Can Charlie distinguish Alice and Bob?

Automated verification of equivalence properties

Steve Kremer

joint work with:

Myrto Arapinis, David Baelde, Rohit Chadha, Vincent Cheval, Ştefan Ciobăcâ, Véronique Cortier, Stéphanie Delaune, Ivan Gazeau, Itsaka Rakotonirina, Mark Ryan

29th IEEE Computer Security Foundations Symposium

Cryptographic protocols everywhere!

- Distributed programs that
- use crypto primitives (encryption, digital signature , . . .)
- ▶ to ensure security properties (confidentiality, authentication, anonymity,...)

Symbolic models for protocol verification

Main ingredient of symbolic models

messages = terms

perfect cryptography (equational theories)

$$dec(enc(x, y), y) = x$$
 $fst(pair(x, y)) = x$ $snd(pair(x, y)) = y$

- the network is the attacker
 - messages can be eavesdropped
 - messages can be intercepted
 - messages can be injected

Cremers et al., S&P'16

Bhargavan et al.:FREAK, Logjam, SLOTH, ...

Cremers et al., S&P'16

Arapinis et al., CCS'12

Bhargavan et al.:FREAK, Logjam, SLOTH, ...

Cremers et al., S&P'16

Arapinis et al., CCS'12

Bhargavan et al.:FREAK, Logjam, SLOTH, ...
Cremers et al., S&P'16

Arapinis et al., CCS'12

Steel et al., CSF'08, CCS'10

Modelling the protocol

Protocols modelled in a process calculus, e.g. the applied pi calculus

$$P := 0$$
 $\mid \text{in}(c,x).P \quad \text{input}$
 $\mid \text{out}(c,t).P \quad \text{output}$
 $\mid \text{if } t_1 = t_2 \text{ then } P \text{ else } Q \quad \text{conditional}$
 $\mid P \parallel Q \quad \text{parallel}$
 $\mid P \mid P \quad \text{replication}$
 $\mid \text{new } n.P \quad \text{restriction}$

Modelling the protocol

Protocols modelled in a process calculus, e.g. the applied pi calculus

$$P := 0$$
 $\mid \text{in}(c,x).P \quad \text{input}$
 $\mid \text{out}(c,t).P \quad \text{output}$
 $\mid \text{if } t_1 = t_2 \text{ then } P \text{ else } Q \quad \text{conditional}$
 $\mid P \parallel Q \quad \text{parallel}$
 $\mid P \mid P \quad \text{replication}$
 $\mid \text{new } n.P \quad \text{restriction}$

Specificities:

- messages are terms (not just names as in the pi calculus)
- equality in conditionals interpreted modulo an equational theory

Terms output by a process are organised in a **frame**:

$$\phi = \text{new } \bar{\textit{n}}. \; \{^{\textit{t}_1}/_{\textit{x}_1}, \ldots, ^{\textit{t}_n}/_{\textit{x}_n}\}$$

Terms output by a process are organised in a frame:

$$\phi = \text{new } \bar{n}. \ \{^{t_1}/_{x_1}, \dots, ^{t_n}/_{x_n}\}$$

Deducibility:

 $\phi \vdash^R t$ if R is a public term and $R\phi =_E t$

Example

$$\varphi = \mathsf{new} \ n_1, n_2, k_1, k_2. \ \{ ^{\mathsf{enc}(n_1, k_1)} /_{x_1}, ^{\mathsf{enc}(n_2, k_2)} /_{x_2}, ^{k_1} /_{x_3} \}$$

$$\varphi \vdash^{\mathsf{dec}(x_1, x_3)} n_1 \qquad \varphi \not\vdash n_2 \qquad \varphi \vdash^{\mathbf{1}} \mathbf{1}$$

Terms output by a process are organised in a frame:

$$\phi = \text{new } \bar{\textbf{n}}. \ \{^{t_1}/_{x_1}, \ldots, ^{t_n}/_{x_n}\}$$

