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Abstract 

The aim of this thesis is the development of a new low cost sensor for the 3D 

acquisition. The 3D sensor provides several features, like a tool for initial 

configuration of the sensor, the synchronized acquisition from both the cameras, 

the rectification of the captured images and the processing of the image to get a 

range map used in many different applications. 

Given the presence of high cost devices, which allow to obtain the three-

dimensional representation of the environment taken into consideration, the 

purpose of this work is to realize a low cost sensor, that makes possible the stereo 

acquisition, and to produce a depth image from the disparity map. This sensor can 

be used for counting and classification of people, or for a 3D reconstruction of the 

environment under consideration. 

The 3D sensor consists of two cameras in a PVC container, connected via USB to 

Raspberry Pi 2, which handles the video stream acquisition and the image 

processing. 

The first step is the assembly of the used components; particular attention was 

drawn to the layout of the cameras, to avoid misalignment that can negatively 

influence the result of the disparity map extraction. Although the two aligned 

cameras, the initial calibration is always necessary, to eliminate the radial 

distortions related to inherent defects of the camera lenses. For this initial 

calibration, it is provided a simple tool, which allows, with the aid of a chessboard 

pattern, obtaining the calibration parameters, which are used to remove the 

distortion and possible misalignments between the cameras. 

For the acquisition and decoding of the video stream from the cameras, we use the 

library FFMPEG, which gives the opportunity to acquire individual video streams 

and then decode them in the desired format. One of the features provided by the 

sensor is the synchronous acquisition from the cameras, transforming two 

autonomous cameras in a real stereo camera. 

An additional available feature is the rectification of stereo images, which, using 

the parameters obtained from the calibration performed during the configuration of 
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the cameras, allows to remove the radial distortion caused by lens imperfections of 

the camera. 

The used algorithm, in order to obtain a depth image, is a generative probabilistic 

model for stereo matching, which allows dense matching with small aggregation 

windows by reducing ambiguities on the correspondences. 

The employed approach requires a prior compute of the disparity space by forming 

a triangulation on a set of robustly matched correspondences, named “support 

points”. The implemented algorithm does not suffer in presence of poorly-texture 

and slanted surfaces; therefore, it suits at more examined environments. Also, to 

increase the performance, much part of code was parallelized, using the SIMD 

instruction set NEON, available on Raspberry CPU.  

The last step of this study was to calculate the framerate of the stereo camera and 

the error rate of the stereo matching algorithm. The framerate of the sensor is settled 

on 3 fps. The average error rate on 16 images taken by Middlebury Stereo Dataset 

is 11.7%. 

The future development of this work is to complete and to make the sensor 3D a 

plug and play sensor, usable immediately with a rough configuration. Furthermore, 

updating the using hardware with a new and more powerful CPU, the potentialities 

of the sensor may be increased and improved. 
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Chapter 1 

 

1 Introduction 

The basic idea of the thesis is the realization of a smart low cost sensor in order to 

extract a depth image, which gives the information on the distance of objects from 

the camera. 

Part of this thesis was made with the team QGAR of the LORIA laboratory at the 

Nancy University (France).  

1.1 Computer vision 

The computer vision is a field of information technology that, starting from 70s, is 

having a lot of interest from the scientific community. His endless uses place it 

among the pillars of the information technology. Computer Vision can be defined 

along the lines of ‘using computers to discover from images what is in a scene, and 

where it is’ [1]. Using a single image from a single camera, it is possible to obtain 

a very high number of information, which can be used in various ways and with the 

most variable purposes. Possible uses of the applications that belong to the artificial 

vision, can be placed in different areas, such as security, where there is the 

recognition of the people, very popular in this period, in which you want to quickly 

identify a crowd-confused criminal, or the detection of a fire, in a limited area, or 

also, in the commercial sector, where it is required the people count into a shopping 

mall, or the distinction between the types of customers that passes or stops in front 

of the window of the shop, or again, in industry sector, for quality control of a 

product, or in the assistance of the movement of a robot in an unknown 

environment. 
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Many of these applications have already become part of our everyday life, without 

someone to indicate part of the computer vision. Not all possible applications can 

be implemented starting from a single 2D image. Some researchers started to study 

the stereo vision. 

1.2 Stereo vision 

Stereo vision is a traditional method for acquiring 3-D information from a stereo 

image pair, capturing two different perspectives of the same environment. With 

only one image, it is impossible, without different information from other sensors, 

to know the tri-dimensional structure of the scene. The reason is the loss of 

information inherent in the perspective projection, which maps the points of the 3D 

space in 2D space. Therefore, this technique needs to refer to the ability to infer 

information on the 3D structure and distance of objects. This method has many 

advantages in terms of cost, safety, operating range, undetectable characteristics, 

and reliability. Mobile robots can take advantage of this system as a reliable and 

effective way to extract range information from the environment: one of process 

used from robot is simultaneous localization and mapping (SLAM), the best 

example is the NASA rover robot, it can navigate safely through unknown and 

potentially hazardous terrain, using autonomous passive stereo vision to detect 

potential terrain hazards before driving into them [2].  

 

 

Figure 1.1 - Mars Rover 
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This technique can also be used for more simple and common applications, like 

people counting [3] to reconstruct the scene and so to remove the typical problem 

of people counting, see the inaccurate counting with congested scene. Also mobility 

aid for visually impaired uses the stereo vision to help blind individuals in their 

navigation with sound feedback [4]. 

 

Figure 1.2 - 3D glasses as mobility aid for blind people 

 

 

1.3 Stereo vision system 

The previously listed applications, in order to model the 3D scene follow a series 

of steps, each one with its aim and difficulty. The steps are: 

 camera calibration: if the configuration of cameras remains unchanged, this 

operation makes once time, to get the parameters of the camera and the 

position the cameras; 

 rectification: using the parameters of previous step, removes the lens 

distortion and turns the stereo pair in standard form; 

 stereo correspondence: aims at finding homologous points in the stereo pair; 

 triangulation: computes the position of the correspondence in 3D space with 

disparity map, baseline and the focal length (not discussed in this thesis). 
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Figure 1.3 - Stereo vision process 

1.4 Aim of thesis 

The thesis work wants to propose a sensor to obtain a depth image. The use of an 

additional camera is useful to obtain another important information about the scene 

and exploit it to realize different and new application. 

It is possible to find different devices who develop this task, but many of those use 

a specific hardware, and, not less important, they have a high cost. For this reason, 

we propose a house-made sensor, so that all interested person, following this thesis, 

can make it at home with simple and low cost hardware. 

 

1.5 Raspberry Pi 

The first low cost component used to create this sensor, it is Raspberry Pi. 

This is the sensor core and it performs all the necessary actions to compute the range 

map and others useful operations at the good working of the device  

The Raspberry Pi is a series of credit card-sized single-board computers developed 

in the United Kingdom by the Raspberry Pi Foundation to promote the teaching of 

basic computer science in schools and developing countries. The particularity of 
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this card is that, with a small amount of money, you have a computer used in many 

different ways. It is used to emulate retro-console, to create an audio system for the 

house, to build a media centre connectable with the television, to realize a drone 

what walks, talks and recognize person, and more different projects. 

 

Figure 1.4 - Raspberry Pi 2 

The Raspberry Pi used in the sensor is the model 2 B. This is the second generation 

of Raspberry Pi, and it replaced the original Raspberry Pi 1 Model B+ in February 

2015. Like the previous model, it has: 4 USB ports; 40 GPIO pins; Full HDMI port; 

Ethernet port; Combined 3.5mm audio jack and composite video; Camera interface 

(CSI); Display interface (DSI); Micro SD card slot; VideoCore IV 3D graphics core 

The novelty is the processor, more powerful than the Pi 1, a 900MHz quad-core 

ARM cortex-A7 CPU and the memory RAM doubled up to 1 GB. 

In order to use the raspberry, we installed Raspbian Jessie, a Debian-based 

computer operating system for Raspberry Pi, developed by a small team of 

developers. 

An additional, the library FFmpeg and OpenCV framework are available on the 

Raspberry. These libraries are described below, in the section, where they are used, 

to perform different tasks.  
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1.6 Outline 

The thesis is composed of seven chapters. The following is a brief description of 

the organization of the document. 

Chapter 1 describes the general context in which the work can be collocated, 

illustrating in general the problems faced by the Computer Vision and the goal of 

the developed system.  

The following chapters, from chapter 2 up to chapter 5, present the modules that 

make up the sensor. 

The chapter 2 talks about the calibration, the action that allows the two single 

cameras to become a stereo camera. 

The chapter 3 describes the acquisition of the images from two cameras, presenting 

the library to grab and convert the single frames captured from both the cameras. 

The chapter 4 talks about the rectification operation, an essential process to 

facilitate and make less expensive the next module, which makes the horizontal 

lines aligned between the left and right camera. 

The chapter 5 describes the core of the sensor, or rather the stereo matching 

algorithm. Before to explain the employed algorithm, we explain the difficulties 

and problems, which make this step approachable with different methods. 

In the chapter 6, instead, we show the results in terms of accuracy and 

computational load, in order to characterize the sensor and the stereo matching 

algorithm. 

In the chapter 7, finally, we draw the conclusions, providing suggestions for the 

future development of the proposed sensor. 
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Chapter 2 

 

2 Calibration 

Camera calibration is a necessary step in 3D computer vision in order to extract 

metric information from 2D images. It has been studied extensively in computer 

vision and photogrammetry, and even recently new techniques have been proposed. 

In this chapter, the techniques proposed in the literature are presented, including 

those using 3D apparatus (two or three planes orthogonal to each other, or a plane 

undergoing a pure translation, etc.), 2D objects (planar patterns undergoing 

unknown motions), 1D objects (wand with dots) and unknown scene points in the 

environment (self-calibration). The focus is on presenting these techniques within 

a consistent framework. 

2.1 Camera model 

Before the introduction of the possible methods to calibrate a camera, it is necessary 

a mathematical formulation of the problem. 

The physical space is a 3D Euclidean space ( 𝑅3 ) in which the points, once fixed a 

reference system, can be represented by three-dimensional vectors. In this space it 

can say the parallel lines do not intersect, or it intersect at the infinity. The 

representation of these points at infinity is not possible in this vector space. Thus a 

new coordinate is added at the tern, the new coordinate is defined in the following 

way: 

(𝑘𝑥 𝑘𝑦 𝑘𝑥 𝑘)     ∀𝑘 ≠ 0 
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In this representation, a point in the space is identified as an equivalence class of 

quadruple, where equivalent quadruples differ only by a multiplicative factor. This 

is the so-called representation in homogeneous coordinates of the point (𝑥, 𝑦, 𝑧). 

The space obtained by representing points in homogeneous coordinates is called the 

projective space 𝑃3. Defined the homogeneous coordinates it’s possible 

analytically represent the point at the infinity as point with the last coordinates equal 

to 0. 

In short, every Euclidean space ( 𝑅𝑛 ) can be extended in a new geometric structure, 

the so-called projective space ( 𝑃𝑛 ), representing the points in homogeneous 

coordinates. This representation provides for the addition of a new coordinate 𝑘 to 

the space vector: 

𝑘 ≠ 0 represents real points of ( 𝑅𝑛 ) 

𝑘 = 0 represents the ideal points of ( 𝑅𝑛 ), the so-called points at infinity. 

This new structure, therefore, allows to represent and analytically consider 

homogeneously, without introducing exceptions or special cases, also points at 

infinity. 

