
MetaObj:
Very High Level Objects

in MetaPost

Denis Roegel, University of Nancy, France

TUG 2002

Thiruvananthapuram, Kerala, India

4–7 September 2002

1



Summary

• The need for high-level objects

• How high-level objects can be

implemented

• Examples

• Extensions

2



The need for objects

• need to separate design and use : allow
for reusability and homogeneity

1. design/use intermeshed:

draw (0cm,0cm)--(1cm,0cm)--(1cm,1cm)

--(0cm,1cm)--cycle;

2. – design:
def square = (0cm,0cm)--... enddef

– use: draw square

• need to encapsulate complex structures
so that they can be manipulated
globally; drawing is only one of many
possible manipulations;

problem with

3



if we write:

def doublesquare = ...

draw doublesquare

it will only work if we make the double

square a MetaPost picture; so, can we

use pictures as objects?

• pictures vs. objects

+ pictures are structured objects;

− pictures can’t be annotated and they

contain only visible information, not

other information that could

influence the use of the picture;

for instance, let A and V be two

objects representing letters; if the

objects contain only the drawing,

doing kerning will be difficult; we



would have to find the properties of

an object by guessing inside the

picture, or by using information

stored elsewhere;

⇒ in a real object, we add margins, and

all necessary properties to use and

combine objects.

• need to go inside an object:

from

we would like to obtain

e w



• when creating objects, we can also

create different classes of objects,

corresponding to different types of

objects, with different uses and different

attributes; example:

the circle has a radius, which is not a

property of the square; also, the square

has specific corner positions, which are

not relevant in the circle;

• need for named subcomponents; the

components of a picture do not have

names;

All these things are cumbersome to handle

without an object approach.



How objects are implemented:
a look at boxes.mp

boxit.a(btex test etex);

a.dx=a.dy;

a.c=origin;

drawboxed(a);

test

Interesting features:

? boxes have names (‘a’);

? boxes have parameters: dx, dy, c (and
others), accessed in a natural dot-style
way;

? boxes can be “floating” (or “gliding”)
before a.c is set;

4



? if we dig more inside boxes.mp, we find

that a box has several points (n, w, s, e,

nw, ..., c) as well as equations;

? two kinds of objects: boxes (created

with boxit) and ellipses (created with

circleit);

? certain variables can be changed and

they have default values;

We want to retain most of these features.



How objects are implemented:
basic requirements

• objects will have names;

• objects will have properties (attributes);

• objects will have equations;

• when an object is created, it will be
rigid and floating (not exactly true of
boxes.mp where dx and dy need not be
set when a box is created);

• we want classes of objects, but no
inheritance so far;

• we want class methods as well as object
methods;

5



• we want to apply certain

transformations regardless of the object;

• objects must be compatible (and most

objects should be interchangeable);

• compatibility with boxes.mp;

• objects must be able to contain objects;

• each class must have a constructor ;

• the structure of an object must be easily

accessible.



Floating objects

• floating point:

pair A;

⇒ A is floating;

• floating segment:

pair A,B;

B-A=(1cm,3cm);

⇒ neither A nor B is defined, but the
−→
AB

vector is well defined.

The equations create the rigidity.

6



Operations on floating objects

• translations: not relevant;

• rotation: example:

pair A,B;

B-A=(1cm,3cm);

pair C,D;

C=A;D=B; % A and B are saved

A:=(whatever,whatever); % re-initialize A

B:=(whatever,whatever); % re-initialize B

B-A=(D-C) rotated 30; % reset B-A

As a result, the segment has been

rotated, and the segment is still floating.

7



Examples

A simple object: EmptyBox

EmptyBox is the constructor of a box

containing nothing. Normally, it is invisible,

but we can force its edges to appear.

