
constructed within Clifford algebras of appropriate signature.

1.1 Notational Preliminaries

Definition 1.1 (Clifford algebra of signature (p, q)). For fixed n ≥ 1, the
2n-dimensional algebra C`p,q (p + q = n) is defined as the associative algebra
generated by the collection {ei} (1 ≤ i ≤ n) along with the unit scalar e0 =
e∅ = 1 ∈ R, subject to the following multiplication rules:

ei ej = −ej ei for i 6= j, (1.1)

ei
2 =

{
1 1 ≤ i ≤ p, and
−1 p + 1 ≤ i ≤ n.

(1.2)

Products are multi-indexed by subsets of [n] = {1, . . . , n} according to

ei =
∏

ι∈i

eι, (1.3)

where i is an element of the power set 2[n].
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By defining ζi = (ei + en+i) ∈ C`n,n for each 1 ≤ i ≤ n, the following useful
algebra is obtained.

Definition 1.2. Let C`n
nil denote the real abelian algebra generated by the

collection {ζi} (1 ≤ i ≤ n) along with the scalar 1 = ζ0 subject to the following
multiplication rules:

ζi ζj = ζj ζi for i 6= j, and (1.4)

ζi
2 = 0 for 1 ≤ i ≤ n. (1.5)

It is evident that a general element α ∈ C`n
nil can be expanded as

α =
∑

i∈2[n]

αi ζi , (1.6)

where i ∈ 2[n] is a subset of [n] = {1, 2, . . . , n} used as a multi-index, αi ∈ R,
and ζi =

∏

ι∈i

ζι.

Letting εi =
1
2

(1 + eien+i) ∈ C`n,n for each 1 ≤ i ≤ n gives the following
algebra.

Definition 1.3. Let C`n
idem denote the real abelian algebra generated by the

collection {εi} (1 ≤ i ≤ n) along with the scalar 1 = ε0 subject to the following
multiplication rules:

εi εj = εj εi for i 6= j, and (1.7)

εi
2 = εi for 1 ≤ i ≤ n. (1.8)

An element β ∈ C`n
idem can also be expanded as in (1.6); that is,

β =
∑

i∈2[n]

βi εi. (1.9)

Both algebras admit an inner product of the form
〈 ∑

i∈2[n]

αi ζi,
∑

j∈2[n]

βj ζj

〉
=

∑

`∈2[n]

α` β`. (1.10)

The degree-k part of u ∈ C`n
nil will be defined by

〈u〉k =
∑

i∈2[n]

|i|=k

ui ζi. (1.11)

Letting α denote an arbitrary element of C`n
nil, the scalar sum of coefficients

will be denoted by
〈〈α〉〉 =

∑

i∈2[n]

〈
α, ζi

〉
=

∑

i∈2[n]

αi. (1.12)
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The definitions of scalar sum and degree-k part extend naturally to C`n
idem.

A number of norms can be defined on C`n
nil. One that will be used later is

the infinity norm, defined by
∣∣∣∣∣∣

∣∣∣∣∣∣
∑

i∈2[n]

αi ζi

∣∣∣∣∣∣

∣∣∣∣∣∣
∞

= max
i∈2[n]

∣∣αi

∣∣ . (1.13)

Remark 1.4. The algebra C`n,n is canonically isomorphic to the fermion algebra
of quantum physics [3].

An algorithm’s time complexity is typically determined by counting the num-
ber of operations required to process a data set of size n in worst-, average-,
and best-case scenarios. The operation of multiplying two integers is typical.
Multiplying a pair of integers in classical computing is assumed to require a
constant interval of time, independent of the integers. The architecture of a
classical computer makes this assumption natural.

The existence of a processor whose registers accommodate storage and ma-
nipulation of elements of C`n

♦ is assumed through the remainder of this paper.
Time complexity in the C` context will be determined by the required num-

ber of C`n
♦ operations, or Clops required by an algorithm. In other words,

multiplying (or adding) a pair of elements α, β ∈ C`n
♦ will require one Clop,

where ♦ can be replaced by either “nil” or “idem.”
Moreover, for purposes of this paper, the C` complexity of evaluating the

infinity norm is assumed to be O(1).

2 Graph Problems

A graph G = (V,E) is a collection of vertices V and a set E of unordered pairs
of vertices called edges. Two vertices vi, vj ∈ V are adjacent if there exists an
edge {vi, vj} ∈ E.