So, considering a 3D point in a scene 𝑀 = [𝑥, 𝑦, 𝑧]𝑇, with coordinates express in 

the reference system respect the camera ( 𝐶 ), and his projection on the image plane 

𝐼, indicated with 𝑚 = [𝑢, 𝑣]𝑇.  

 

Figure 2.1 - Camera model 
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Considering the focal length, 𝑓, the nonlinear equation that express the image 

coordinates as a function of 3D coordinates are given by: 

{
𝑢 =

𝑓

𝑧
∙ 𝑥

𝑣 =
𝑓

𝑧
∙ 𝑦

 

The coordinates of the previous points can be express in a homogeneous 

coordinates, showing them with a tilde: 

𝒎̃ = [𝑢 𝑣 1]𝑇               𝑴̃ = [𝑥 𝑦 𝑧 1]𝑇 

With this new way to express the coordinates, the perspective projection become a 

linear transformation. 

[
𝑢
𝑣
1
] =

[
 
 
 
 𝑓 ∙

𝑥

𝑧

𝑓 ∙
𝑦

𝑧
1 ]
 
 
 
 

= [
𝑓 ∙ 𝑥
𝑓 ∙ 𝑦
𝑧

] = [
𝑓 0 0 0
0 𝑓 0 0
0 0 1 0

] ∙ [

𝑥
𝑦
𝑧
1

] 

Indicating, all with the matrix notation: 

𝑘𝒎̃ = 𝑷̃𝑴̃ 

Where the 𝑃̃ matrix represent the geometric model of the camera, and it’s said 

perspective matrix. In the case the distance are measured in units of focal 

distances, with 𝑓 = 1, the perspective matrix become 𝑷̃ = [𝑰|𝟎], with 𝑰 identity 

matrix. 

In real acquisition system, you have to consider the digitizing the image and the 

rigid transformation between the camera and the scene (roto-translation). 

The digitization is considered inserting in the projection formulas the scaling along 

the two axes due to the quantization of the image plane and the translation of the 

piercing point (main point) due to the choice of the reference system of the image. 
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∆𝑢 = horizontal size of pixel 

∆𝑣 = vertical size of pixel 

𝑢 =
𝑓

𝑧
∙ 𝑥 → 𝑢 =

1

∆𝑢
∙
𝑓

𝑧
∙ 𝑥

= 𝑘𝑢 ∙
𝑓

𝑧
∙ 𝑥 + 𝑢0  

𝑣 =
𝑓

𝑧
∙ 𝑦 → 𝑣 =

1

∆𝑣
∙
𝑓

𝑧
∙ 𝑦

= 𝑘𝑣 ∙
𝑓

𝑧
∙ 𝑦 + 𝑣0 

With the new relations, the perspective matrix can be rewritten in the following 

way: 

𝑷̃ = [
𝑓 ∙ 𝑘𝑢 0 𝑢0 0
0 𝑓 ∙ 𝑘𝑣 𝑣0 0
0 0 1 0

] =  [
𝑓 ∙ 𝑘𝑢 0 𝑢0
0 𝑓 ∙ 𝑘𝑣 𝑣0
0 0 1

] ∙ [
1 0 0 0
0 1 0 0
0 0 1 0

] = 𝑨[𝑰|𝟎] 

The 𝐴 matrix, that model the characteristics of the sensor, is called intrinsic 

parameters matrix. It’s possible minimize the necessary parameters placing 𝛼𝑢 =

𝑓 ∙ 𝑘𝑢 and 𝛼𝑣 = 𝑓 ∙ 𝑘𝑣, that is the focal length in horizontal pixels and the focal 

length in vertical pixels. The intrinsic parameters, however, are five and not four; 

the fifth parameter is the skew, the angle between the axes of the sensor reference 

system. The cotangent of this angle deals the position 𝑨[1,2], but it’s always equal 

to 0, because practically the axes are orthogonal. 

Also the rigid transformation between the camera and the scene has to consider to 

a good mapping between the coordinates of the image plane and the 3D point of the 

space. Indicating with 𝑹, the rotation matrix between the camera reference system 

and the space reference, and with 𝑻, the translation of the these latter, the link 

between the point in the image plane and the 3D point become: 

𝒎̃ = 𝑨[𝑰|𝟎]𝑮𝑾̃      →       𝒎̃ = 𝑨[𝑰|𝟎] [
𝑹 𝑻
𝟎 1

] 𝑾̃ 

 

Figure 2.2 - Digitization error 
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The general formulation of the perspective matrix is: 

𝑷̃ = 𝑨[𝑰|𝟎]𝑮         or        𝑷̃ = 𝑨[𝑹|𝑻] 

The 𝑮 matrix, that model the position of the camera respect the scene, is called 

extrinsic parameters matrix. 

So, finally the camera model can be reassumed in the following relation: 

𝑠𝑚̃ = 𝑨[𝑹 𝑻]𝑀̃ 

where 𝑠 is an arbitrary scale factor. 

All these parameters are related to the single camera, when you want to make a 

stereo calibration, you need to add others information. Then, the rotation matrix, 

𝑹𝑠𝑡𝑒𝑟𝑒𝑜, between the left camera reference system and the other, and the translation 

between the two cameras, 𝑻𝑠𝑡𝑒𝑟𝑒𝑜. In theory, the knowledge of extrinsic compared 

to the same reference system for both cameras (i.e. the reference system of the first 

frame), allows to obtain this information, composing transformations 𝑮𝑖(𝑮𝒋)
−1

, 

where 𝑖 and 𝑗 are the two cameras. 

This method requires hardware synchronized cameras or the use of the static 

pattern, and however, this approach is little robust respect the noise and it can lead 

to results very far from the real acquisition system. 

So, with the stereo calibration it chooses the standard reference system of one of 

the two camera, for example the left. The right extrinsic parameters are represented 

by the addition rotation and translation matrices. The corresponding PPM is then: 

𝑷𝑳̃ = 𝑨𝑳[𝑰|𝟎]          𝑷̃𝑹 = 𝑨𝑹[𝑹|𝑻] 

 

Figure 2.3 - Relation between camera model 
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2.2 Distortions 

In theory, it is possible to define a lens that will introduce no distortions. In practice, 

however, there are no perfect lenses. This is mainly for reasons of manufacturing; 

it is much easier to make a “spherical” lens than to make a more mathematically 

ideal “parabolic” lens. It is also difficult to mechanically align the lens and imager 

exactly. 

The distortion is generally referred to an optical aberration that deforms and bends 

physically straight lines and makes them appear curvy in images, which is why such 

distortion is also commonly referred to as “curvilinear”. Optical distortion occurs 

as a result of optical design, when special lens elements are used to reduce spherical 

and other aberrations. In short, optical distortion is a lens error, for this reason they 

are often call lens distortion.  

Among the optical distortion you can find the radial distortion and the tangential 

distortion.  

The radial distortions arise as a result of the shape of lens. They exist three types of 

radial distortion: barrel, pincushion and moustache, also known as wavy and 

complex. 

When straight lines are curved inwards in a shape of a barrel, this type of aberration 

is called barrel distortion. Commonly seen on wide angle lenses, barrel distortion 

happens because the field of view of the lens is much wider than the size of the 

image sensor and hence it needs to be squeezed to fit. As a result, straight lines are 

visibly curved inwards, especially towards the extreme edges of the frame. Here is 

an example of strong barrel distortion: 
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Figure 2.4 - Barrel distortion 

 

Pincushion distortion is also a very common aberration, especially on zoom 

lenses. In fact, pincushion distortion can be very heavy on consumer-grade lenses. 

It’s important to note that most zoom lenses that go from wide angle to standard or 

telephoto focal lengths typically suffer from barrel distortion at the shortest focal 

lengths, which gradually transitions to pincushion distortion towards the longest 

end. Just like barrel distortion, pincushion distortion can also be easily fixed in post-

processing.  

 

Figure 2.5 - Pincushion distortion 

 

The nastiest of the radial distortion types is moustache distortion, which it is 

sometimes called “wavy” distortion. It is basically a combination of the barrel 



Chapter 2 - Calibration 2.2 Distortions 

  14 

distortion and pincushion distortion. Straight lines appear curved inwards towards 

the center of the frame, then curve outwards at the extreme corners, as shown below. 

 

 

Figure 2.6 - Moustache distortion 

 

With some lenses, rays farther from the center of the lens are bent more than those 

closer in. The most common distortion is the barrel distortion; it is particularly 

noticeable in cheap web cameras and less apparent in high-end cameras where a lot 

of effort is put into fancy lens systems that minimize radial distortion. The Figure 

2.7 gives some intuition as to why radial distortion occurs. The other kinds of 

distortions that occur in imaging systems, but they typically have lesser effects than 

radial and tangential distortions. 

 

Figure 2.7 - Why radial distortion occurs 
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Tangential distortions introduces secondary effects, the decentralization of the 

components of a lens system and manufacturing defects, it arise from the assembly 

process of the camera as a whole. 

All these phenomena are modelled using a nonlinear relationship between the points 

actually "observed" on the image plane. 

(
𝑥′

𝑦′
) = 𝐿(𝑟) (

𝑥̃
𝑦̃
) + (

𝑑𝑥̃
𝑑𝑦̃
) 

Here, (𝑥̃, 𝑦̃) is the original location of the distorted point and (𝑥′, 𝑦′) is the new 

location as a result of the correction. The radial distortion function 𝐿(𝑟) is defined 

only for positive 𝑟; it depends on the distance 𝑟 from the center distortion (𝑥𝑐, 𝑦𝑐), 

calculated with the classic formula of the distance between two points: 

𝑟 = √(𝑥̃ − 𝑥̃𝑐)2 + (𝑦̃ − 𝑦̃𝑐)2 

This nonlinear function is typically approximated by its Taylor expansion, up to the 

n-th order depending on the desired precision. 

𝐿(𝑟) = 1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6 +⋯ 

For cheap cameras, it is generally used the first two such terms; the first of which 

is conventionally called 𝑘1 and the second 𝑘2. For highly distorted cameras such as 

fish-eye lenses a third radial distortion term𝑘3 is used. 

Tangential distortion is minimally characterized by two additional parameters, 𝑝1 

and 𝑝2.such that: 

(
𝑑𝑥̃
𝑑𝑦̃
) = (

2𝑝1𝑥̃𝑦̃ + 𝑝2(𝑟
2 + 2𝑥̃2

𝑝1(𝑟
2 + 2𝑦̃2) + 2𝑝2𝑥̃𝑦̃

) 

The coefficients for the correction of radial distortion 𝑘1, 𝑘2, … 𝑘𝑛 together with the 

center of the radial distortion (𝑥̃𝑐, 𝑦̃𝑐) and the two tangential distortion coefficients 

𝑝1 and 𝑝2 expand and complement the set of intrinsic parameters of the standard 

model of a camera. Typically, it is assumed, for simplicity, that the radial distortion 

center coincides with the centre of the image. 
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Thus in total there are five distortion coefficients; since all five are, they are 

typically bundled into one distortion vector; this is just a 5-by-1 matrix containing 

𝑘1, 𝑘2, 𝑝1, 𝑝2, and 𝑘3. 

2.3 Calibration methods 

Much work has been done, starting in the photogrammetry community, and more 

recently in computer vision. According to the dimension of the calibration objects, 

those techniques can classify roughly into three categories: 

3D reference object based calibration. Camera calibration is performed by 

observing a calibration object whose geometry in 3-D space is known with very 

good precision. The calibration object usually consists of two or three planes 

orthogonal to each other. Sometimes, a plane undergoing a precisely known 

translation is also used [5], which equivalently provides 3D reference points. 