This is constructed as follows:

newEmptyBox.eb(2cm,1cm) "framed(true)";

• ‘newEmptyBox’ is the constructor for the

‘EmptyBox’ class (similar to boxit in

boxes.mp) ;

• ‘eb’ is the name of the object (like with

boxes.mp);

8



• the initial dimensions are given as

parameters; these parameters are

mandatory ;

• an option is added to have the box

framed; the option has a name and a

value;

Once the box is constructed, it is floating

and can be drawn with:

eb.c=origin;

drawObj(eb);



Inside (!) the EmptyBox

vardef newEmptyBox@#(expr dx,dy) text options=
ExecuteOptions(@#)(options);
assignObj(@#,"EmptyBox");
StandardInterface;
ObjCode StandardEquations,

"@#ise-@#isw=(" & decimal dx & ",0)",
"@#ine-@#ise=(0," & decimal dy & ")";

enddef;

def BpathEmptyBox(suffix n)=
StandardBpath(n)

enddef;

def drawEmptyBox(suffix n)=
if show_empty_boxes:

drawFramedOrFilledObject_(n);
fi;

enddef;

setObjectDefaultOption
("EmptyBox")("framed")(false);

9



Inside EmptyBox (1)

vardef newEmptyBox@#(expr dx,dy) text options=

ExecuteOptions(@#)(options);

assignObj(@#,"EmptyBox");

StandardInterface;

ObjCode StandardEquations,

"@#ise-@#isw=(" & decimal dx & ",0)",

"@#ine-@#ise=(0," & decimal dy & ")";

enddef;

• ‘@#’ is the name of the box;

• options may be empty;

• the values of the options for the current
object are stored with ExecuteOptions (a
little bit like in LATEX);

• assignObj initializes various things,
including the correspondence between
an object and its class;

• StandardInterface and ObjCode will be
explained later.

10



Inside EmptyBox (2)

def BpathEmptyBox(suffix n)=

StandardBpath(n)

enddef;

def drawEmptyBox(suffix n)=

if show_empty_boxes:

drawFramedOrFilledObject_(n);

fi;

enddef;

• all objects must define a path bounding

the object; the name is mandatory, here,

BpathEmptyBox; it is a method;

• all objects must defined a drawing

method, named here drawEmptyBox.

11



Inside EmptyBox (3)

setObjectDefaultOption

("EmptyBox")("framed")(false);

• options are given to the constructor as a

comma-separated list of strings;

• there are various named options;

Option Type Default
filled boolean false
fillcolor color black
framed boolean false
framewidth numeric .5bp
framecolor color black
framestyle string ""

shadow boolean false
shadowcolor color black

• for each class, an option has a given

default value; different classes can have

different default values (but with the

same types);

12



• once an object is defined, changing the

default values has no effect; hence,

default values can be changed

temporarily if needed;



A container: Box

A Box can contain something:

• a string,

• a picture (for instance a TEX label), or

• an object.

Containers introduce a new requirement: a

standard interface. This is needed for the

equations. For instance, one of the

equations of Box is:

.5[@#isw,@#ine]

=.5[obj(@#sub)ne,obj(@#sub)sw]

This means that the middle of the Box is

equal to the middle of the object contained

in the Box.
13



Equations can also depend on options.

And since a container does not always

contain an object, the equations have to be

adapted to each case.

The whole equations defined for a Box is

actually:

ObjCode StandardEquations,
if numeric v:

% object
".5[@#isw,@#ine]=.5[obj(@#sub)ne,obj(@#sub)sw]",

elseif (picture v) or (string v):
".5[@#isw,@#ine]=@#p.off", % picture offset

fi
if OptionValue@#("rbox_radius")>0:

...
fi
"@#ise-@#isw=(" &

decimal (2@#a+2*OptionValue@#("dx")) & ",0)",
"@#ine-@#ise=(0," &

decimal (2@#b+2*OptionValue@#("dy")) & ")";

The value of an option can be inquired

using OptionValue.



Standard interface and
equations

The cardinal points exist in two fashions.

• First, the standard points, representing

the external interface of an object.

These points define how much space an

object takes.

def StandardPoints=

ne,nw,sw,se,n,s,e,w,c

enddef;

14



• Then, the standard inner points. They

represent the cardinal points seen from

the inside. These points may be used to

define drawings. For instance, a square

may be defined by drawing the line

ine--ise--isw--inw--cycle.

def StandardInnerPoints=

ine,inw,isw,ise,in,is,ie,iw,ic

enddef;

The importance of these points lies in

the fact that they make it possible to

change the bounding box (by changing

the external interface) without

influencing the drawing (which should

be based on the internal interface).

Only initially do we have:

@#ine=@#ne;@#inw=@#nw;

@#isw=@#sw;@#ise=@#se;@#in=@#n;@#is=@#s;

@#ie=@#e;@#iw=@#w;@#ic=@#c;

15



• Returning to the Box equation:

.5[@#isw,@#ine]

=.5[obj(@#sub)ne,obj(@#sub)sw]

we see that the subobject sub is used to

its external interface (ne, sw) but that

only internal interface points are used

for the Box itself (isw, ine).