A k-walk {v0, . . . , vk} in a graph G is a sequence of vertices in G with initial
vertex v0 and terminal vertex vk such that there exists an edge {vj , vj+1} ∈ E
for each 0 ≤ j ≤ k − 1. Note that a k-walk contains k edges. A k-path is a
k-walk in which no vertex appears more than once. A closed k-walk is a k-walk
whose initial vertex is also its terminal vertex. A k-cycle (k ≥ 3) is a closed
k-path with v0 = vk. A Hamiltonian cycle is an n-cycle in a graph on n vertices;
i.e., it contains V.

When working with a graph G on n vertices, one often utilizes the adjacency
matrix A associated with G. If the vertices are labeled {1, . . . , n}, one defines
A by

Aij =

{
1 if vi, vj are adjacent
0 otherwise.

(2.1)

A simple but useful result of this definition, which can also be generalized
to directed graphs, is given here without proof.
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Proposition 2.1. Let G be a graph on n vertices with associated adjacency
matrix A. Then for any positive integer k, the (i, j)th entry of Ak is the number
of k-walks i → j. In particular, the entries along the main diagonal of Ak are
the numbers of closed k-walks in G.

What the adjacency matrix fails to provide, however, is a method of counting
paths and cycles in G. For that, a “new” type of adjacency matrix is needed.

2.1 Nilpotent Adjacency Matrices

Definition 2.2. Let G be a graph on n vertices, either simple or directed with
no multiple edges, and let {ζi}, 1 ≤ i ≤ n denote the nilpotent generators of
C`n

nil. Define the nilpotent adjacency matrix associated with G by

Λij =

{
ζj , if {vi, vj} ∈ E(G)
0, otherwise.

(2.2)

It should be clear that Λ defined over C`n
nil implies Λk is the n × n zero

matrix for all k > n. Therefore (I − tΛ)−1 =
n∑

k=0

tk Λk exists as a finite sum,

and one can recover

tr Λk = tr (I − tΛ)−1

∣∣∣∣
tk

. (2.3)

In other words, the trace of the coefficient of tk in the power series expansion
of (I − tΛ)−1 is the trace of Λk.

Theorem 2.3. Let Λ be the nilpotent adjacency matrix of an n-vertex graph
G. For any m ≥ 3 and 1 ≤ i ≤ n, summing the coefficients of (Λm)ii yields the
number of m-cycles based at vi occurring in G.

Proof. The proof is by induction on m. First it will be shown that matrix entry
(Λm)ij corresponds to a sum of blades indexed by vertex sets on which there
exist m-step walks from vi to vj that revisit no vertex except possibly vi itself.
When m = 1, this is true by definition of Λ.

Now assuming the proposition holds for m and considering the case m + 1,

(
Λm+1

)
ij

= (Λm × Λ)ij =
n∑

`=1

(Λm)i` Λ`j . (2.4)

Considering a general term of the sum,

(Λm)i` =
∑

m-paths wm:vi→v`

wm, and (2.5)

Λ`i =
∑

1-paths w1:v`→vj

w1. (2.6)
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Because the vertices are labeled with the null-square generators of C`n
nil, any

repeated vertex yields 0.
It should then be clear that terms of the product

(Λm)i` Λ`j (2.7)

are nonzero if and only if they correspond to (m + 1)-paths vi → v` → vj , with
the possible exception that if i 6= j, then vi could be revisited once. Summing
over all vertices v` gives the sum of all (m + 1)-walks based at vi that revisit no
vertex with only the specified exception possible.

Finally, when i = j, the null-square generator associated with vi appears as
the last factor in each product over the (m + 1)-walks. As a result, any walks
that revisit vi in an intermediate step are removed from (Λm+1)ii, leaving only
the (m + 1)-cycles based at vi.

In an undirected graph, two orientations are possible for each cycle. As a
result, each m-cycle is represented with multiplicity two along the diagonal of
Λm. Throughout the remainder of this paper, two cycles in an undirected graph
will be considered the “same” if they differ only by orientation or choice of base
point.

Remark 2.4. The nilpotent adjacency matrix associated with a finite graph can
be considered a quantum random variable whose mth moment corresponds to
the number of m-cycles occurring in the graph [24], [25].

Corollary 2.5. Let Λ be the nilpotent adjacency matrix of an n-vertex graph
G. Let Xm (m ≥ 3), denote the number of m-cycles appearing in the graph G.
Then

〈〈tr (Λm)〉〉 = 2mXm. (2.8)

Notation. To simplify notation, tr (Λm) is replaced by τm in the remainder of
the paper.