Calibration can be done very efficiently, but it requires an expensive calibration 

apparatus and an elaborate setup. 

 

 

Figure 2.8 - 3D reference object 

 

2D plane based calibration. Techniques in this category requires to observe a 

planar pattern shown at a few different orientations. Different from Tsai’s technique 

[5], the knowledge of the plane motion is not necessary. Because almost anyone 
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can make such a calibration pattern by him/her-self, the setup is easier for camera 

calibration. 

 

Figure 2.9 - 2D reference object 

1D line based calibration. Calibration objects used in this category are composed 

of a set of collinear points [6]. As will be shown, a camera can be calibrated by 

observing a moving line around a fixed point, such as a string of balls hanging from 

the ceiling. 

 

Figure 2.10 - 1D reference object 

Self-calibration. Techniques in this category do not use any calibration object, and 

can be considered as 0D approach because only image point correspondences are 

required. Just by moving a camera in a static scene, the rigidity of the scene provides 

in general two constraints [7] on the cameras’ internal parameters from one camera 

displacement by using image information alone. Therefore, if images are taken by 

the same camera with fixed internal parameters, correspondences between three 

images are sufficient to recover both the internal and external parameters which 
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allow us to reconstruct 3-D structure up to a similarity. Although no calibration 

objects are necessary, a large number of parameters need to be estimated, resulting 

in a much harder mathematical problem. 

Before going further, we would like to point out that no single calibration technique 

is the best for all. It really depends on the situation a user needs to deal with. Here 

there are the recommendations to follow, in case you are undecided on the approach 

to be taken: 

Calibration with apparatus vs. self-calibration. Whenever possible, if a calibration 

apparatus is available, it is preferable pre-calibrate a camera with it. Self-calibration 

cannot usually achieve accuracy comparable with that of pre-calibration because 

self-calibration needs to estimate a large number of parameters, resulting in a much 

harder mathematical problem. When pre- calibration is impossible (e.g., scene 

reconstruction from an old movie), self- calibration is the only choice. 

Partial vs. full self-calibration. Partial self-calibration refers to the case where only 

a subset of camera intrinsic parameters has to be calibrated. Along the same line as 

the previous recommendation, whenever possible, partial self- calibration is 

preferred because the number of parameters to be estimated is smaller. Take an 

example of 3D reconstruction with a camera with variable focal length. It is 

preferable to pre-calibrate the pixel aspect ratio and the pixel skewness. 

Calibration with 3D vs. 2D apparatus. Using a 3D apparatus can usually be obtained 

a highest accuracy, so it should be used when accuracy is indispensable and when 

it is affordable to make and use a 3D apparatus. With the coming feedback from 

computer vision researchers and practitioners around the world, in the last couple 

of years, calibration with a 2D apparatus seems to be the best choice in most 

situations because of its ease of use and good accuracy. 

Calibration with 1D apparatus. This technique is relatively new, and it is hard for 

the moment to predict how popular it will be. It, however, should be useful 

especially for calibration of a camera network. To calibrate the relative geometry 

between multiple cameras as well as their intrinsic parameters, it is necessary for 

all involving cameras to simultaneously observe a number of points. It is hardly 
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possible to achieve this with 3D or 2D calibration apparatus if one camera is 

mounted in the front of a room while another in the back. This is not a problem for 

1D objects. 

 

2.4 Help from OpenCV 

OpenCV (Open Source Computer Vision Library) is an open-source BSD-licensed 

library that includes several hundreds of computer vision algorithms. OpenCV has 

a modular structure, which means that the package includes several shared or static 

libraries [8]. Among the available modules, we used calib3d module, which 

includes basic multiple-view geometry algorithms, single and stereo camera 

calibration, object pose estimation, stereo correspondence algorithms, and elements 

of 3D reconstruction. 

The use of the OpenCV library has been dictated by the need to use something 

standardized and tested countless times to obtain the best estimate of the 

parameters, which, as you shall see below, is of vital importance for the good 

realization of the 3D sensor. It is possible find different tools that allow the 

identification of the parameters described above, stand out the Matlab stereo 

calibration app. The final decision has reverted on the use the functionality provided 

by the library OpenCV, because it was decided to make available an on-site the 

service, so easy to use and immediately available for any of the camera 

configuration changes supplied sensor. 

The calibration process, used by OpenCV, is a 2D plane based calibration. In this 

routine, the method of calibration is to target the camera on a known structure that 

has many individual and identifiable points. By viewing this structure from a variety 

of angles, it is possible to then compute the relative location and orientation of the 

camera at the time of each image as well as the intrinsic parameters of the camera. 

In order to provide multiple views, we rotate and translate the object (see Figure 

2.13). 

Given many joint views of chessboard corners, the process solves for rotation and 

translation parameters of the chessboard views for each camera separately. It then 
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plugs these left and right rotation and translation solutions into the equations just 

displayed to solve for the rotation and translation parameters between the two 

cameras. Because of image noise and rounding errors, each chessboard pair results 

in slightly different values for 𝑅 and 𝑇. Starting with the median values for 𝑅 and 

𝑇 parameters as the initial approximation of the true solution, a robust Levenberg-

Marquardt [9] iterative algorithm to find the (local) minimum of the reprojection 

error of the chessboard corners for both camera views, and the solution for 𝑅 and 𝑇 

is returned. 

To be clear on what stereo calibration gives you: the rotation matrix will put the 

right camera in the same plane as the left camera; this makes the two image planes 

coplanar but not row-aligned (in the chapter 0 is seen how row-alignment is 

accomplished) 

2.5 Proposed tool 

To obtain all parameters previously described, a simple tool is made available on 

the sensor. This command line tool gives the possibility to grab the images from the 

stereo camera and automatically compute the necessary matrices. First of all, to 

utilize this software, it’s necessary to procure a chessboard pattern for which you 

know the size of the squares. In the Figure 2.11, there is a half-scale chessboard; in 

the real dimensions the square size is equal 1 inch.  

Once prepared the chessboard, the settable parameters, which the user can select 

are: 

 the number of inner corners for the horizontal dimension, in the case of the 

chessboard previously presented is nine (necessary parameter); 

 the number of inner corners for the vertical dimension, in the case of the 

chessboard previously presented is six (necessary parameter); 

 the number of captured frame, it’s advisable use a number of the images 

greater than twenty images, to obtain an acceptable process accuracy 

(follow it explains the acceptability of the procedure) (necessary parameter); 

 the frame size has to be express because the focal length in pixel is linked 

at the dimension of the captured image; 
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 squares size, as previously said, the squares dimension of the presented 

chessboard is 1 inch; 

 the output filename for intrinsic and extrinsic parameters; 

 indicate the taking zero tangential distortion, in the default case, though the 

tangential distortion can be neglected, the tangential distortion coefficients 

are computed; 

 indicate if fix the principal point at the center, in the default case, the 

principal point changed during the global optimization. 

 

 

Figure 2.11 - Chessboard pattern (scale 1:2) 

After having specified all necessary parameters, starts the capture of the images 

from both cameras. For each image is sought the chessboard, of size specified with 

parameters. If in both image, from the two cameras, the chessboard is identified, 
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the position of all control points on the chessboard are saved in a multi-dimensional 

array. So, if the used chessboard is formed of 10x7 squares, for a pair images are 

stored 17 points, or else 34 coordinates. 

These steps are repeated as often as the specified number during the tool 

initialization. At the end of these steps starts the process described above, or else 

the found of result with a closed-form solution and then optimized by Levenberg-

Marquardt [9]. 

The results produced are stored in a file, with a name specified during tool 

initialization; in particular, knowing that the intrinsic parameters matrix is 

composed of: 

𝑀 = [
𝛼𝑥 0 𝑢0
0 𝛼𝑦 𝑣0
0 0 1

]; 

the distortion array is composed of: 

𝐷 = [𝑘1 𝑘2 𝑝1 𝑝2 𝑘3]; 

the translation vector is composed of: 

𝑇 = [𝑥 𝑦 𝑧]; 

the rotation matrix is composed of: 

𝑅 = [

𝑥𝑥 𝑦𝑥 𝑧𝑥
𝑥𝑦 𝑦𝑦 𝑧𝑦
𝑥𝑧 𝑦𝑧 𝑧𝑧

]. 

 

It is possible to found in saved file the following matrices: 

 𝑀1: the intrinsic matrix of the camera 1; 

 𝑀2: the intrinsic matrix of the camera 2; 

 𝐷1: distortion array of camera 1; 

 𝐷2: distortion array of camera 2; 

 𝑅: rotation matrix of camera 2 with camera 1 as reference; 

 𝑇: translation camera 2 from camera 1. 
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2.6 Accuracy 

“International vocabulary of metrology” defines measurement accuracy as 

“closeness of agreement between a measured quantity value and a true quantity 

value of a measurand” [10]. The document also notes that accuracy is not a quantity 

expressed as a numerical value but an attribute of a measurement: a measurement 

is said to be more accurate if it results in a smaller measurement error. Measurement 

precision is defined as ”closeness of agreement between indications or measured 

quantity values obtained by replicate measurements on the same or similar objects 

un- der specified conditions” [10]. To ensure more accurate results of the calibration 

algorithm, a number of requirements has to be met. The view of planar calibration 

target shall not parallel in two or more calibration images. For better estimation of 

the camera distortion, the calibration target shall appear in all four corners of the 

image and cover as much exterior orientations as possible. 

To give a quantitative measure to the accuracy of the calibration, the typical 

measure of camera calibration accuracy is a reprojection error, where, given 

intrinsic parameters and known extrinsic parameter of a view, the known object 

points are projected onto the screen. Compute the real world model, the reprojection 

error is the difference between the found points on an image and the same points 

obtained compute with the real world model.  

Then, the root mean square (RMS) projection error is computed between real pixel 

coordinates (𝑥𝑖 , 𝑦𝑖) and the projected ones (𝑥𝑖
𝑝𝑟𝑜𝑗

, 𝑦𝑖
𝑝𝑟𝑜𝑗

)  

𝐸𝑟𝑒𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 = √
1

𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
∑ [(𝑥𝑖 − 𝑥𝑖

𝑝𝑟𝑜𝑗
)
2
+ (𝑦𝑖 − 𝑦𝑖

𝑝𝑟𝑜𝑗
)
2
]

𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑖=1

 

The reprojection error is used to compute the accuracy of single camera and for the 

stereo camera. Thus, we obtain three error to characterize the goodness of 

calibration, two for the single cameras and one for the stereo camera formed by the 

single cameras.  

These results, show below, were reached with the adroitness following presented. 



Chapter 2 - Calibration 2.6 Accuracy 

  24 

Although the chessboard can easily be procured with a common printer, the cheap 

ink-jet or laser printers are not designed for rigorous geometrical accuracy. So the 

used chessboard for the experimental was printed by a professional print shop, 

which does a much better job than most home printers.  

Choose a very flat backing (for the size you mention window glass 5 mm thick or 

more is excellent, though obviously fragile) and verify its flatness against another 

edge (or, better, a laser beam). 

Attach the pattern very carefully to the backing, using spray-on glue and slowly 

wiping with soft cloth to avoid bubbles and stretching, and wait for a day or longer 

for the glue to cure and the glue-paper stress to reach its long-term steady state. 