16



Other classes

HBox, VBox

newBox.a(btex Box A etex);

newBox.b(btex Box B etex scaled \magstep3);

newBox.c(btex Box C etex scaled \magstep2);

newHBox.h(a,b,c);

h.c=origin;

drawObj(h);

Box A Box B Box C

Alignment can be changed. With

newHBox.h(a,b,c) "align(top)";

we get:

Box A Box B Box C
17



Combinations

newPolygon.a(btex Box A etex,5)
"fit(false)","polymargin(5mm)";

newBox.b(btex Box B etex scaled \magstep3);
newHRazor.ba(1cm);
newPolygon.c(btex Box C etex scaled \magstep2,11)

"polymargin(3mm)";
newHBox.h(a,b,ba,c)

"align(center)","hbsep(3mm)";
h.c=origin;
drawObj(h);

Box A Box B Box C

18



Recursive objects

newVonKochFlake.a(3);

scaleObj(a,.5);

a.c=origin;

drawObj(a);

19



Operations on objects

In the previous example, the Von Koch flake
was scaled down.

All standard objects can be modified with
the following operations:

• (translating is not relevant for floating
objects);

• scaling: scaleObj;

• rotating: rotateObj;

• slanting: slantObj;

• reflecting: reflectObj;

• and any other linear transformation
defined by the user.

An object can also be modified with a
non-linear operation, but the user has to
specify the operation.

20



Cloning

• Objects can be cloned. This is merely a

matter of traversing an object and

analyzing its structure and cloning its

subcomponents recursively.

• A clone is a complete and independent

copy of the original object.

• Partial copies would be possible, but the

user has to program them.

21



Trees

• A tree is a complex object defined from

a root and leaves.

• All these objects can belong to various

classes, as long as they honor the

standard interface.

• A tree is itself an object and can be used

as a root or as a leaf of another tree.

• Trees can be modified by options.

22



Trees: example 1

newBox.a(btex apples\strut etex);
newBox.b(btex oranges\strut etex);
newBox.c(btex bananas\strut etex);
newBox.f(btex fruits etex);
newTree.fruits(f)(a,b,c) "Dalign(bot)";
newBox.d(btex potatoes etex);
newBox.e(btex peas etex);
newBox.v(btex vegetables etex);
newTree.vegetables(v)(d,e)

"Dalign(center)";
newBox.fo(btex food etex);
newTree.food(fo)(fruits,vegetables)

"hbsep(1cm)";
scaleObj(food,.5);
food.c=origin;
drawObj(food);

apples oranges bananas

fruits

potatoes peas

vegetables

food

23



Trees: example 2

newPolygon.a(btex apples etex,5);
newPolygon.b(btex oranges etex,6);
newPolygon.c(btex bananas etex,7);
newPolygon.f(btex fruits etex,8);
newTree.fruits(f)(a,b,c) "Lalign(left)",

"hideleaves(true)", "treemode(L)", "vsep(3mm)";
newEllipse.d(btex potatoes etex);
newDEllipse.e(btex peas etex);
newDBox.v(btex vegetables etex);
newTree.vegetables(v)(d,e)

"Ralign(center)", "hideleaves(true)", "treemode(R)";
newPolygon.fo(btex food etex,12);
newTree.food(fo)(fruits,vegetables) "hsep(1cm)";
scaleObj(food,.5);
food.c=origin;
drawObj(food);

apples

oranges

bananas

fruits

potatoes

peas

vegetables

food

24



Connections

start

end

ncarc(a)(b);
ncarc(b)(a);

start

end

nccircle(a) "angleA(0)",
"linecolor(blue)","linewidth(1pt)";

25



Connections (cont’ed)

start

end

nczigzag(a)(b) "angleA(-90)","angleB(120)",
"linetension(0.8)",
"coilwidth(2mm)","linearc(.1mm)";

start

end

nccoil(a)(b);

start

end

nccoil(a)(b) "doubleline(true)","coilwidth(2mm)",
"angleA(0)", "arrows(-)",
"linewidth(1pt)";

26



Complex example

Double box with green shadow

hexagon

a b

c

c

a

b

c

27



newBox.a("a");
newEllipse.b("b");
newEllipse.c("c")