Static equivalence:

 $\phi_1 \sim_s \phi_2$ if \forall public terms R, R'.

$$R\phi_1 = R'\phi_1 \Leftrightarrow R\phi_2 = R'\phi_2$$

Examples

$$\text{new } k. \ \{^{\mathsf{enc}(\mathbf{0},k)}/_{\mathsf{x}_1}\} \sim_{\mathfrak{s}} \text{new } k. \ \{^{\mathsf{enc}(\mathbf{1},k)}/_{\mathsf{x}_1}\}$$

Terms output by a process are organised in a frame:

$$\phi = \text{new } \bar{\textbf{n}}. \ \{^{t_1}/_{x_1}, \ldots, ^{t_n}/_{x_n}\}$$

Static equivalence:

 $\phi_1 \sim_s \phi_2$ if \forall public terms R, R'.

$$R\phi_1 = R'\phi_1 \Leftrightarrow R\phi_2 = R'\phi_2$$

Examples

new
$$n_1, n_2$$
. ${n_1/_{x_1}, n_2/_{x_2}} \not\sim_s$ new n_1, n_2 . ${n_1/_{x_1}, n_1/_{x_2}}$ Check $(x_1 \stackrel{?}{=} x_2)$

Terms output by a process are organised in a **frame**:

$$\phi = \text{new } \bar{n}. \ \{^{t_1}/_{x_1}, \dots, ^{t_n}/_{x_n}\}$$

Static equivalence:

 $\phi_1 \sim_s \phi_2$ if \forall public terms R, R'.

$$R\phi_1 = R'\phi_1 \Leftrightarrow R\phi_2 = R'\phi_2$$

Examples

$$\left\{ ^{\mathsf{enc}(n,k)}/_{\mathsf{x}_1}, ^k/_{\mathsf{x}_2} \right\} \not\sim_{\mathsf{s}} \left\{ ^{\mathsf{enc}(\mathbf{0},k)}/_{\mathsf{x}_1}, ^k/_{\mathsf{x}_2} \right\}$$

Check
$$(dec(x_1, x_2) \stackrel{?}{=} \mathbf{0})$$

From authentication to privacy

Many good tools:

AVISPA, Casper, Maude-NPA, ProVerif, Scyther, Tamarin, ...

Good at verifying **trace properties** (predicates on system behavior), e.g.,

- (weak) secrecy of a key
- authentication (correspondence properties)

If B ended a session with A (and parameters p) then A must have started a session with B (and parameters p').

From authentication to privacy

Many good tools:

AVISPA, Casper, Maude-NPA, ProVerif, Scyther, Tamarin, ...

Good at verifying **trace properties** (predicates on system behavior), e.g.,

- (weak) secrecy of a key
- authentication (correspondence properties)

If B ended a session with A (and parameters p) then A must have started a session with B (and parameters p').

Not all properties can be expressed on a trace.

→ recent interest in indistinguishability properties.

Indistinguishability as a process equivalence

Naturally modelled using equivalences from process calculi

Testing equivalence $(P \approx Q)$ for all processes A, we have that:

$$A \mid P \Downarrow c$$
 if, and only if, $A \mid Q \Downarrow c$

 \longrightarrow $P \Downarrow c$ when P can send a message on the channel c.

Abadi, Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus. CCS'97, Inf.& Comp.'99

Abadi, Fournet. Mobile values, new names, and secure communication. POPL'01

9/30

Diff equivalence too fine grained for several properties.

9/30

For a **bounded number of sessions** (no replication).

For a class of **determinate processes**.