To obtain a sub-millimeter calibration accuracy the environment condition should 

be considered. The temperature and humidity changes affect on the paper dilation 

or contraction, because the paper, where the chessboard is printed, absorbs water 

from the air. And then the lower temperature dilation coefficient of glass compared 

to common sheet metal is another reason for preferring the former as a backing. 

The auto-focus feature of camera must disable, if it has one: focusing physically 

moves one or more pieces of glass inside your lens, thus changing slightly the field 

of view and a lot the lens distortion and the principal point. 

Place the camera on a stable mount that won't vibrate easily; minimizing the 

vibrations and associated motion blur when taking photos. 

Span the calibration volume when taking pictures. Ideally you want your 

measurements to be uniformly distributed in the volume of space you will be 

working with. Most importantly, make sure to angle the target significantly with 

respect to the focal axis in some of the pictures, to calibrate the focal length you 

need to frame some real perspective foreshortening. 

Use good lighting. Use diffuse ambient lighting, and bounce it off white cards on 

both sides of the field of view. 

And finally you take extra images to verify the accuracy of the solution, using them 

to verify that the lens distortion is actually removed. 
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After using both 14x10 chessboard and 10x7 chessboard, the best result was 

obtained with 10x7 chessboard captured 200 times from each camera. In the Figure 

2.12 you can view a set of images captured from the camera in different position 

and covering all field of view of the camera. 

 

Figure 2.12 - Sub-set image for calibration 

You can easily notice the radial distortion introducing from the camera lens, the 

chessboard rows are very curved on the board of the image. 

Rotating and translating the chessboard in different configuration, like Figure 2.13, 

we provide a discrete number of data to compute the necessary parameters.  
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Figure 2.13 - Images of a chessboard being held at various orientations 

All captured images from the stereo camera are schematized using Matlab, the 

following plot, like the right example in Figure 2.13, shows all assumed position to 

calibrate correctly the stereo camera. 

 

Figure 2.14 - Plot chessboard acquisition 

The best results obtain from the best calibration are listed below: 

 

𝑀1 = [
427.89 0 127.63
0 320.42 115.11
0 0 1

] 
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𝑀2 = [
425.75 0 152.84
0 318.7 99.98
0 0 1

] 

 

𝐷1 = [−0.44 0.31 −3.85 × 10−6 1.06 × 10−3 0] 

 

𝐷2 = [−0.44 0.24 6.49 × 10−4 6.21 × 10−3 0] 

 

𝑅 = [
99.997 × 10−2 −8.654 × 10−4 −7.274 × 10−3

1.165 × 10−3 99.914 × 10−2 4.129 × 10−2

7.232 × 10−3 −4.13 × 10−2 99.912 × 10−2
] 

 

𝑇 = [2.5934 −2.8744 × 10−2 −1.9285 × 10−1] 

With all complete set, the achieve reprojection error is presented in Table 2.1. 

 

Camera Reprojection error 

camera 1 0.00393895 

camera 2 0.00416836 

stereo camera 0.00467847 

Table 2.1 - Reprojection error 

There is to remember, since the cameras are fixed on the sensor, and only with the 

destruction of the sensor can be remove from it, the distance between two cameras 

and their orientation can’t unchanged, and so all parameters indicated in the above 

list are always usable.
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Chapter 3 

 

3 Stereo acquisition 

The stereo acquisition is the first module of all chain used by the sensor. “No 

images, no extraction of disparity map”, so this it is a fundamental part of the 

device. This module has to join two autonomous cameras in a stereo camera. 

First of all, the acquisition by a single camera, is carried out with a library FFmpeg 

and after to have grabbed the two frames by two cameras, we shape the stereo 

image, used with the next modules. 

3.1 Acquisition by single camera 

As say above, the acquisition by a single camera, is carried out with a library 

FFmpeg. 

FFmpeg is a wonderful library for creating video applications or even general 

purpose utilities. FFmpeg takes care of all the hard work of video processing by 

doing all, the decoding, encoding, muxing and demuxing. This can make media 

applications much simpler to write. It's simple, written in C, fast, and can decode 

almost the most obscure ancient formats up to the cutting edge, as well as encode 

several other formats. It is also highly portable: FFmpeg compiles, runs, and passes 

our testing infrastructure FATE across Linux, Mac OS X, Microsoft Windows, the 

BSDs, Solaris, etc. under a wide variety of build environments, machine 

architectures, and configurations. 

FFmpeg contains the homonym application ffmpeg, but also ffserver, ffplay and 

ffprobe which can be used by end users, the parts that can be used from the 

application is contained in libavcodec, libavutil, libavformat, libavfilter, 
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libavdevice, libswscale and libswresample. And just these last libraries are 

specifically used to acquire the image from the single camera. 

Before to show how to acquire the image from camera it is necessary to define some 

components of a video. First, the movie file is called a container, and in it different 

information are collected. Among these information, a bunch of streams are 

presented; for example, an audio stream and a video stream. The stream is just a 

fancy word for a succession of data elements made available over time. The data 

elements in a stream are called frames. Each stream is encoded by a different kind 

of codec. The codec defines how the actual data is COded and DECoded - hence 

the name CODEC. Packets are then read from the stream. Packets are pieces of data 

that can contain bits of data that are decoded into raw frames that we can finally 

manipulate for our application. 

A plugged camera is slightly different by a video file, but we have to know that the 

Raspbian OS, like others system Unix-based (see Debian, on which Raspbian is 

based), requires a virtual device node to access and control the device in question. 

This is automatically created, if the driver of the device is available. In case in which 

the device is a camera and the drivers are available, the system create a virtual 

device node with the path “/dev/video*”. This path is fundamental to access at the 

camera like a video file, with an infinite stream. 

Having said that, a multimedia file can be handled with FFmpeg very simple way, 

the step to do are: opening of a video stream, reading of a packet from video stream, 

extraction of the frame from the packet and using of the frame. 

More specifically, after to have initialize the libraries of FFmpeg, we have to 

register all available file formats and codecs of the library so they will be used 

automatically when a file with the corresponding format/codec is opened.  

Now we can actually read the information by the camera and set all appropriate 

setting, like the resolution of the video, but, because the camera can provide 

different typologies of stream, like audio or video, it is necessary to find the video 

stream information. Found the video stream information, we can start the video 

stream and to use the appropriate codec to interpret the received packet. 
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After all these initial operations, we can read the packet from the video stream and 

to extract the frame in a native format, but for the next sections the images format 

is different, so the frame is also converted to obtain the images in the desired format. 

3.2 Stereo capture 

The single camera acquisition is very simple with FFmpeg library; after some call 

at different functions, we can obtain frames from the camera. When we talk about 

stereo vision, we refer at the acquisition by two cameras. These cameras are 

positioned in the way to simulate the position of the human eyes, so the distance 

between two cameras is not excessive. To indicate the two cameras, we can call 

them left camera and right camera. For the stereo acquisition, the FFmpeg library 

not provide direct support, with some particular methods. So we the module to 

capture image from the single camera, for both the cameras. Now the problems is 

synchronized the two image of the cameras to realize a stereo camera, or else 

capture the images from both the cameras at the same instance. The used cameras 

are simple and common cameras, plugged with the Raspberry PI with USB 

interface, without particular functions, for which it is not possible to synchronize 

the cameras via hardware.  

The road to parallelize with two separate threads is resulted ineffective because, the 

flow of acquisition was uncontrollable and unpredictable and then the images were 

acquired randomly. 

The big problem is the use of the USB cameras, because the Raspberry Pi also has 

only one root USB port, then all traffic from all connected devices is funnelled 

down this bus, which operates at a maximum speed of 480mbps. This mean that the 

images not can be captured perfectly synchronized, but a small imperfection we can 

obtain a stereo camera. 

Finally, the capture of the image from the cameras is performed in sequential way. 

The operations of recover of the packets from the cameras is realized one after the 

other, so the packet of the left camera is read, without extract the frame by the 

packet, it is immediately read the packet of the right camera. After this, the 

extraction procedure for both the cameras is carried out to obtain the images to 

elaborate. 
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3.3 Performance 

Some technical details can help to understand better the problem and the 

performance reached by stereo camera. 

The single camera has the follow characteristics: resolution max 640x480 VGA 

format; USB2.0 HS / FS; size: 32x32mm; voltage 5V DC; current: 120mA; work 

temperature -20°~70°. The most interesting characteristic is the reached framerate. 

This camera can obtain at 30fps (framerate per seconds) an image in YUY2 with 

resolution 640x480, or 320x240. Also others lower resolution can be obtained by 

the camera but are not used in our scope.  

The used format by the camera is YUYV2, this format use the colours space YUV, 

It encodes a colour image or video taking human perception into account, allowing 

reduced bandwidth for chrominance components. The YUV model defines a colour 

space in terms of one luma (brightness) (Y) and two chrominance (UV) 

components. The format YUYV2 employs 4:2:2 chroma subsampling. The luma 

components is mixed with the others components. For our scope the brightness 

component is useful without chrominance components, whereby a conversion in 

YUV420 is carried. This necessary conversion add a light delay to acquire from the 

single camera, and in Table 3.1 we can show that the 30fps from data sheet are not 

attained, but we are satisfy of follow results. 

Resolution image Time single camera (ms) Fps 

320x240 40 25 

640x480 40 25 

Table 3.1 - Framerate single camera 

 

The stereo capture, theoretically, doubles the computation time but not in this case, 

because the second camera, while the first camera send the frame by USB, the 

second camera has already shutter the image and so only the time to transfer the 

image from the camera and convert it have to considered. In table below the times 

of the stereo camera for different resolution. 



Chapter 3 - Stereo acquisition 3.3 Performance 

  32 

Resolution image Time stereo camera (ms) Fps 

320x240 47 ~21 

640x480 57 ~18 

Table 3.2 - Framerate stereo camera 

 

The synchronized, as above said, is not realized via hardware and then cannot reach 

the microseconds precision, but for our scope a precision of the milliseconds is 

acceptable and excellent. To test the effective synchronization of the stereo camera, 

not having sophisticated tools to test the real precision, we used a stopwatch of a 

smartphone. This stopwatch is framed by both the cameras, namely stereo camera 

and in FIGIGU we show the actual precision measured at milliseconds for the 

different resolutions 320x240 and 640x480. 

 

Figure 3.1 - Test synchronization with resolution image 320x240 

 

Figure 3.2 - Test synchronization with resolution image 640x480 
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Chapter 4 

 

4 Rectification 

The stereo rectification of an image pair is an important component in many 

computer vision applications. By estimating the epipolar geometry between two 

images and performing stereo-rectification, the search domain for registration 

algorithms is reduced and the comparison simplified, because horizontal lines with 

the same y component in both images are in one to one correspondence. Stereo-

rectification methods simulate rotations of the cameras to generate two coplanar 

image planes that are in addition parallel to the baseline. 

 

Figure 4.1 - Stereo rectification 
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4.1 Epipolar geometry 

The epipolar geometry of a pair of cameras expresses the fundamental relationship 

between any two corresponding points in the two image planes, and leads to a key 

constraint between the coordinates of these points that underlies visual 

reconstruction. 

The world point 𝑃 and the centres of projection of the two cameras identify a plane 

in space, the epipolar plane of point 𝑃. The Figure 4.2 shows a triangle of this plane, 

delimited by the two projection rays and by the baseline of the camera pair, that is, 

the line segment that connects the two centres of projection. The baseline term is 

used for the line segment; however, this term is also often used for the entire line 

through the two centres of projection. 