"filled(true)", "fillcolor(red)","picturecolor(green)",
"framecolor(blue)","framewidth(2pt)";

newTree.t(c)(a,b) "linecolor((1,1,0))";
newBox.aa(t)

"filled(true)", "fillcolor((0,1,1))","rbox_radius(2mm)";
aa.c=origin;
newHexagon.xa("hexagon")

"fit(false)","filled(true)","fillcolor((1,0,1))";
newEllipse.xc("c")

"filled(true)", "fillcolor(red)","picturecolor(green)",
"framecolor(blue)","framewidth(2pt)";

newTree.xt(xc)(xa,aa) "linecolor((1,1,0))";
newCircle.xaa(xt) "filled(true)", "fillcolor((.6,.8,.5))";
newDBox.db(btex Double box with green shadow etex)

"shadow(true)", "shadowcolor(green)",
"filled(true)","fillcolor(blue)",
"picturecolor((1,1,0))";

newTree.nt(xaa)(db);
drawObj(nt);
nccoil(xc)(db) "angleA(0)","angleB(180)",

"coilwidth(5mm)","linetension(0.8)","linecolor(red)",
"doubleline(true)","posB(e)";

duplicateObj(dt,aa);
reflectObj(dt,origin,up);
slantObj(dt,.5);
rotateObj(dt,30);
dt.c=nt.c-(6cm,-1cm);
drawObj(dt);
nczigzag(a)(treepos(obj(dt.sub))(1))

"angleA(-120)","coilwidth(7mm)",
"linecolor(.5green)","linearc(1mm)",
"border(2pt)";

28



Object extraction

leaf 1 leaf 2 leaf 3

root

leaf 3 leaf 2 leaf 1

root

leaf 1 leaf 2 leaf 3

root

29



Comparison with other packages

• (r)boxes.mp is subsumed by MetaObj;

• PSTricks: many of its features,

especially connections, and options, are

taken over in MetaObj;

• fancybox is subsumed by MetaObj (for

the frame features).

30



Extensions

• new classes can be added easily, possibly

building some of them out of existing

classes;

• layers are not implemented but could be

implemented;

• a TEX interface would solve the problem

of syntax constraints.

31



Possible TEX interface

MetaObj code:

setObjectDefaultOption("Tree")("treemode")("D");
setCurveDefaultOption("arrows")("drawarrow");
t:=T_(new_Polygon_(btex root etex)(4)("name(top)"))

(new_Box_(btex x etex)("framed(false)","name(lx)"),
new_Box_(btex y etex)("framed(false)","name(ly)"),
new_Box_(btex z etex)("framed(false)","name(lz)"))

("edge(none)","vsep(1.5cm)");
ncbar.Obj(t)("top")("lx") "angleA(180)","armA(1cm)";
ncline.Obj(t)("top")("ly");
ncbar.Obj(t)("top")("lz") "angleA(0)","armA(1cm)";
Obj(t).c=origin;
draw_Obj(t);

32



MetaObj hidden by a (not yet existing) TEX

interface:

\begin{metaobj}
\mosetO{Tree}{treemode=D}
\mosetC{arrows=drawarrow}
\setObj{t}{\Tree{\Polygon{root}{4}[name=top]}

{\Box{x}[framed=false,name=lx],
\Box{y}[framed=false,name=ly],
\Box{z}[framed=false,name=lz]}

[edge=none,vsep=1.5cm]}
\ncbar[t]{top}{lx}[angleA=180,armA=1cm]
\ncline[t]{top}{ly}
\ncbar[t]{top}{lz}[angleA=0,armA=1cm]
\pos{t.c}{origin}
\draw{t}
\end{metaobj}

33



Conclusions

• MetaObj was an experimental project

aimed at exploring the feasibility of

‘high-level structures’ in MetaPost;

• it appears that a lot is possible, and

actually much more, since interesting

concepts, such as layers, have not been

implemented; MetaPost is actually

vastly underused;

• we have a system with a functional

approach and keeping the interesting

declarative features of MetaPost;

• MetaPost also appears quite robust, and

the MetaObj code sometimes gets very

tricky (it also taught me a lot!);

34



• but due to the MetaPost syntax

constraints, using MetaObj is still

complex; the syntax idiosyncrasies could

be hidden within TEX;

• the structure of an object could also be

modelled outside of MetaPost, but then

using TEX may be diffictult;

More information:

CTAN:

graphics/metapost/contrib/macros/metaobj