"Strong" secrecy (non-interference)

$$\operatorname{in}(c, x_1).\operatorname{in}(c, x_2).P\{x_1/s\} \approx \operatorname{in}(c, x_1).\operatorname{in}(c, x_2).P\{x_2/s\}$$

"Strong" secrecy (non-interference)

$$\operatorname{in}(c, x_1).\operatorname{in}(c, x_2).P\{^{x_1}/_s\} \approx \operatorname{in}(c, x_1).\operatorname{in}(c, x_2).P\{^{x_2}/_s\}$$

Real-or-random secrecy

$$P.\operatorname{out}(c,s) \approx P.\operatorname{new} r.\operatorname{out}(c,r)$$

"Strong" secrecy (non-interference)

$$in(c, x_1).in(c, x_2).P\{x_1/s\} \approx in(c, x_1).in(c, x_2).P\{x_2/s\}$$

Real-or-random secrecy

$$P.\mathsf{out}(c,s) \approx P.\mathsf{new}\ r.\mathsf{out}(c,r)$$

Simulation based security (*I* is an ideal functionality)

$$\exists S. \ P \approx S[I]$$

"Strong" secrecy (non-interference)

$$\operatorname{in}(c, x_1).\operatorname{in}(c, x_2).P\{^{x_1}/_s\} \approx \operatorname{in}(c, x_1).\operatorname{in}(c, x_2).P\{^{x_2}/_s\}$$

Real-or-random secrecy

$$P.\operatorname{out}(c,s) \approx P.\operatorname{new} r.\operatorname{out}(c,r)$$

Simulation based security (*I* is an ideal functionality)

$$\exists S. \ P \approx S[I]$$

Anonymity

$$P\{^a/_{id}\} \approx P\{^b/_{id}\}$$

"Strong" secrecy (non-interference)

$$in(c, x_1).in(c, x_2).P\{x_1/s\} \approx in(c, x_1).in(c, x_2).P\{x_2/s\}$$

Real-or-random secrecy

$$P.\operatorname{out}(c,s) \approx P.\operatorname{new} r.\operatorname{out}(c,r)$$

Simulation based security (*I* is an ideal functionality)

$$\exists S. P \approx S[I]$$

Anonymity

$$P\{^a/_{id}\} \approx P\{^b/_{id}\}$$

Vote privacy

Unlinkability

How can we model

"the attacker does not learn my vote (0 or 1)"?

How can we model

"the attacker does not learn my vote (0 or 1)"?

► The attacker cannot learn the value of my vote

How can we model

"the attacker does not learn my vote (0 or 1)"?

➤ The attacker cannot learn the value of my vote

→ but the attacker knows values 0 and 1

How can we model

"the attacker does not learn my vote (0 or 1)"?

- ► The attacker cannot learn the value of my vote
- ► The attacker cannot distinguish A votes and B votes: $V_A(v) \approx V_B(v)$

How can we model

"the attacker does not learn my vote (0 or 1)"?

- ► The attacker cannot learn the value of my vote
- ► The attacker cannot distinguish A votes and B votes:

$$V_A(v) \approx V_B(v)$$

→ but identities are revealed

How can we model

"the attacker does not learn my vote (0 or 1)"?

- ► The attacker cannot learn the value of my vote
- ► The attacker cannot distinguish A votes and B votes: $V_A(v) \approx V_B(v)$
- ► The attacker cannot distinguish A votes 0 and A votes 1: $V_A(0) \approx V_A(1)$

How can we model

"the attacker does not learn my vote (0 or 1)"?

- ► The attacker cannot learn the value of my vote
- ► The attacker cannot distinguish A votes and B votes: $V_A(v) \approx V_B(v)$
- ► The attacker cannot distinguish A votes 0 and A votes 1: $V_A(0) \approx V_A(1)$
 - → but election outcome is revealed

How can we model

"the attacker does not learn my vote (0 or 1)"?

- ► The attacker cannot learn the value of my vote
- ► The attacker cannot distinguish A votes and B votes: $V_A(v) \approx V_B(v)$
- ► The attacker cannot distinguish A votes 0 and A votes 1: $V_A(0) \approx V_A(1)$
- ► The attacker cannot distinguish the situation where two honest voters swap votes:

$$V_A(0) \parallel V_B(1) \approx V_A(1) \parallel V_B(0)$$

Definitions of privacy and stronger variants (receipt-freeness and coercion-resistance) in terms of **process equivalences**.

