Variable-width contouring for additive manufacturing

Samuel Hornus, Tim Kuipers, Olivier Devillers, Monique Teillaud, Jonàs Martínez, Marc Glisse, Sylvain Lazard and Sylvain Lefebvre

SIGGRAPH 2020

$$
\begin{aligned}
& 01 \\
& 01 \\
& 01 \\
& 01 \\
& 01 \\
& 01 \\
& 0 \\
& 0
\end{aligned}
$$

0110110
01101111 01110010
01101001
01100001
01100001 01101100 01101111
01110010
01101001
011000010111

11111

Context: 3D printing

Context: 3D printing

In turn, each layer is fabricated by solidifying a bead of some material, along a print path.

Context: Fabricating one layer

Overfill

Overfill = forbidden...

Overfill

...except for closed beads, a well controlled special case:

(we love closed beads!)

Underfill

Example: two classic ways to fill a square with a constant-width bead.

Underfill

Underfill is the existence of areas of the slice not covered by a solid bead.

=underfill

Underfill

Underfill is bad. We want to minimize it.
Our contribution is a new technique for designing print paths that produces

- no overfill (this is somewhat easy)
- a small amount of underfill (almost $10 \times$ less than the state of the art)

What to do?

Earlier works suggesting to use variable-width beads:

- Jin, Du, and He. Journal of Manufacturing Systems 44 (2017).
- Kuipers, Doubrovski, Wu, and Wang. Computer-Aided Design 128 (2020).

We follow suit, use closed, variable-width beads and try to minimize their number and curvature.

Uniform-width parallel contouring wo. (left)

Our technique. and w. (right) regularization.

Inputs \& data structure

- A range $[2 \gamma, 2 \Gamma]$ of feasible bead widths $\longrightarrow \bullet$ (specific to target 3D printer).

Inputs \& data structure

- A range $[2 \gamma, 2 \Gamma]$ of feasible bead widths (specific to target 3D printer).
- A 2γ-fat planar shape \mathcal{S} : all the maximal disks inside \mathcal{S} have radius $\geq 2 \gamma{ }^{1}$

${ }^{1}$ In practice, slices are polygons. We process them into 2γ-fat shapes.

Inputs \& data structure

- A range $[2 \gamma, 2 \Gamma]$ of feasible bead widths (specific to target 3D printer).
- A 2γ-fat planar shape \mathcal{S} : all the maximal disks inside \mathcal{S} have radius $\geq 2 \gamma$. ${ }^{1}$
- An explicit representation of the medial axis of \mathcal{S} :

${ }^{1}$ In practice, slices are polygons. We process them into 2γ-fat shapes.

Variable-width contouring

Given a shape \mathcal{S}, we model a bead that stays in contact with the boundary of \mathcal{S} and make the remaining inner shape "rounder."

Variable-width contouring

To do so, we replace parts of the boundary $\partial \mathcal{S}$ by inner tangent circular arcs (yellow)...

Variable-width contouring

Then we do a parallel offset of 2γ and obtain a bead of width within the allowed range.

Variable-width contouring

Now we repeat the process

Variable-width contouring

Now we repeat the process

Variable-width contouring

Now we repeat the process

Variable-width contouring

The circles supporting the tangent circular arcs are chosen as the boundary of maximal disks in \mathcal{S}. Hence, their center lies on the medial axis MA (\mathcal{S}) of \mathcal{S}.

Variable-width contouring

The circles supporting the tangent circular arcs are chosen as the boundary of maximal disks in \mathcal{S}. Hence, their center lies on the medial axis $\operatorname{MA}(\mathcal{S})$ of \mathcal{S}.

Variable-width contouring

Replacing by circular arc $=$ trimming the medial axis!

Variable-width contouring: basics

1. Trimming the medial axis: removes crescents of width $\leq 2 \Gamma-2 \gamma$ from the shape.
2. Parallel offset : removes a band of width exactly 2γ, which together with the crescents, form a bead of width varying within $[2 \gamma, 2 \Gamma]$.

Variable-width contouring: basics

1. Trimming the medial axis: removes crescents of width $\leq 2 \Gamma-2 \gamma$ from the shape.
2. Parallel offset : removes a band of width exactly 2γ, which together with the crescents, form a bead of width varying within $[2 \gamma, 2 \Gamma]$.

If the input is a polygon, then:

- the medial axis is computable (CGAL, BOOST) and
- the two operations above produce shapes with linear or circular boundary arcs only.

Corollary: in that case, each bead is bounded by linear or circular arcs only.

Trimming

maximal disk centered on p

Trimming

Trimming

The algorithm grows a tree from each leaf (degree-1 vertex) and finds all maximal trimmable trees.

Complete picture with Collapsing

Pictures

Pictures

End of this presentation

See the paper for more, including:

- Less underfill with shaving
- An algorithm for sampling the print path (the center curve of each bead)
- A comparison with the state of the art (almost $10 x$ less underfill)
- A proof of the absence of overfill
- More pictures of fabricated layers

Code: https://github.com/mfx-inria/Variable-width-contouring