Corollary 2.6. Let Λ be the nilpotent adjacency matrix of an n-vertex graph
G. Let Hn denote the number of Hamiltonian cycles appearing in the graph G.
Then

〈〈τn〉〉 = 2nHn. (2.9)

Recall the stated assumption that addition of two arbitrary elements of C`n
nil

requires 1 Clop. It follows that computing tr(A), where A is an n × n matrix
having entries in C`n

nil, has C` complexity O(n).
Using the Coppersmith-Winograd algorithm, multiplying two n×n matrices

can be done in O(n2.376) time [8]. It is not clear that the same asymptotic
speedup can be accomplished for the C` case. However, in the remainder of the
paper, β will represent the exponent associated with matrix multiplication. In
the worst case, multiplication of n × n matrices with entries in C`n

nil has C`
complexity O(n3), so that β ≤ 3.

Corollary 2.7. Enumerating the k-cycles in a finite graph on n vertices requires
O(nβ log k) Clops.
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Corollary 2.8. Enumerating the Hamiltonian cycles in a finite graph on n
vertices requires O(nβ log n) Clops.

Corollary 2.9. Let Λ be the nilpotent adjacency matrix of an n-vertex graph G.
Let Xm,` denote the number of `-tuples of pairwise disjoint m-cycles appearing
in the graph G, where m ≥ 3 and 1 ≤ ` ≤ bn/mc. Then

〈〈
(τm)`

〉〉
= (2m)``!Xm,`. (2.10)

Proof. Note that
τm

2m
is a sum of nilpotent multivectors associated with m-cycles

in the graph. By nilpotency, the nonzero terms of
( τm

2m

)`

represent pairwise
disjoint m-cycles, and each term occurs `! times.

Corollary 2.10. Counting the `-tuples of pairwise disjoint m-cycles in a finite
graph on n vertices requires O(nβ log m) Clops.

Proof. As already seen, computing τm requires O(nβ log m) Clops. Computing
τm

` then requires O(log `) additional Clops. Hence, counting `-tuples of m-
cycles requires O(max{log `, nβ log m}), where ` is never larger than n/m.

The following proposition is an immediate corollary of Theorem 2.3.

Proposition 2.11 (Graph circumference). Let G be a graph on n vertices with
nilpotent adjacency matrix Λ. The length of the longest cycle in G is the largest
integer k such that

τk 6= 0. (2.11)

Corollary 2.12. Computing the circumference of a graph on n vertices requires
O(nβ+1 log n) Clops.

Proof. Cycles of length k must be counted for 3 ≤ k ≤ n, requiring O
(
nβ log k

)
for each 3 ≤ k ≤ n. Then,

n∑

k=3

nβ log k = nβ log(n!/2) ≤ nβ log(nn) = nβ+1 log n. (2.12)

Corollary 2.13 (Graph girth). Let G be a graph on n vertices with nilpotent
adjacency matrix Λ. The length of the shortest cycle in G is the smallest integer
k such that

τk 6= 0. (2.13)

Corollary 2.14. Computing the girth of a graph on n vertices requires O(nβ+1 log n)
Clops.

Proof. Proof follows that of Corollary 2.12.
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In the next proposition, C denotes the diagonal matrix Diag(ζ1, . . . , ζn). It
is used to account for the initial vertices of paths in G.

Proposition 2.15 (Longest path). Let G be a graph on n vertices with nilpotent
adjacency matrix Λ. The length of the longest path in G is the largest integer k
such that

CΛk 6= 0. (2.14)

Here, 0 denotes the n× n zero matrix.

Proof. This is a corollary of Theorem 2.3. Cycles are disregarded by removing
the diagonal entries of CΛk. Left multiplication by the matrix C is used to “sieve”
out k-walks that revisit their initial vertices.

Corollary 2.16. Computing the length of the longest path in a graph on n
vertices requires O(nβ log n log n) Clops.

Proof. The maximum possible path length is n. For each 1 ≤ k ≤ n, computing
CΛk requires O(nβ log k + n2) = O(nβ log n) Clops. Using binary search then
requires testing O(log n) values of k in Proposition 2.15.

Consider a directed, edge-weighted graph G on n vertices. When {vi, vj} is
an edge of G, let wij denote the weight or “cost” of the edge. The goal is to
compute the total additive weight of all k-cycles in G.

The infinity norm in the following theorem is the natural extension of that
found in (1.13).