Our first case study: the FOO protocol based on blind signatures

Definitions of privacy and stronger variants (receipt-freeness and coercion-resistance) in terms of **process equivalences**.

Our first case study: the **FOO** protocol based on blind signatures

- ProVerif was the only tool able to check equivalence properties
- Diff-equivalence checked by ProVerif is too fine-grained
- Needed to do hand proofs

Definitions of privacy and stronger variants (receipt-freeness and coercion-resistance) in terms of **process equivalences**.

Our first case study: the FOO protocol based on blind signatures

- ProVerif was the only tool able to check equivalence properties
- Diff-equivalence checked by ProVerif is too fine-grained
- ► Needed to do hand proofs

→ Motivation for an alternate tool.

Definitions of privacy and stronger variants (receipt-freeness and coercion-resistance) in terms of **process equivalences**.

Our first case study: the FOO protocol based on blind signatures

- ▶ ProVerif was the only tool able to check equivalence properties
- Diff-equivalence checked by ProVerif is too fine-grained
- ► Needed to do hand proofs

→ Motivation for an alternate tool.

see Ben Smyth's talk in next session

AKiSs: our goals and approach

Decision procedure for trace equivalence:

- many equational theories,
- practical implementation

Protocols modelled as **first order Horn clauses** (**bounded number of sessions**, i.e., no replication)

Resolution based procedure for trace equivalence for convergent equational theories (that have the finite variant property)

Chadha et al.: Automated Verification of Equivalence Properties of Cryptographic Protocols. ESOP'12, TOCL'16

AKiSs: overview

$$R = \{ dec(enc(x, y), y) \rightarrow x \}$$

$$T = in(c, x).if dec(x, k) = a then out(c, s)$$

$$\begin{array}{rcl} & \mathsf{r}_{\mathsf{in}(c,x)} & \Leftarrow & \mathsf{k}(X,x) \\ & \mathsf{r}_{\mathsf{in}(c,x),\mathsf{test}} & \Leftarrow & \mathsf{k}(X,x), \mathsf{dec}(x,k) =_{\mathsf{R}} \mathsf{a} \\ & \mathsf{r}_{\mathsf{in}(c,x),\mathsf{test},\mathsf{out}(c)} & \Leftarrow & \mathsf{k}(X,x), \mathsf{dec}(x,k) =_{\mathsf{R}} \mathsf{a} \end{array}$$

$$k_{in(c,x),test,out(c)}(w_1,s) \leftarrow k(X,x), dec(x,k) =_{R} a$$

$$R = \{ dec(enc(x, y), y) \rightarrow x \}$$

$$T = in(c, x).if dec(x, k) = a then out(c, s)$$

$$\begin{array}{rcl} r_{\mathsf{in}(c,x)} & \Leftarrow & \mathsf{k}(X,x) \\ r_{\mathsf{in}(c,x),\mathsf{test}} & \Leftarrow & \mathsf{k}(X,x), \mathsf{dec}(x,k) =_{\mathsf{R}} a \\ r_{\mathsf{in}(c,x),\mathsf{test},\mathsf{out}(c)} & \Leftarrow & \mathsf{k}(X,x), \mathsf{dec}(x,k) =_{\mathsf{R}} a \end{array}$$
$$\mathsf{k}_{\mathsf{in}(c,x),\mathsf{test},\mathsf{out}(c)}(w_1,s) & \Leftarrow & \mathsf{k}(X,x), \mathsf{dec}(x,k) =_{\mathsf{R}} a \end{array}$$

Get rid of equalities by equational unification.