 

Figure 4.2 - Essential elements of the epipolar geometry of a camera pair 

If the image planes are thought of extending indefinitely, the baseline intersects the 

two image planes at two points called the epipoles of the two images. In particular, 

if the cameras are arranged so that the baseline is parallel to an image plane, then 

the corresponding epipole is a point at infinity. 
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The epipoles are fixed points for a given camera pair configuration. With cameras 

somewhat tilted towards each other, and with a sufficiently wide field of view, the 

epipoles would be image points. Epipole 𝑒 in the image 𝐼 taken by camera 𝐶 would 

be literally the image of the center of projection of camera 𝐷 in 𝐼, and vice versa. 

Even if the two cameras do not physically see each other, this description is 

maintained in an abstract sense: each epipole is the image of one camera in the other 

image. 

The epipolar plane intersects the two image planes along the two epipolar lines of 

point 𝑃, each of which passes by construction through one of the two projection 

points 𝒑 and 𝒒 and one of the two epipoles. Thus, epipolar lines come in 

corresponding pairs, and the correspondence is established by the single epipolar 

plane for the given point 𝑃. 

For a different world point 𝑃, the epipolar plane changes, and with it do the image 

projections of 𝑃 and the epipolar lines. However, all epipolar planes contain the 

baseline. Thus, the set of epipolar planes forms a pencil of planes supported by the 

line through the baseline, and the epipoles are fixed. 

Suppose now that you are given the two images 𝐼 and 𝐽 taken by cameras 𝐶 and 𝐷 

and a point 𝑝 in 𝐼. You do not know where the corresponding point 𝑞 is in the other 

image, nor where the world point 𝑃 is, except that 𝑃 must be somewhere along the 

projection ray of 𝑝. However, if you know the relative position and orientation of 

the two cameras, you know where centres of projection are relative to each other. 

The two centres of projection and point 𝑝 identify the epipolar plane, and this in 

turn determines the epipolar line of point 𝑝 in image 𝐽. The point 𝑞 must be 

somewhere on this line. This same construction holds for any other point 𝑝 on the 

epipolar line in image 𝐼. 

To understand what the epipolar constraint expresses, consider that the projection 

rays for two arbitrary points in the two images are generically two skew lines in 

space. The projection rays of two corresponding points, on the other hand, are 

coplanar with each other and with the baseline. The epipolar geometry captures this 
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key constraint, and pairs of point that do not satisfy the constraint cannot possibly 

correspond to each other. 

4.2 Stereo rectification 

It is easiest to compute the stereo disparity when the two image planes align exactly. 

Unfortunately, as discussed previously, a perfectly aligned configuration is rare 

with a real stereo system, since the two cameras almost never have exactly coplanar, 

row-aligned imaging planes.  

 

Figure 4.3 - Goal stereo rectification 

Figure 4.3 shows the goal of stereo rectification: to reproject the image planes of 

our two cameras so that they reside in the exact same plane, with image rows 

perfectly aligned into a frontal parallel configuration. 

The image rows between the two cameras have to be aligned after rectification so 

that stereo correspondence (finding the same point in the two different camera 

views) will be more reliable and computationally tractable. Note that reliability and 

computational efficiency are both enhanced by having to search only one row for a 

match with a point in the other image. The result of aligning horizontal rows within 

a common image plane containing each image is that the epipoles themselves are 

then located at infinity. That is, the image of the centre of projection in one image 

is parallel to the other image plane, but because there are an infinite number of 
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possible frontal parallel planes to choose from, it is necessary to add more 

constraints. These include maximizing view overlap and/or minimizing distortion. 

The result of the process of aligning the two image planes will be eight terms, four 

each for the left and the right cameras. Having the intrinsic parameters and rotation 

and translation matrices for each camera, it is possible make a map, where to 

interpolate pixels from the original image in order to create a new rectified image. 

The used algorithm to rectify the image is the Bouguet’s algorithm [11], which uses 

the rotation and translation parameters from two calibrated cameras. 

4.2.1 Bouguet’s algorithm 

Given the rotation matrix 𝑅 and translation 𝑇 between the stereo images, Bouguet’s 

algorithm for stereo rectification simply attempts to minimize the amount of change 

reprojection produces for each of the two images, and thereby minimize the 

resulting reprojection distortions, while maximizing common viewing area. 

To minimize image reprojection distortion, the rotation matrix 𝑅 that rotates the 

right camera’s image plane into the left camera’s image plane is split in half 

between the two cameras; calling the two resulting rotation matrices 𝑟𝑙 and 𝑟𝑟 for 

the left and right camera, respectively. Each camera rotates half a rotation, so their 

principal rays each end up parallel to the vector sum of where their original principal 

rays had been pointing. These rotations put the cameras into coplanar alignment but 

not into row alignment. To compute the 𝑅𝑟𝑒𝑐𝑡 that will take the left camera’s epipole 

to infinity and align the epipolar lines horizontally, a rotation matrix is created by 

starting with the direction of the epipole 𝑒1 itself. Taking the principal point (𝑐𝑥, 𝑐𝑦) 

as the left image’s origin, the direction of the epipole is directly along the translation 

vector between the two cameras’ centres of projection. 

The next vector, 𝑒2, must be orthogonal to 𝑒1 but is otherwise unconstrained. For 

𝑒2, choosing a direction orthogonal to the principal ray (which will tend to be along 

the image plane) is a good choice. This is accomplished by using the cross product 

of 𝑒1  with the direction of the principal ray and then normalizing so that we’ve got 

another unit vector. 



Chapter 4 - Rectification 4.3 Rectification method 

  38 

The third vector is just orthogonal to 𝑒1 and  𝑒2, it can be found using the cross 

product. 

The matrix that takes the epipole in the left camera to infinity is then: 

𝑅𝑟𝑒𝑐𝑡 = [

(𝑒1)
𝑇

(𝑒2)
𝑇

(𝑒3)
𝑇

] 

This matrix rotates the left camera about the centre of projection so that the epipolar 

lines become horizontal and the epipoles are at infinity. The row alignment of the 

two cameras is then achieved by setting: 

𝑅𝑙 = 𝑅𝑟𝑒𝑐𝑡𝑟𝑙 

𝑅𝑟 = 𝑅𝑟𝑒𝑐𝑡𝑟𝑟 

And the projection matrices 𝑃𝑙 and 𝑃𝑟: 

𝑃𝑙 = 𝑀𝑙𝑃𝑙
′ = [

𝑓𝑥_𝑙 0 𝑐𝑥_𝑙
0 𝑓𝑦_𝑙 𝑐𝑦_𝑙
0 0 1

] [
1 0 0 0
0 1 0 0
0 0 1 0

] 

𝑃𝑟 = 𝑀𝑟𝑃𝑟
′ = [

𝑓𝑥_𝑟 0 𝑐𝑥_𝑟
0 𝑓𝑦_𝑟 𝑐𝑦_𝑟
0 0 1

] [
1 0 0 𝑇𝑥
0 1 0 0
0 0 1 0

] 

Recapitulating in brief, having the calibration information, intrinsic parameter 

matrix and extrinsic parameter matrix, the proceedings, to align all horizontal lines 

of left and right camera, is carried out before removing the distortion of camera lens 

and then rectifying the two obtained images, as you can see in  

4.3 Rectification method 

The rectification method is divided in two function: initUndistortRectifyMap and 

remap. 

The separation of the rectification method in two separated function is done to 

minimize the computation time of the rectified images. In fact, considering that the 

cameras configuration remains unchanged, in that the cameras are the same and 

their orientation and position are the same, the initUndistortRectifyMap computes 

the left and right rectification lookup maps for the left and right camera views, one 
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time at the beginning of the capturing process. While remap function use the map 

pre-calculated and preserved by previous function taking pixels from one place in 

the image and mapping them to another place. 

As with any image-to-image mapping function, a forward mapping (in which to 

compute where pixels go from the source image to the destination image) will not, 

owing to floating-point destination locations, hit all the pixel locations in the 

destination image, which thus will look like Swiss cheese. So instead, the function 

works backward: for each integer pixel location in the destination image, look up 

what floating-point coordinate it came from in the source image and then interpolate 

from its surrounding source pixels a value to use in that integer destination location. 

4.3.1 InitUndistortRectifyMap 

The initUndistortRectifyMap computes the undistortion and rectification 

transformation map. 

The function returns lookup maps 𝑚𝑎𝑝𝑥 and 𝑚𝑎𝑝𝑦 as output. These maps indicate 

from where is needed interpolate source pixels for each pixel of the destination 

image. 

The initUndistortRectifyMap function is called separately for the left and the right 

cameras so to obtain their distinct 𝑚𝑎𝑝𝑥 and 𝑚𝑎𝑝𝑦 remapping parameters. 

The necessary parameters to calculate the lookup map are the intrinsic parameter 

matrix, the distortion coefficients, rectified rotation matrix and the projection 

matrix. 

To builds the maps for the inverse mapping algorithm that is used by remap, for 

each pixel (𝑢, 𝑣) in the destination corrected and rectified image, the function 

computes the corresponding coordinates in the source image, or else in the original 

image from camera. 

The following process is applied: 

𝑥 ←
𝑢 − 𝑐𝑥

′

𝑓𝑥′
 



Chapter 4 - Rectification 4.3 Rectification method 

  40 

𝑦 ←
𝑣 − 𝑐𝑦

′

𝑓𝑦′
 

[𝑋 𝑌 𝑊]𝑇 ← 𝑅−1 × [𝑥 𝑦 1]𝑇 

𝑥′ ←
𝑋

𝑊
 

𝑦′ ←
𝑌

𝑊
 

𝑥′′ ← 𝑥′(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6) + 2𝑝1𝑥

′𝑦′ + 𝑝2(𝑟
2 + 2𝑥′2) 

𝑦′′ ← 𝑦′(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6) + 𝑝1(𝑟

2 + 2𝑦′2) + 2𝑝2𝑥′𝑦′ 

𝑚𝑎𝑝𝑋(𝑢, 𝑣) ← 𝑥′′𝑓𝑥 + 𝑐𝑥 

𝑚𝑎𝑝𝑦(𝑢, 𝑣) ← 𝑦′′𝑓𝑦 + 𝑐𝑦 

4.3.2 Remap 

The function remap applies a generic geometrical transformation to an image, it 

transforms the source image using the specified map: 

𝑑𝑠𝑡(𝑥, 𝑦) = 𝑠𝑟𝑐 (𝑚𝑎𝑝𝑥(𝑥, 𝑦),𝑚𝑎𝑝𝑦(𝑥, 𝑦)) 

The function’s arguments are four: the source and destination image, and the two 

lookup map, which indicate where any particular pixel is to be relocated. Obviously 

the source and destination image are with same size. 

As mentioned previously, to avoid blank pixel it is necessary make an interpolation 

from pixels.  Interpolation is an important issue here. Pixels in the source image sit 

on an integer grid; for example, referring to a pixel at location (19, 12). When these 

integer locations are mapped to a new image, there can be gaps, either because the 

integer source pixel locations are mapped to float locations in the destination image 

and must be rounded to the nearest integer pixel location or because there are some 

locations to which no pixels at all are mapped. These problems are generally 

referred to as forward projection problems. To deal with such rounding problems 

and destination gaps, backwards solves the problem: for each pixel of the 

destination image found needed source pixel to fill this destination pixel. These 
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source pixels will almost always be on fractional pixel locations so with the 

interpolation among the source pixels is necessary to derive the correct value for 

destination value. 