Theorem 2.17 (Minimum cost of all k-cycles). Let G be a finite graph on n
vertices with m edges of weights w1, w2, . . . , wm. Let f : V (G)×V (G) → N be a
labeling of the edges of G with natural numbers. Label the vertices of G with the
nilpotent generators of C`n

nil and let edges of G be labeled with exp(−wij)γf(i,j),
where {γi} is the collection of nilpotent generators of C`|E(G)|

nil. The nilpotent
adjacency matrix then has entries in C`n

nil ⊗ C`|E(G)|
nil. The minimum cost

k-cycle in G has cost

Wmin = − ln
(∣∣∣∣

∣∣∣∣
1
2k

τk

∣∣∣∣
∣∣∣∣
∞

)
. (2.15)

Proof. Analogous to the proof of Theorem 2.3, the trace of Λk consists of ele-
ments of the form

n∑

i=1

∑

k-cycles ξ based at vi

exp


−

∑

v`∈ξ

w`


 ζi(ξ) γj(ξ). (2.16)

Here, i(ξ) denotes the subset of the n-set that corresponds to the vertices in
cycle ξ. Similarly, j(ξ) is a subset of {1, 2, . . . , |E(G)|} representing the edges
contained in cycle ξ. As seen previously, each cycle is represented with multi-
plicity 2k in the trace of Λk.

Clearly the maximum coefficient in the expansion of the trace corresponds to
the minimum sum of weights in the argument of the exponential function.
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Recall that the C` complexity of evaluating the infinity norm is assumed to
be O(1). The following results are valid provided the complexity is no worse
that O(nβ).

Corollary 2.18. In the C` context, the problem of determining the minimum
cost associated with a k-cycle in G has complexity O(nβ log k).

Corollary 2.19 (Minimum cost Hamiltonian cycle). In the C` context, the
problem of determining the minimum cost associated with a Hamiltonian cycle
in G has complexity O(nβ log n).

2.2 Edge-disjoint Cycle Decompositions of Graphs

Consider the algebra R[s1, . . . , sn] of polynomials in commutative variables
s1, . . . , sn. Allowing these polynomials to have coefficients in C`n

nil ⊗ C`m
nil

generates the abelian algebra C`n
nil ⊗ C`m

nil[s1, . . . , sn].
Define the projection ϑ : C`n

nil ⊗ C`m
nil[s1, . . . , sn] → C`m

nil[s1, . . . , sn] by
linear extension of

ϑ
(
α ζj γi sj1

1 · · · sjn
n

)
= α γi sj1

1 · · · sjn
n , (2.17)

and define the evaluation 〈〈·〉〉 : C`m
nil[s1, . . . , sn] → R[s1, . . . , sn] by linear

extension of 〈〈
α γi sj1

1 · · · sjn
n

〉〉
= α sj1

1 · · · sjn
n , (2.18)

where α ∈ R.
The projection ϑ and the evaluation 〈〈·〉〉 will be assumed to have C` com-

plexity O(1).

Definition 2.20. A finite graph G on n vertices will be said to have a cycle
decomposition if for some positive integer m there exists a collection of cycles
{Ci}1≤i≤m such that

V (G) =
m⋃

i=1

V (Ci) (2.19)

E(G) =
m⋃

i=1

E(Ci) (2.20)

E(Ci) ∩ E(Cj) = ∅ if i 6= j. (2.21)

The collection {Ci}1≤i≤m is called the cycle decomposition of G.

Theorem 2.21. Let G be a simple graph on n vertices and |E| edges with
nilpotent adjacency matrix over C`n

nil ⊗ C`|E|nil. Then G has a cycle decompo-
sition G = Cj1 ∪ · · · ∪ Cjm ,

∑
i ji = |E| if and only if the degree-m monomial

α sj1 · · · sjm is a term in the expansion of
〈〈〈(

ϑ

(
n∑

k=3

sk
τk

2k

))m〉

|E|

〉〉
(2.22)
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where
α

m!
∈ N indicates the multiplicity of the decomposition.

Proof. Begin by letting Λ be the edge-labeled nilpotent adjacency matrix of an
n-vertex graph G = (V,E). From Theorem 2.3, it follows that for any k ≥ 3
and 1 ≤ i ≤ n, summing the coefficients of (Λk)ii yields the number of k-cycles
based at vi occurring in G.

Hence,
τk

2k
corresponds to the collection of k-cycles in G in one-to-one cor-

respondence.

