We obtain \(P(t)=A t^2 + 2 B t + C\) where \(\left\{\begin{array}{ll} A &= a-b+c-b\\ B &= b-a\\ C &= a \end{array}\right..\)
Its derivative is \(P'(t)=2(At+B)\) whose length is \(|P'(t)|=2\sqrt{t^2|A|^2+2t(A\cdot B)+|B|^2}\).
The length of the quadratic arc is \(\displaystyle\ell=\int_{t=0}^{t=1}{|P'(t)|dt}\).
Setting \(\left\{\begin{array}{ll} D &= \displaystyle\frac{(A\cdot B)}{|A|^2}\\ E &= \displaystyle\frac{|B|^2}{|A|^2} \end{array}\right.\), we get \(\displaystyle\ell=2|A|L\) with \(L=\int_{t=0}^{t=1}{\sqrt{t^2+2Dt+E}dt}\).
With the change of variable \(u=t+D\), we obtain \(\displaystyle L=\int_{u=D}^{u=1+D}{\sqrt{u^2+K}du}\), with \(K=E-D^2=\displaystyle\frac{|A|^2|B|^2-(A\cdot B)^2}{|A|^4}\).
We use the known result that \(\displaystyle \int{\sqrt{u^2+K}du}=\frac12\left[u\sqrt{u^2+K}+K\log{\left(u+\sqrt{u^2+K}\right)}\right]\).
Setting \(\displaystyle M(u)=u\sqrt{u^2+K}+K\log{\left(u+\sqrt{u^2+K}\right)}\), we get \(\displaystyle\ell=|A|\left(M(1+D)-M(D)\right)\).
If \(u=1+D\) we obtain \(\left\{\begin{array}{ll} \sqrt{u^2+K} &=\displaystyle\frac{|F|}{|A|}\\ u&=\displaystyle\frac{A\cdot F}{|A|^2} \end{array}\right.\), with \(F=A+B=c-b\).
So, \(M(1+D)=\displaystyle\frac{|F|(A\cdot F)}{|A|^3}+K\log{(|A||F|+A\cdot F)}-K\log{\left(|A|^2\right)}\).
If \(u=D=\displaystyle\frac{(A\cdot B)}{|A|^2}\) we obtain \(\sqrt{u^2+K} =\displaystyle\frac{|B|}{|A|}\).
So, \(M(D)=\displaystyle\frac{|B|(A\cdot B)}{|A|^3}+K\log{(|A||B|+A\cdot B)}-K\log{\left(|A|^2\right)}\).
The length now depends on 3 vectors, \(B=b-a\), \(F=c-b\) and \(A=F-B\):
\(\ell=\displaystyle \frac{|F|(A\cdot F)-|B|(A\cdot B)}{|A|^2} + \left(\frac{|A|^2|B|^2-(A\cdot B)^2}{|A|^3}\right)\times\left(\log{(|A||F|+A\cdot F)} - \log{(|A||B|+A\cdot B)}\right) \).
Notice that \(|A|^2|B|^2-(A\cdot B)^2 = |A|^2|B|^2\sin^2(\text{angle between $A$ and $B$})=\det^2(A,B)=\det^2(F,B)\).\(\ell=\displaystyle \frac{|F|(A\cdot F)-|B|(A\cdot B)}{|A|^2} + \frac{\det^2(F,B)}{|A|^3}\times \left(\log{(|A||F|+A\cdot F)} - \log{(|A||B|+A\cdot B)}\right) \).