4.4 Rectified image 

After the use of the rectification functions, the left and right image are rectified. An 

example is showed in below, using an image pair of the KITTI dataset [12] we can 

see the effect of correction on the lens distortion. The example stereo image is 

below in Figure 4.4. 

 

Figure 4.4 - Example stereo image of the KITTI dataset 

In Figure 4.5, in fact, the border of the images are curved opposite at the distortion 

effect, this phenomenon is due also the alignment of the horizontal lines. 

 

Figure 4.5 - Example of rectified stereo image 

To avoid that the black border cause problems at the next module, the image is 

cropped. The size of clipping is equal for both the images, and whereas the 

transformation of image is equal given the calibration, we know where to cut 

So, in brief, to obtain the above result, two function are used: the 

initUndistortRectifyMap and remap. The first function is called one time at the 

beginning of the operation of grab image, and since perform matrix operations 

request more time than the remap function. The second function each time an image 

is captured. 
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Figure 4.6 - Example of rectified and cropped stereo image 

To evaluate the times taken by two functions to compute the rectified image, several 

test has been effected, with image with different size and on different hardware. 

The using size of image is 640x480 and 320x240.  

In Table 4.1 there are average times of initUndistortRectifyMap function.  

Size 
Average time on 

Raspberry (ms) 

320x240 34.27 

640x480 125.8 

Table 4.1 - Average time of initUndistortRectifyMap function 

The times in the previous table are computed for one call of method, obviously, to 

rectify a stereo image, or else two images, the time have to be doubled. 

In Table 4.2 there are average times of remap function.  

Size 
Average time on 

Raspberry (ms) 

320x240 8.7 

640x480 31.47 

Table 4.2 - Average time of remap function 

Since the 640x480 size is four times greater than 320x240, because the width and 

the height are the double, also the times of the bigger dimensions are approximately 

four times greater than the others. 
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Chapter 5 

 

5 Stereo matching 

The camera calibration has an accurate and standardized solution, the rectification 

is a mathematical operation to apply to images. The greatest difficulty of the stereo 

vision rises from the stereo correspondence, or stereo matching.  

5.1 Stereo matching algorithm 

The stereo matching is the stereo vision basis, and all scholars seek the best accurate 

and fast method to identify the correct matching among all pixels pairs of the couple 

of images.  

Although the algorithms are many and different, they have a common line. The 

steps of a stereo algorithm generally are the following four [13]: 

1. Matching cost computation 

2. Cost (support) aggregation 

3. Disparity computation / optimization 

4. Disparity refinement 

All stereo matching algorithms require a cost criterion to measure the extent of 

matching between two pixels. The matching cost computation is the stage in 

which whether the values of two pixels correspond to the same point in a scene is 

determined. Therefore, the stereo matching cost computation can be defined as a 

method of determining the parallax values of each point between the left and right 

images. The matching cost is computed at each pixel for all pixels under 

consideration. This matching can be performed via a one-dimensional horizontal 

search if the stereo pairs are accurately rectified. So the rectification plays a 
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significant role in stereo matching. This is because the search for correspondences 

can be limited to a line instead of the entire image space, thereby reducing the 

required time and search range. 

Cost aggregation is the most important stage for determining the general 

performance of a stereo vision disparity map algorithm, especially for local 

methods. The purpose of cost aggregation is to minimize matching uncertainties. 

Cost aggregation is needed because the information obtained for a single pixel upon 

calculating the matching cost is not sufficient for precise matching. Local methods 

aggregate the matching cost by summing them over a support region. 

Instead the disparity computation is different for of the two major optimizations 

approaches: the local approach or the global approach. The local approach applies 

restrictions on a small number of pixels around the pixel under study. They are 

usually very efficient but sensitive to local ambiguities of the regions. With this 

approaches, the disparity for each pixel is essentially selected using a local “winner 

takes all” (WTA) strategy as define by 

𝑑𝑝 = arg min
𝑑∈𝐷

𝐶′(𝑝, 𝑑) 

The disparity associated with the minimum aggregated cost 𝑑𝑝 at each pixel is 

chosen. 𝐶′(𝑝, 𝑞) represents the aggregate cost obtained after the matching cost 

calculation, and 𝐷 denotes the set of all allowed discrete disparities.  

By contrast, in a global approach, certain assumptions are made about the depth 

of field of the scene, which are usually expressed in an energy minimization 

framework. The bulk of the effort in a global method is expended during the 

disparity computation phase, and the aggregation step is often skipped. 

In the typical global stereo vision formulation, the objective is to find an optimal 

energy disparity assignment function 𝑑 =  𝑑(𝑥, 𝑦) that minimizes  

𝐸(𝑑)  =  𝐸𝑑𝑎𝑡𝑎(𝑑)  +  𝛽𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝑑) 

where 𝐸𝑑𝑎𝑡𝑎(𝑑) represents the matching costs at the coordinates (𝑥, 𝑦); the 

smoothness energy 𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝑑) encourages neighbouring pixels to have similar 

disparities based on the previous stated assumptions and 𝛽 is a weighting factor. 
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The purpose of the disparity refinement stage is to reduce noise and improve the 

disparity maps. Typically, the refinement step consists of regularization and 

occlusion filling or interpolation. The regularization process will reduce the overall 

noise through the filtering of inconsistent pixels and small variations among pixels 

on disparity map. The occlusion filling or interpolation process is responsible for 

approximating the disparity values in areas in which the disparity is unclear. 

Typically, occluded regions are filled with disparities similar to those of the 

background or textureless areas. 

 

5.2 Difficulty of stereo matching 

Several problems create some difficulties in research about a right correspondence 

between left and right camera. For this reason, large number of proposed method 

are present in the literature, which have been trying to consider all or a big part of 

problems presented below. 

Following, there are the principal difficulties of stereo matching algorithm, with a 

short description and a meaningful example, to better understand the dubiousness: 

 

 Specular surfaces: shiny surface can radically change the texture surfaces. 

 

Figure 5.1 - Example of specular surfaces problem 
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 Foreshortening: an effect that occurs when a surface is viewed at a sharp 

angle, because each stereo camera has a slightly different view, the image 

of the surface is more compressed and occupies a smaller area in one view. 

 

Figure 5.2 - Example foreshortening problem 

 Perspective distortions: is a warping or transformation of an object and its 

surrounding area. 

 

Figure 5.3 - Example perspective distortions problem 

 Textureless regions: a region is characterized by a uniform surface. 

 

Figure 5.4 - Example textureless regions problem 
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 Repetitive structures and textures: a region of the image has a repetitive 

textures. 

 

Figure 5.5 - Example repetitive structures example 

 Transparency: it’s possible to see through the transparent object, 

neglecting it. 

 

Figure 5.6 - Example transparency problem 

 Occlusion: with different views of the same scene, the objects could hide 

visible sections from others view. 

 

Figure 5.7 - Example occlusion problem 
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5.3 State of the art 

As above say, the stereo correspondence algorithm are divided in two categories 

local approaches and global approaches. Local methods can be very efficient, but 

they are sensitive to locally ambiguous regions in images (e.g., occlusion regions 

or regions with uniform texture). Global methods can be less sensitive to these 

problems, since global constraints provide additional support for regions difficult 

to match locally. However, these methods are more computationally expensive. 

The following sections present the techniques of correspondence algorithm to 

compute the disparity map, separating the local approach and the global approach. 

 

5.3.1 Local approaches 

In local methods, the emphasis is on the matching cost computation and on the cost 

aggregation steps. Computing the final disparities is trivial: simply choose at each 

pixel the disparity associated with the minimum cost value (WTA strategy). A 

limitation of this approach is that uniqueness of matches is only enforced for one 

image, the reference image, while points in the other image might get matched to 

multiple points. These methods fall into three broad categories: block matching, 

gradient methods and feature matching. 

Block matching methods seek to estimate disparity at a point in one image by 

comparing a small region about that point with a series of small regions extracted 

from the other image (the search region). Three classes of metrics are commonly 

used for block matching: correlation, intensity differences, and rank metrics. 

Gradient-based methods, or optical flow, seek to determine small local disparities 

between two images by formulating a differential equation relating motion and 

image brightness. Minimize a functional, typically the sum of squared differences, 

over a small region. In order to do this, the assumption is made that the image 

brightness of a point in the scene is constant between the two views. 
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Match metric Definition 

Sum of Absolute Differences 

(SAD) 
∑|𝐼𝑙(𝑢, 𝑣) − 𝐼𝑟(𝑢 + 𝑑, 𝑣)|

𝑢,𝑣

 

Sum of Squared Differences 

(SSD) 
∑(𝐼𝑙(𝑢, 𝑣) − 𝐼𝑟(𝑢 + 𝑑, 𝑣))

2

𝑢,𝑣

 

Normalized Cross-Correlation 

(NCC) 

∑ (𝐼𝑙(𝑢, 𝑣) − 𝐼𝑙̅) ∙ (𝐼𝑟(𝑢 + 𝑑, 𝑣) − 𝐼𝑟̅)𝑢,𝑣

√∑ (𝐼𝑙(𝑢, 𝑣) − 𝐼𝑙̅)2 ∙ (𝐼𝑟(𝑢 + 𝑑, 𝑣) − 𝐼𝑟̅)2𝑢,𝑣

 

Rank 
∑(𝐼𝑙

′(𝑢, 𝑣) − 𝐼𝑟
′(𝑢 + 𝑑, 𝑣))

𝑢,𝑣

 

𝐼𝑘
′ (𝑢, 𝑣) =∑𝐼𝑘(𝑚, 𝑛) < 𝐼𝑘(𝑢, 𝑣)

𝑚,𝑛

 

Census 
∑𝐻𝐴𝑀𝑀𝐼𝑁𝐺(𝐼𝑙

′(𝑢, 𝑣), 𝐼𝑟
′(𝑢 + 𝑑, 𝑣))

𝑢,𝑣

 

𝐼𝑘
′ (𝑢, 𝑣) = 𝐵𝐼𝑇𝑆𝑇𝑅𝐼𝑁𝐺𝑚,𝑛(𝐼𝑘(𝑚, 𝑛) < 𝐼𝑘(𝑢, 𝑣)) 

Table 5.1 - Common block-matching methods 

Block matching and gradient methods are well known to be sensitive to depth 

discontinuities, since the region of support near a discontinuity contains points from 

more than one depth. These methods are also sensitive to regions of uniform texture 

in images. Feature-based methods seek to overcome these problems by limiting 

the regions of support to specific reliable features in the images (e.g., edges, curves, 

etc.). Among the feature-based method, two approaches are delineated: hierarchical 

feature matching and segmentation matching. 

With the hierarchical technique the matching begins at the highest level of the 

hierarchy, the surfaces, and proceeds to the lowest, or else the lines. The feature-

based hierarchical framework serves much the same purpose as area-based 

hierarchical frameworks. It allows coarse, reliable features to provide support for 

matching finer, less reliable features, and it reduces the computational complexity 

of matching by reducing the search space for finer levels of features. Another 

feature-based approach is to first segment the images and then match the segmented 

regions. 
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5.3.2 Global approaches 

The global correspondence methods exploit non-local constraints in order to reduce 

sensitivity to local regions in the image that fail to match, due to occlusion, uniform 

texture, and others. The use of these constraints makes the computational 

complexity of global matching significantly greater than that of local matching. 