It is now clear that
n∑

k=3

sk
τk

2k
denotes the algebraic sum of all the cycles

contained in G. Projecting down onto C`|E|nil leaves each k-cycle represented
by a degree-k multivector γi, corresponding to the edges comprising the cycle.

By nilpotency, the nonzero terms of ϑ

(
n∑

k=3

sk
τk

2k

)m

represent the collection

of all m-ensembles of pairwise edge-disjoint cycles, and each term occurs m!
times in the expansion. By considering only those terms of degree |E| in C`|E|nil,
one ensures that only cycle decompositions of G are obtained since all edges are
represented.

Corollary 2.22. Let G be a simple graph on n vertices and |E| edges with nilpo-
tent adjacency matrix over C`nil

n ⊗C`nil
|E|. Then, for any fixed m ≥ 1, determining

the decomposition of G into m edge-disjoint cycles requires O(nβ+1 log n) Clops.

Proof. As in the proof of Corollary 2.12, computing
n∑

k=3

sk
τk

2k
has C` com-

plexity O(nβ+1 log n). Then computing

(
ϑ

(
n∑

k=3

sk
τk

2k

))m

has C` complexity

O(nβ+1 log n + log m) = O(nβ+1 log n).

Example 2.23. The cycle decompositions of the complete graph K5 are recov-
ered.

•
ζ1

•ζ2

•
ζ3

•
ζ4

•ζ5

..............................................................................................................................................................................................................................

γ1

..............................................................................................................................................................................................................................................................................................................................................

γ2

..............................................................................................................................................................................................................................................................................................................................................

γ3

..............................................................................................................................................................................................................................

γ4

...................................................................................................................................................................................................

γ5

..........................................................................................................................................................................................................................................................................................................................................................................

γ6

...................................................................................................................................................................................................................................................................................................................................................................................
γ7

......................................................................................................................................................................................................................................................
γ8

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

..

γ9

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...

γ10
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The nilpotent adjacency matrix is

Λ =




0 ζ2γ1 ζ3γ2 ζ4γ3 ζ5γ4

ζ1γ1 0 ζ3γ5 ζ4γ6 ζ5γ7

ζ1γ2 ζ2γ5 0 ζ4γ8 ζ5γ9

ζ1γ3 ζ2γ6 ζ3γ8 0 ζ5γ10

ζ1γ4 ζ2γ7 ζ3γ9 ζ4γ10 0




. (2.23)

Mathematica calculations yield the following:
〈〈

D
(1)
t

〈
exp

(
tϑ

(
5∑

k=3

sk
τk

2k

))〉

10

∣∣∣∣
t=0

〉〉
= 0 (2.24)

〈〈
D

(2)
t

〈
exp

(
tϑ

(
5∑

k=3

sk
τk

2k

))〉

10

∣∣∣∣
t=0

〉〉
= 12s5

2 (2.25)

〈〈
D

(3)
t

〈
exp

(
tϑ

(
5∑

k=3

sk
τk

2k

))〉

10

∣∣∣∣
t=0

〉〉
= 90s3

2s4 (2.26)

〈〈
D

(4)
t

〈
exp

(
tϑ

(
5∑

k=3

sk
τk

2k

))〉

10

∣∣∣∣
t=0

〉〉
= 0. (2.27)

The results are now interpreted:
K5 itself is not a cycle, so the first expression yields zero.
The only decompositions of K5 into pairs of cycles are 6 = 12/(2!) decom-

positions into pairs of five-cycles. That is, K5 = C5 ∪ C5 with multiplicity
six.

The only decompositions into triples of cycles are 15 = 90/(3!) decomposi-
tions of the form K5 = C3∪C3∪C4, i.e., a pair of three-cycles and a four-cycle.

There are no decompositions of K5 into four or more disjoint cycles.

Definition 2.24. A cycle cover of a graph G is defined as a pairwise disjoint
collection of cycles {Cj} such that each vertex of G is contained in exactly one
of the cycles.

Theorem 2.25. Let Λ be the nilpotent adjacency matrix of a finite graph G on
n vertices. Then, letting C denote the number of cycle covers of G,

〈

bn/3c∑

`=1

1
`!

