MP2GL:
Prototyping 3D ODbjects
with MetaPost and OpenGL

Denis Roegel, University of Nancy, France

roegel@loria.fr

EuroTEX 2005
Pont-a-Mousson, France
7—11 March 2005




Summary

Limitations of MetaPost

Motivations of MP2GL

OpenGL

MP2GL interface

3D equations

Text

Animations

Lights, color, ...

Limitations of MP2GL

Related work



Limitations of MetaPost

MetaPost is not adapted to 3D

a hidden faces algorithm needs to be
implemented

lights

colors

numerical limitations

static view




Motivations of MP2GL

Two remedies can be envisioned, at a
Nnon-macro level:

e extending the core MetaPost with 3D
support: a lot of work in perspective...
(no case known)

e USiNg an external processor:

— not 3D-aware: a lot of work...
(3DLDF)

— 3D-aware: easy (MP2GL)



Question:
do we need a 3D-MetaPost?

In order to answer that question, let’'s see
good reasons to use 2D-MetaPost:

e TpEX partner,

e high-quality technical drawings;

e vector graphics;

e declarative approach;

e nice types;

e fun!



Among these reasons, the intrinsic
MetaPost ones are:

e TpEX partner,

e declarative approach;

e nice types;

A 3D-MetaPost would include the
2D-MetaPost features, plus:

e 3D vector graphics;

e animations.



Qur proposal: MP2GL

MP2GL = MetaPost to OpenGL

e OpenGL: standard API for graphics in
the industry;

e rendering of 3D scenes, with lights,
shading, hidden faces removal
(z-buffer), etc.

e scenes can be saved in bitmap, and in
PS, using the GL2PS library.



A motivation for 2D = 3D

Most 3D objects that one wants to build
are:

e cither geometrically very simple
(cube, ...)

e Or obtained simply from 2D objects
(prism, ...)

e Or composed of simpler 3D objects.

T hese three ways of building an object are
supported in MP2GL.



Main features of MP2GL

MetaPost input language;

structures for points and homogeneous
coordinates;

interface to OpenGL objects (polyhedra,
..)

ability to build low-level objects;

MetaPost paths can be used to build
prisms;

equations can be used in 3D;

production of C-code with a minimal
animation interface;



® a scene can be saved in bitmap and PS;

e TEX labels can be added and later
adjusted;

e the C output is editable and can be
used without MetaPost;

e Objects can be created on the OpenGL
side;

MP2GL should be seen as a gateway from
MetaPost to OpenGL, both for the objects
and for the user.



OpenGL

An OpenGL scene is created by translations
and rotations, and polygons defined by
vertices.

A tetrahedron at (—4.1,5,12.3) is obtained
with:

glTranslatef(-4.1,5,12.3);
glutSolidTetrahedron() ;

A square can be built with:

glBegin (GL_POLYGON) ;
glNormal3f (0,0,1);
glVertex3£(0,0,0);
glVertex3£f(1,0,0);
glVertex3f(1,1,0);
glVertex3£(0,1,0);
glEnd () ;



MP2GL interface: types

The color type is used for points:

def Point = color enddef;
def Xpart = redpart enddef;
def Ypart = greenpart enddef;

def Zpart = bluepart enddef;

10



MP2GL interface:
transformations

e [ranslations, rotations, etc.

e MetaPost mimicks OpenGL:

— Translate — glTranslatef

— PushPosition, PopPosition

These transformations are:

e output in C;

e processed internally in order to maintain
a ‘“‘current transformation’” which can
be used if necessary;

11



MP2GL interface:
basic objects

Polyhedra, sphere, cone, torus, teapot, disk,
partial disk, cylinder.

I
|

12



MP2GL interface:
path-based objects

storepath(p,"Path_P");
new_prism("Prisml","Path_P",ch);
begin_scene;

use_object ("Prisml");

end_scene;

13



A more complex example, made of four
paths:

14



MP2GL interface:
low-level

A cube can be constructed face by face:

def build_cube_face=
begin_convex_polygon;
normal (0,0,-1);
vertex(0,0,0);
vertex(0,1,0);
vertex(1,1,0);
vertex(1,0,0);

end_convex_polygon;

enddef;

15



MP2GL interface:
low-level (cont’ed)

beginobject ("Cube") ;
set_diffuse_color(1.0,0.0,0.0);
build_cube_face; 7% bottom face
PushPosition;
Translate(1,0,0) ;RotateY(-90);
set_diffuse_color(0.0,1.0,0.0);

build_cube_face;

endobject

16



3D equations

Equations are a powerful way to define
positions through linear constraints in
MetaPost.

D=.5[B,C] ;E=.5[C,A];F=.5[A,B];
I=whatever [B,E]l=whatever[A,D];

C

The same mechanism can be used on
points in space, within MetaPost.

17



3D equations:

splitting a tetrahedron ...

(1)

Point K can be obtained by similar means:

E=.5[B,C]; F=.5[C,D]; G=.5[B,D];
H=.5[A,D]; I=.5[A,B]; J=.5[A,C];

K=whatever[G, J]=whatever[H,E];

18




3D equations:
into four tetrahedra (2)

new_tetrahedron("t1",A,B,C,K);
new_tetrahedron("t2",C,B,D,K);
new_tetrahedron("t3",A,C,D,K);
new_tetrahedron("t4",B,A,D,K);

We are going to move these four
tetrahedra, and the four new vertices will be
used to insert a sphere.

MetaPost can be used to compute the
center of that sphere, as well as its radius,
by ordinary equations (and a little bit of
whatever abuse...):

V9=V1+whatever*V2+whatever*V3
=V4+whatever*V2+whatever*V5

=V6+whatever*xV7+whatever*V8;

(six different values of whatever!)

19



3D equations:
into four tetrahedra (3)

The resulting construction is the following:

begin_scene;
PushPosition;
TranslateV(K-D);
use_object ("t1");

PopPosition;
TranslateV(V9);

wire_sphere(norm(W1i-vV9),30,30);

end_scene;

20






Text

TEX labels can be added at specific
projected locations; the TEX output can
be edited;

labels are not in space;

text in space could be obtained with the
appropriate objects, created from paths;

other features could be added, for
instance fake labels, or a second
processing through MetaPost.

21



Animations

the output of MP2GL is an interactive
animation;

the user has a minimal interface for
moving around the scene; all positions
are reachable;

the scene can be saved as JPEG or PS;
other formats (such as PPM, or PDF)
are easy to add;

the animation can be edited, for
instance for changing the lights, colors,
the camera, etc.

the animation could be extended in
order to produce a series of bitmaps,
which could then be made into an
MPEG;

22



Lights, colors,

e lights are hardwired, but future versions
of MP2GL may make them changeable;
they can currently be changed in
OpenGL;

e colors follow the OpenGL model
(emission, ambient, diffuse, specular);

23



Limitations of MP2GL

Many features will be added (for instance
NURBS), but there are also hard(er)
limitations:

e Of GL2PS:
— no textures in PS output;

— no transparency in PS output;

e Of OpenGL:
— no shadows

— no CSG construction

24



Related work

3d,

m3dplain,

featpost,

pstricks

3DLDF. most promising.

25



Conclusion

The aim of this study was:

e tOo examine the feasability of a bridge
between MetaPost and OpenGL:

e to easily obtain 3D vector graphics for
inclusion in a document;

e to obtain 3D objects for further
processing, for instance in an
independent OpenGL application.

These goals have all be met, although many
features still have to be added.

26



T hanks!

http://www.loria.fr/ " roegel

roegel@loria.fr

27



