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Limitations of MetaPost

MetaPost is not adapted to 3D

a hidden faces algorithm needs to be
implemented

lights

colors

numerical limitations

static view




Motivations of MP2GL

Two remedies can be envisioned, at a
Nnon-macro level:

e extending the core MetaPost with 3D
support: a lot of work in perspective...
(no case known)

e USiNg an external processor:

— not 3D-aware: a lot of work...
(3DLDF)

— 3D-aware: easy (MP2GL)



Question:
do we need a 3D-MetaPost?

In order to answer that question, let’'s see
good reasons to use 2D-MetaPost:

e TpEX partner,

e high-quality technical drawings;

e vector graphics;

e declarative approach;

e nice types;

e fun!



Among these reasons, the intrinsic
MetaPost ones are:

e TpEX partner,

e declarative approach;

e nice types;

A 3D-MetaPost would include the
2D-MetaPost features, plus:

e 3D vector graphics;

e animations.



Qur proposal: MP2GL

MP2GL = MetaPost to OpenGL

e OpenGL: standard API for graphics in
the industry;

e rendering of 3D scenes, with lights,
shading, hidden faces removal
(z-buffer), etc.

e scenes can be saved in bitmap, and in
PS, using the GL2PS library.



A motivation for 2D = 3D

Most 3D objects that one wants to build
are:

e cither geometrically very simple
(cube, ...)

e Or obtained simply from 2D objects
(prism, ...)

e Or composed of simpler 3D objects.

T hese three ways of building an object are
supported in MP2GL.



Main features of MP2GL

MetaPost input language;

structures for points and homogeneous
coordinates;

interface to OpenGL objects (polyhedra,
..)

ability to build low-level objects;

MetaPost paths can be used to build
prisms;

equations can be used in 3D;

production of C-code with a minimal
animation interface;



® a scene can be saved in bitmap and PS;

e TEX labels can be added and later
adjusted;

e the C output is editable and can be
used without MetaPost;

e Objects can be created on the OpenGL
side;

MP2GL should be seen as a gateway from
MetaPost to OpenGL, both for the objects
and for the user.



OpenGL

An OpenGL scene is created by translations
and rotations, and polygons defined by
vertices.

A tetrahedron at (—4.1,5,12.3) is obtained
with:

glTranslatef(-4.1,5,12.3);
glutSolidTetrahedron() ;

A square can be built with:

glBegin (GL_POLYGON) ;
glNormal3f (0,0,1);
glVertex3£(0,0,0);
glVertex3£f(1,0,0);
glVertex3f(1,1,0);
glVertex3£(0,1,0);
glEnd () ;



MP2GL interface: types

The color type is used for points:

def Point = color enddef;
def Xpart = redpart enddef;
def Ypart = greenpart enddef;

def Zpart = bluepart enddef;
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MP2GL interface:
transformations

e [ranslations, rotations, etc.

e MetaPost mimicks OpenGL:

— Translate — glTranslatef

— PushPosition, PopPosition

These transformations are:

e output in C;

e processed internally in order to maintain
a ‘“‘current transformation’” which can
be used if necessary;
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MP2GL interface:
basic objects

Polyhedra, sphere, cone, torus, teapot, disk,
partial disk, cylinder.

I
|
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MP2GL interface:
path-based objects

storepath(p,"Path_P");
new_prism("Prisml","Path_P",ch);
begin_scene;

use_object ("Prisml");

end_scene;
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A more complex example, made of four
paths:
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MP2GL interface:
low-level

A cube can be constructed face by face:

def build_cube_face=
begin_convex_polygon;
normal (0,0,-1);
vertex(0,0,0);
vertex(0,1,0);
vertex(1,1,0);
vertex(1,0,0);

end_convex_polygon;

enddef;
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MP2GL interface:
low-level (cont’ed)

beginobject ("Cube") ;
set_diffuse_color(1.0,0.0,0.0);
build_cube_face; 7% bottom face
PushPosition;
Translate(1,0,0) ;RotateY(-90);
set_diffuse_color(0.0,1.0,0.0);

build_cube_face;

endobject
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3D equations

Equations are a powerful way to define
positions through linear constraints in
MetaPost.

D=.5[B,C] ;E=.5[C,A];F=.5[A,B];
I=whatever [B,E]l=whatever[A,D];

C

The same mechanism can be used on
points in space, within MetaPost.
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3D equations:

splitting a tetrahedron ...

(1)

Point K can be obtained by similar means:

E=.5[B,C]; F=.5[C,D]; G=.5[B,D];
H=.5[A,D]; I=.5[A,B]; J=.5[A,C];

K=whatever[G, J]=whatever[H,E];
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3D equations:
into four tetrahedra (2)

new_tetrahedron("t1",A,B,C,K);
new_tetrahedron("t2",C,B,D,K);
new_tetrahedron("t3",A,C,D,K);
new_tetrahedron("t4",B,A,D,K);

We are going to move these four
tetrahedra, and the four new vertices will be
used to insert a sphere.

MetaPost can be used to compute the
center of that sphere, as well as its radius,
by ordinary equations (and a little bit of
whatever abuse...):

V9=V1+whatever*V2+whatever*V3
=V4+whatever*V2+whatever*V5

=V6+whatever*xV7+whatever*V8;

(six different values of whatever!)

19



3D equations:
into four tetrahedra (3)

The resulting construction is the following:

begin_scene;
PushPosition;
TranslateV(K-D);
use_object ("t1");

PopPosition;
TranslateV(V9);

wire_sphere(norm(W1i-vV9),30,30);

end_scene;
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Text

TEX labels can be added at specific
projected locations; the TEX output can
be edited;

labels are not in space;

text in space could be obtained with the
appropriate objects, created from paths;

other features could be added, for
instance fake labels, or a second
processing through MetaPost.
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Animations

the output of MP2GL is an interactive
animation;

the user has a minimal interface for
moving around the scene; all positions
are reachable;

the scene can be saved as JPEG or PS;
other formats (such as PPM, or PDF)
are easy to add;

the animation can be edited, for
instance for changing the lights, colors,
the camera, etc.

the animation could be extended in
order to produce a series of bitmaps,
which could then be made into an
MPEG;

22



Lights, colors,

e lights are hardwired, but future versions
of MP2GL may make them changeable;
they can currently be changed in
OpenGL;

e colors follow the OpenGL model
(emission, ambient, diffuse, specular);
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Limitations of MP2GL

Many features will be added (for instance
NURBS), but there are also hard(er)
limitations:

e Of GL2PS:
— no textures in PS output;

— no transparency in PS output;

e Of OpenGL:
— no shadows

— no CSG construction
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Related work

3d,

m3dplain,

featpost,

pstricks

3DLDF. most promising.
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Conclusion

The aim of this study was:

e tOo examine the feasability of a bridge
between MetaPost and OpenGL:

e to easily obtain 3D vector graphics for
inclusion in a document;

e to obtain 3D objects for further
processing, for instance in an
independent OpenGL application.

These goals have all be met, although many
features still have to be added.
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T hanks!

http://www.loria.fr/ " roegel

roegel@loria.fr
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