ϑ

(
n∑

m=3

τm

2 m

)`

 , γ[|E|]

〉
= C. (2.28)

Proof. For each 3 ≤ m ≤ n, τm

2 m denotes the algebraic sum of multivectors
representing m-cycles in G. Computing the `th power of the sum of these
reveals pairwise disjoint `-tuples of cycles of all lengths, each appearing with
multiplicity `!. Because G has n edges, the maximum number of `-tuples of
disjoint cycles in G is bn/3c. Summing over all admissible values of ` and
considering the coefficient of γ[|E|] to ensure that all edges of G are covered, the
number of cycle covers of G is recovered.
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For each m = 3, . . . , n, computing τm requires O(nβ log m) Clops. Hence,

computing
n∑

m=3

τm

2 m
requires O(nβ+1 log n) Clops. For each ` = 1, . . . , bn/3c,

computing

(
n∑

m=3

τm

2 m

)`

then requires O(nβ+1 log n log `) Clops. Finally, sum-

ming over `,
bn/3c∑

`=1

1
`!

(
n∑

m=3

τm

2 m

)`

requires O(nβ+2 log n log n) Clops. It there-

fore follows from the results obtained thus far that counting the disjoint cycle
covers of a graph on n vertices requires O(nβ+2 log n log n) Clops. In the next
section, this result is improved by another method.

3 Other Problems

In addition to graph problems, properties of C`n
nil and C`n

idem make them
useful for other types of combinatorial problems.

3.1 Computing the Permanent

The problem of computing the permanent of a matrix is known to be ]P-
complete [29], [6]. Methods of approximating the permanent using Clifford
algebras have also been discussed [7].

The current authors’ methods allow one to directly compute the permanent
of a matrix with C` computational complexity O(n).

Let M = (mij)n×n be an arbitrary matrix. Let {γi}1≤i≤n and {ζi}1≤i≤n

denote commutative nilpotent generators of C`n
nil ⊗ C`n

nil, and define

a =
n∑

i,j=1

mij γi ζj ∈ C`n
nil ⊗ C`n

nil. (3.1)

Proposition 3.1. Let M , n, and a be defined as above. Then,
〈
an, γ[n]ζ[n]

〉
= n! Perm(M). (3.2)

Proof. Let M be an n × n matrix and consider the following definition of the
permanent:

Perm(M) =
∑

π∈Sn

n∏

i=1

mi π(i). (3.3)

12



Now,

an =




n∑

i,j=1

mij γi ζj




n

=




n∑

i=1

n∑

j=1

mij γi ζj




n

=
∑

k1+···+kn=n

(
n

k1, . . . , kn

) n∏

i=1


γi

n∑

j=1

mij ζj




ki

=
(

n

1, 1, . . . , 1

) n∏

i=1




n∑

j=1

mij γi ζj




= n!
∑

π∈Sn

n∏

i=1

mi π(i) γi ζπ(i) = n! Perm(M) γ[n] ζ[n]. (3.4)

Corollary 3.2. Computing the permanent of an n×n matrix is of C` complexity
O(n).

Corollary 3.3. Counting the perfect matchings of a bipartite graph is of C`
complexity O(n).

Corollary 3.4 (Complexity of cycle covers). Counting the cycle covers of a
finite graph on n vertices is of C` complexity O(n).

3.2 The Set Packing and Set Covering Problems

The following two problems are among the original 21 NP-complete problems
of Karp [15]. They are moved to class P in the C` context.

Theorem 3.5 (Set packing problem). Let S = {S1, . . . , Sm} be a collection of
subsets of the n set {1, 2, . . . , n}. In the C` context, the problem of determining
whether there exists a pairwise disjoint collection {Sj1 , . . . , Sjk

} ⊆ S has C`
complexity O(log k).

Proof. Let α =
m∑

j=1

ζSj ∈ C`n
nil. Then there exists a pairwise disjoint collection

{Sj1 , . . . , Sjk
} ⊆ S if and only if αk 6= 0.

Theorem 3.6 (Set covering problem). Let S = {S1, . . . , Sm} be a collection of
subsets of the n-set {1, 2, . . . , n}. In the C` context, the problem of determining
the minimum value of k for which there exists a collection {Sj1 , . . . , Sjk

} ⊆ S

satisfying
k⋃

`=1

Sj`
= {1, 2, . . . , n} has C` complexity O(m log k).

13



Proof. Let α =
m∑

j=1

εSj ∈ C`n
idem. Then there exists a collection {Sj1 , . . . , Sjk

} ⊆

S such that
k⋃

`=1

Sj`
= {1, 2, . . . , n} if and only if

〈
αk, ε[n]

〉 6= 0. Checking each

k = 1, 2, . . . ,m requires at most m iterations.

Acknowledgment. The second author thanks Philip Feinsilver for useful dis-
cussion about the matrix permanent.
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