The global approaches are different: Dynamic programming allows resolving 

optimization problems having an objective function as a sum of monotone non-

decreasing functions of resources. In practice, this means that we can infer the 

optimal solution of a problem using optimal solutions of sub-problems. The 

dynamic programming applied stereo matching searches for a path of minimal cost 

through a matrix composed of possible matches. To reduce the complexity, this 

technique is applied on two sets of points of the same epipolar line. Thus, the stereo 

correspondence is applied successively to find matchings for all pixels of a line of 

one image with pixels located on its epipolar line in the other image. 

To obtain a global path cost equal to the sum of the partial-paths costs, it is 

mandatory to use additive costs. We define the local cost for each point in the 

research zone as the cost of a local stereo matching (SAD, SSD, etc.). Occlusions 

can be taken into account, making possible to link a set of image pixels with the 

same pixel in the other image; penalties are considered for these relations (occlusion 

costs), which will be added to the global cost of any path in the matrix. This 

formulation presents many inconvenient as the sensibility to the occlusion cost, the 

difficulty to guarantee inter-lines consistency, and the weak application of 

constraints on order and continuity, that could be not satisfied. 

The dynamic programming can help in finding matchings in poorly textured zones, 

and in solving some occlusion problems. But this method brings also some weak 

points, as complexity of calculation, possibility of propagation of a local error 

through all the research line, and non-consistency of disparity between lines. 

This technique not taking into account inter-lines consistency. Hence, they do not 

use the bi-dimensional nature of the problem. To overcome this drawback, and to 

take into consideration bidimensionnal continuity constraint, a solution has been 
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proposed using the graph theory. Graph cuts, applied to stereo matching, is 

formulated like a minimization of an energy function.  

The method estimates the optimal disparity map over the entire image. The 

matching constraints are expressed in a 3D mesh composed of planes, themselves 

composed of an image of nodes. There is a plane for each level of disparity, and 

each node represents a matching between two pixels in original images. The 3D 

mesh is then transformed into a graph of maximal flow by connecting each node to 

its four neighbours in the same plane by edges called occlusion edge, and with the 

two nodes in the neighbour planes with edges called disparity edges. Edges are not 

oriented. The weight of a disparity edge is equal to the mean value of matching 

costs of the two nodes. For occlusion edges, the weight is multiplied by a constant 

to control the smoothness of the optimal disparity map. A graph cut will separate 

the nodes in two sub-sets: the optimal disparity map is constructed by the 

assignment of each pixel with the bigger value of disparity for which the 

corresponding node is still connected to the source. 

5.4 Stereo correspondence algorithm on sensor 

Among the different typologies of stereo matching algorithm, above presented, we 

choose a suitable algorithm for real environment. Many techniques are good for 

standard dataset, or simplified scenes. In fact, when these algorithms are used in 

real world, their accuracy is very low and the computational cost is very high. And, 

since the sensor has a discrete computing power to elaborate the stereo image, a 

fast, but accurate algorithm is necessary. The chosen algorithm is “efficient large-

scale stereo matching” [14]. This algorithm has good performance with high 

resolution images, and it is effective in real environment. The used technique is 

adapted in our case. Although the sensor has a limited computing power, using this 

method with low resolution images, we can extract quickly a good disparity map. 

The method is inspired from the observation that despite the fact that many stereo 

correspondences are highly ambiguous, some of them can be robustly matched. 

Assuming piecewise smooth disparities, such reliable “support points” contain 

valuable prior information for the estimation of the remaining ambiguous 

disparities. So, the approach begins computing the disparities of a sparse set of 
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support points, with the use of a full disparity range. The image coordinates of the 

support points are then used to create a 2D mesh via Delaunay triangulation. A prior 

is computed to disambiguate the matching problem, making the process efficient 

by restricting the search to plausible regions. In particular, this prior is formed by 

computing a piecewise linear function induced by the support point disparities and 

the triangulated mesh. 

5.4.1 Support Points 

As support points, we denote pixels which can be robustly matched due to their 

texture and uniqueness. The method finds that matching support points on a regular 

grid using the 𝑙1 distance between vectors formed by concatenating the horizontal 

and vertical Sobel filter responses of 9 ×  9 pixel windows to be both efficient and 

effective. For robustness it is imposed consistency, or else, the correspondences are 

retained only if they can be matched from left-to-right and right-to-left. To get rid 

of ambiguous matches, all points with ratio between the best and the second best 

match exceeds a fixed threshold, 𝜏 =  0.9, are eliminated. Spurious mismatches are 

removed by deleting all points which exhibit disparity values dissimilar from all 

surrounding support points. To cover the full image, we add additional support 

points at the image corners whose disparities are taken to be the ones of their nearest 

neighbours. 

5.4.2 Generative model for stereo matching 

With the support points calculated, here is described the probabilistic generative 

model which.  

More formally, let 𝑆 =  {𝑠1, … , 𝑠𝑀} be a set of robustly matched support points. 

Each support point, 𝑠𝑚  =  (𝑢𝑚, 𝑣𝑚, 𝑑𝑚)
𝑇, is defined as the concatenation of its 

image coordinates, (𝑢𝑚, 𝑣𝑚)  ∈  ℕ
2, and its disparity, 𝑑𝑚  ∈  ℕ. Let 𝑂 =

 {𝑜1, … , 𝑜𝑁 } be a set of image observations, with each observation 𝑜𝑛  =

(𝑢𝑛, 𝑣𝑛, 𝑓𝑛)
𝑇 formed as the concatenation of its image coordinates, (𝑢𝑛, 𝑣𝑛)  ∈  ℕ

2, 

and a feature vector, 𝑓𝑛  ∈  ℝ
𝑄, e.g., the pixel’s intensity or a low-dimensional 

descriptor computed from a small neighbourhood. We denote 𝑜𝑛
(𝑙)

 and 𝑜𝑛
(𝑟)

 as the 

observations in the left and right image respectively. Without loss of generality, in 

the following we consider the left image as the reference image. 
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Assuming that the observations {𝑜𝑛
(𝑙), 𝑜𝑛

(𝑟)} and support points 𝑆 are conditionally 

independent given their disparities 𝑑𝑛, the joint distribution factorizes 

𝑝(𝑑𝑛, 𝑜𝑛
(𝑙), 𝑜𝑛

(𝑟), 𝑆) ∝ 𝑝(𝑑𝑛|𝑆, 𝑜𝑛
(𝑙))𝑝(𝑜𝑛

(𝑟)|𝑜𝑛
(𝑙), 𝑑𝑛) 

with 𝑝(𝑑𝑛|𝑆, 𝑜𝑛
(𝑙)) the prior and 𝑝(𝑜𝑛

(𝑟)|𝑜𝑛
(𝑙), 𝑑𝑛) the image likelihood. The 

graphical model is depicted in Figure 5.8. 

 

Figure 5.8 - Graphical model and sampling process 

In particular, we take the prior to be proportional to a combination of a uniform 

distribution and a sampled Gaussian 

𝑝(𝑑𝑛|𝑆, 𝑜𝑛
(𝑙)) ∝

{
 
 

 
 

𝛾 + 𝑒𝑥𝑝(−
(𝑑𝑛 − 𝜇(𝑆, 𝑜𝑛

(𝑙)))
2

2𝜎2
)  𝑖𝑓 |𝑑𝑛 − 𝜇| < 3𝜎 ∨ 𝑑𝑛 ∈ ℕ𝑆

0                              𝑜𝑡ℎ𝑒𝑟𝑤ℎ𝑖𝑠𝑒

 

with 𝜇(𝑆, 𝑜𝑛
(𝑙)) a mean function linking the support points and the observations, and 

𝑁𝑆 the set of all support point disparities in a small 20𝑥20 pixel neighbourhood 

around (𝑢𝑛
(𝑙), 𝑣𝑛

(𝑙)). We gain efficiency by excluding all disparities farther than 3𝜎 

from the mean. The condition 𝑑𝑛 ∈ ℕ𝑆 enables the prior to locally extend its range 

to better handle disparity discontinuities in places where the linearity assumption 

might be violated. 

We express 𝜇(𝑆, 𝑜𝑛
(𝑙)) as a piecewise linear function, which interpolates the 

disparities using the Delaunay triangulation computed on the support points. 
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For each triangle, we thus obtain a plane defined by 

𝜇𝑖(𝑜𝑛
(𝑙)) = 𝑎𝑖𝑢𝑛 + 𝑏𝑖𝑣𝑛 + 𝑐𝑖 

where 𝑖 is the index of the triangle the pixel (𝑢𝑛;  𝑣𝑛) belongs to, and 𝑜𝑛  =

(𝑢𝑛, 𝑣𝑛, 𝑓𝑛)
𝑇 is an observation. For each triangle, the plane parameters (𝑎𝑖, 𝑏𝑖, 𝑐𝑖) 

are easily obtained by solving a linear system. Hence, the mode of the proposed 

prior, 𝜇, is a linear interpolation between support point disparities, serving as a 

coarse representation. 

We express the image likelihood as a constrained Laplace distribution 

𝑝(𝑜𝑛
(𝑟)|𝑜𝑛

(𝑙), 𝑑𝑛) ∝ {
𝑒𝑥𝑝 (−𝛽‖𝑓𝑛

(𝑙) − 𝑓𝑛
(𝑟)‖)    𝑖𝑓  (

𝑢𝑛
(𝑙)

𝑣𝑛
(𝑙)
) = (

𝑢𝑛
(𝑟) + 𝑑𝑛

𝑣𝑛
(𝑟)

)

0                      𝑜𝑡ℎ𝑒𝑟𝑤ℎ𝑖𝑠𝑒

 

where 𝑓𝑛
(𝑙)

 and 𝑓𝑛
(𝑟)

 are feature vectors in the left and right image respectively, and 

𝛽 is a constant. The if-condition ensures that correspondences are located on the 

same epipolar line and matched via the disparity 𝑑𝑛. In this equation, there is only 

one observation with non-zero probability for each 𝑑𝑛. The used features 𝑓𝑛 are 

taken as the concatenation of image derivatives in a 5𝑥5 pixel neighbourhood 

around (𝑢𝑛, 𝑣𝑛), computed from Sobel filter responses. 

An advantage of having a generative model is that we can use it to draw samples. 

Given the support points and an observation in the left image, samples from the 

corresponding observation in the right image can be obtained as follows: 

1. Given 𝑆 and 𝑜𝑛
(𝑙)

 draw a disparity 𝑑𝑛 from 𝑝(𝑑𝑛|𝑆, 𝑜𝑛
(𝑙)) 

2. Given 𝑜𝑛
(𝑙)

 and 𝑑𝑛 draw an observation 𝑜𝑛
(𝑟)

 from 𝑝(𝑜𝑛
(𝑟)|𝑜𝑛

(𝑙), 𝑑𝑛) 

5.4.3 Disparity Estimation 

In order to estimate the disparity map given the left and right images, we rely on 

maximum a-posteriori (MAP) estimation to compute the disparities 

𝑑𝑛
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑝(𝑑𝑛|𝑜𝑛

(𝑙), 𝑜1
(𝑟), … , 𝑜𝑁

(𝑟), 𝑆) 
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where 𝑜𝑛
(𝑙), 𝑜1

(𝑟), … , 𝑜𝑁
(𝑟)

 denotes all observations in the right image which are 

located on the epipolar line of 𝑜𝑛
(𝑙)

. The posterior can be factorized as 

𝑝(𝑑𝑛|𝑜𝑛
(𝑙), 𝑜1

(𝑟), … , 𝑜𝑁
(𝑟), 𝑆) ∝ 𝑝(𝑑𝑛|𝑆, 𝑜𝑛

(𝑙))𝑝(𝑜1
(𝑟), … , 𝑜𝑁

(𝑟)|𝑜𝑛
(𝑙), 𝑑𝑛) 

The observations along the epipolar line on the right image are structured, i.e., given 

a disparity associated with 𝑜𝑛
(𝑙)

, there is a deterministic mapping to which 

observations have non-zero probability on the line. We capture this property by 

modelling the distribution over all the observations along the epipolar line as 

𝑝(𝑜1
(𝑟), … , 𝑜𝑁

(𝑟)|𝑜𝑛
(𝑙), 𝑑𝑛) ∝∑𝑝(𝑜𝑖

(𝑟)|𝑜𝑛
(𝑙), 𝑑𝑛)

𝑁

𝑖=1

 

Plugging the two equations in previous section, and taking the negative logarithm 

yields an energy function that can be easily minimized 

𝐸(𝑑) = 𝛽‖𝑓(𝑙) − 𝑓(𝑟)(𝑑)‖ − 𝑙𝑜𝑔 [𝛾 + exp (−
[𝑑 − 𝜇(𝑆, 𝑜(𝑙)]

2

2𝜎2
)] 

with 𝑓(𝑟)(𝑑) the feature vector located at pixel (𝑢(𝑙) − 𝑑, 𝑣(𝑙)). Note that from the 

definition of the image likelihood, the energy 𝐸(𝑑) is required to be evaluated only 

if |𝑑 − 𝜇| < 3𝜎, or 𝑑 is an element of the neighboring support point disparities. 

A dense disparity map can be obtained by minimizing the energy. Importantly, this 

can be done in parallel for each pixel as the support points decouple the different 

observations. 

Then, the above approach is applied on both images, and perform a left/right 

consistency check to eliminate spurious mismatches and disparities in occluded 

regions. Finally, the small segments with an area smaller than 50 pixels are 

removed. 

5.4.4 Parallelization 

The operations above presented require a substantial amount of time to be execute, 

but we have few operations to perform on a big quantity of data. This situation 

directs us to the SIMD.  
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Single Instruction, Multiple Data, namely SIMD, indicates computers with multiple 

processing elements that perform the same operation on multiple data points 

simultaneously. Thus, such machines exploit data level parallelism, but not 

concurrency: there are simultaneous (parallel) computations, but only a single 

process (instruction) at a given moment. SIMD is particularly applicable to 

common tasks like adjusting the contrast in a digital image. Most modern CPU 

designs include SIMD instructions in order to improve the performance of 

multimedia.  

Raspberry PI has an ARM like CPU, more specifically an ARM Cortex-A7. The 

processors of A series own the NEON technology.  

NEON is the implementation of the SIMD used in ARM processors. NEON 

technology can accelerate multimedia and signal processing algorithms such as 

video encode/decode, 2D/3D graphics, gaming, audio and speech processing, image 

processing, telephony, and sound synthesis by at least 3x. 

So, the NEON is used with different operations in stereo matching algorithm. One 

of the operations most used which exploits the power of the NEON technology is 

the function which individuate the correct disparities of the support points. To find 

the exact correspondence of a support points, all possible disparities, in the range 

of the disparity, must be check, at the end the disparity for a single points is 

calculated. This operation has to be done for all supports points. How we can 

understand this operation is easily parallelized. 

5.5 Method accuracy 

To test the method accuracy, the authors of the article [13] has organized all 

developed works until now in single site [15]. This site provides a list of all stereo 

matching algorithm, with their accuracy for single tested images, the overall 

average and the reference at the article describes the algorithm. Beyond this there 

are some tools to verify the accuracy of a stereo matching algorithm, but to use it 

we need of a dataset with the ground truth. Also different dataset, with different 

resolutions, are provided from this site to make the test. 
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The measured accuracy computes the difference between the disparity value in the 

ground truth and the disparity value in the produced image of the algorithm. If this 

difference is lower than a threshold, the disparity value is considered correct 

otherwise is presented an error. The sum of all errors is divided for the number of 

pixel of the image, getting, thus, a percentage of error. 

In the Table 5.2 are showed the results for a subset of the Middlebury dataset of 

2006. 

Test 

image 

Error 

(threshold=1) 

Error 

(threshold=2) 

Cones 5.0% 2.7% 

Teddy 11.5% 7.3% 

Art 13.5% 8.7% 

Aloe 5.0% 3.0% 

Dolls 11.0% 5.3% 

Baby3 10.8% 4.5% 

Cloth3 1.4% 0.9% 

Lamp2 17.5% 10.4% 

Rock2 1.9% 1.0% 

Table 5.2 - Result on Middlebury dataset 2006 

In the following figures, there are the match between the disparity map computed 

and the ground truth of the image Teddy. 

 

Figure 5.9 - Comparison with ground truth of the Teddy image 
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With the new Middlebury dataset of 2014 the error percentage is increased, like we 

can see in Table 5.3. 

Test 

image 

Error 

(threshold=1) 

Error 

(threshold=2) 

Australia 33.3% 12.5% 

Motorcycle 31.5% 13.9% 

Classroom 43.1% 23.7% 

Computer 29.5% 20.4% 

Djembe 30.5% 11.0% 

Newkuba 45.3% 28.6% 

Stairs 54.9% 33.3% 

Table 5.3 - Result on Middlebury dataset 2014 

While in Figure 5.10 there is the comparison from the disparity ground truth, on the 

left, and the disparity calculated by the algorithm, on the right. 

 

Figure 5.10 - Comparison with ground truth of the Motorcycle image 

The average error of the stereo matching algorithm, considering the above tables is 

11.7%. 
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Chapter 6 

 

6 Test and results 

In this section we describe the different test with the 3D sensor, showing the all 

obtained results. 

The follow test are carried with different resolutions, 640x480 and 320x240, 

comparing the execution time of all modules on a PC and on Raspberry PI. 

The Raspberry PI was presented in a previous chapter. The used PC has an Intel 

Core i5 2.6GHz like processors and 8GB of RAM. An additional the SIMD 

instructions on Intel processors are called SSE2. So a wrapper from two architecture 

was carried out  

6.1 Stereo acquisition  

The stereo acquisition module was tested for one hour without have problems. The 

difference between acquisition by Raspberry and PC are inexistent, and so in Table 

6.1 are recur the time of acquisition from a stereo camera in different resolutions. 

Resolution 

image 

Time stereo camera 

(ms) on Raspberry PI 

Time stereo camera 

(ms) on PC 

320x240 47 47 

640x480 57 57 

Table 6.1 - Time acquisition stereo camera 

An example of the acquisition from the stereo camera is showed in Figure 6.1 
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Figure 6.1 - Example stereo image 

How we can see in reference at the skirting on the bottom of the image and the shelf 

on the top of the image, the introduced distortion from the lens is remarkable and 

the next operation of rectification is essential for a good success of the 3D sensor 

6.2 Rectification 

The rectification is essential after the previous acquisition. The Figure 6.2 shows 

the result of the rectification of the above image.  

 

Figure 6.2 - Example rectified stereo image 

The skirting and the shelf, now, are straight and don’t exhibit curvatures. We 

remove the black borders, getting the cropped images. 
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Figure 6.3 - Example rectified and cropped stereo image 

Now the left and right image are overlaid. To distinguish the two figures, the left 

image has accented blue colours, instead, the right image has accented red colours. 

In this figure we can better see the aligned horizontal lines. Points at different 

distance from camera are emphasize and with a yellow line you can notice the good 

alignment of these points. 

 

Figure 6.4 - Comparison between left and right image 

The time to rectify both the images are illustrated above. Now we want compare 

the request time on the Raspberry PI and the request time on PC to rectified both 

the images. From the follow tables there is an abyss from the two hardware. The 
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difference between one and the other is fifteen times in favour of the PC. With this 

we understand the potential of the used method on a more powerful machine. 

 

Size 
Average time on 

Raspberry (ms) 

Average time on PC 

(ms) 

320x240 68.54 4 

640x480 251.6 15.7 

Figure 6.5 - Comparison time of initUndistortRectifyMap function 

 

 

Size 
Average time on 

Raspberry (ms) 

Average time on PC 

(ms) 

320x240 17.4 1.24 

640x480 62.94 4.2 

Figure 6.6 - Comparison time of remap function 

 

6.3 Stereo matching 

Finally, the stereo matching module use all result from the previous section to 

elaborate the disparity map. The Figure 6.7 shows, in false colour, the disparity map 

of the reference image presented in previous part. With the false colour, the red 

indicate the object near the camera, the orange indicate the object at middle distance 

from the camera and the blue far object. How we can guess in the stereo image, the 

right hand of the author (in the figure) is the area of body nearest to the camera, 

then the left hand is in the middle and total body is in the back. The wall is the 

background of the image and it is represent with a colour blue. 
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Figure 6.7 - Example disparity map 

 

The computation time of this operations is much bigger the previous functions. In 

fact in the follow table we can see the long time to extract the disparity map. 

 

Size 
Average time on 

Raspberry (ms) 

Average time on PC (ms) 

320x240 300 36 

640x480 1400 180 

Figure 6.8 - Comparison time of the disparity map extraction 

 

6.4 Profiling 

Finally, we can compute the total time to execute all the module and then extract 

the disparity map. The test was carried out with two different resolutions: 320x240 

and 640x480.  

 

In the tables, presented to the next page, there are the times for each module and 

the total. 
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Operations 
Using Raspberry 

(ms) 

Using PC (ms) 

Acquisition 57 57 

Rectification 62.94 4.2 

Disparity calculation 1400 180 

Total 1519.94 241.2 

Table 6.2 - Execution time for 640x480 resolution 

 

The framerate reached on Raspberry with resolutions 640x480 to extract disparity 

map is 0.65 fps. 

Operations 
Using Raspberry 

(ms) 

Using PC (ms) 

Acquisition 47 47 

Rectification 17.4 1.24 

Disparity calculation 300 36 

Total 364.4 84.24 

Table 6.3 - Execution time for 320x240 resolution 

 

The framerate reached on Raspberry with resolutions 320x240 to extract disparity 

map is 3 fps. 

Since the framerate with the resolutions 640x480 is too high to can use in a real 

application, we prefer use the resolution 320x240,that, also it has a low framerate, 

we can think to use this sensor in scene where the environment change slowly. 

 



Chapter 7 - Conclusion 6.4 Profiling 

  65 

 

Chapter 7 

 

7 Conclusion 

In this work of thesis, we have presented a low cost 3D sensor, able to extract a 

disparity map. This sensor has been exposed in all parts. Each part has been 

previously described, providing a brief context to understand better the technique 

used. All modules, of which it is provided the sensor, are necessary to a good 

realization of the sensor. 

We started with the calibration, passing from the acquisition, the rectification and, 

last and more important, the matching operations to extract the disparity map. 

The operations performed by the sensor are linked about the idea to minimize the 

computation load, and to obtain a high accuracy, because the core of the sensor is 

Raspberry PI, and the limited resources clash with the difficulty of the stereo vision. 

After all, considering all problems, the stereo matching algorithm has a good 

accuracy, as say in above of 11.7% of error. The framerate of the stereo camera 

settled on 3 fps. 

The performance may be improved using hardware with a new and more powerful 

CPU, like the new version of Raspberry PI. 

Future developments of this work could concern the completion of the 3D sensor, 

making it a plug and play sensor, usable immediately with a rough configuration. 

Or again to develop a library with all functions implemented of the sensor and to 

transform the sensor in a tool which performs only the operations requested by the 

users. 
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