$$mgu_R(dec(x, k) =_R a) : x \mapsto enc(a, k)$$

$$R = \{ dec(enc(x, y), y) \rightarrow x \}$$

$$T = in(c, x).if dec(x, k) = a then out(c, s)$$

$$\begin{array}{rcl} \mathsf{r}_{\mathsf{in}(c,x)} & \Leftarrow & \mathsf{k}(X,x) \\ \mathsf{r}_{\mathsf{in}(c,\mathsf{enc}(a,k)),\mathsf{test}} & \Leftarrow & \mathsf{k}(X,\mathsf{enc}(a,k)) \\ \mathsf{r}_{\mathsf{in}(c,\mathsf{enc}(a,k)),\mathsf{test},\mathsf{out}(c)} & \Leftarrow & \mathsf{k}(X,\mathsf{enc}(a,k)) \end{array}$$

$$k_{in(c,enc(a,k)),test,out(c)}(w_1,s) \Leftarrow k(X,enc(a,k))$$

Get rid of equalities by **equational unification**.

$$mgu_R(dec(x, k) =_R a) : x \mapsto enc(a, k)$$

$$R = \{ dec(enc(x, y), y) \rightarrow x \}$$

$$T = in(c, x).if dec(x, k) = a then out(c, s)$$

$$k(enc(X, Y), enc(x, y)) \Leftarrow k(X, x), k(Y, y)$$

 $k(dec(X, Y), dec(x, y)) \Leftarrow k(X, x), k(Y, y)$

$$R = \{ dec(enc(x, y), y) \rightarrow x \}$$

$$T = in(c, x).if dec(x, k) = a then out(c, s)$$

$$k(enc(X, Y), enc(x, y)) \Leftarrow k(X, x), k(Y, y)$$

 $k(dec(X, Y), dec(x, y)) \Leftarrow k(X, x), k(Y, y)$

$$R = \{ dec(enc(x, y), y) \rightarrow x \}$$

$$T = in(c, x).if dec(x, k) = a then out(c, s)$$

$$\begin{array}{lll} \mathsf{k}(\mathsf{enc}(X,Y),\mathsf{enc}(x,y)) & \Leftarrow & \mathsf{k}(X,x),\mathsf{k}(Y,y) \\ \mathsf{k}(\mathsf{dec}(X,Y),\mathsf{dec}(x,y)) & \Leftarrow & \mathsf{k}(X,x),\mathsf{k}(Y,y) \\ & & \mathsf{k}(\mathsf{dec}(X,Y),z) & \Leftarrow & \mathsf{k}(X,\mathsf{enc}(z,y)),\mathsf{k}(Y,y) \end{array}$$

Saturating clauses

A clause is solved if it is of the form

$$H \Leftarrow \mathsf{k}_{w_1}(X_1, x_1), \dots, \mathsf{k}_{w_n}(X_n, x_n)$$

Resolution

$$H \Leftarrow \mathsf{k}_{\mathsf{uv}}(X,t), B_1, \dots, B_n \in K, \quad \mathsf{k}_{\mathsf{w}}(R,t') \Leftarrow B_{n+1}, \dots, B_m \in K_{\mathsf{solved}}$$

$$t \text{ not a var} \quad \sigma = \mathsf{mgu}(\mathsf{k}_{\mathsf{u}}(X,t),\mathsf{k}_{\mathsf{w}}(R,t'))$$

$$K := K \cup \left((H \Leftarrow B_1, \dots, B_m) \sigma \right)$$

Identity

$$\begin{aligned} \mathsf{k}_{u}(R, \boldsymbol{t}) & \Leftarrow B_{1}, \dots, B_{n} \in K_{\mathsf{solved}} \quad \mathsf{k}_{u'v'}(R', \boldsymbol{t}') \Leftarrow B_{n+1}, \dots, B_{m} \in K_{\mathsf{solved}} \\ \sigma &= \mathsf{mgu}(\mathsf{k}_{u}(\underline{\ \ }, \boldsymbol{t}), \mathsf{k}_{u'}(\underline{\ \ \ }, \boldsymbol{t}')) \end{aligned}$$

$$K = K \cup \left((\mathsf{i}_{u'v'}(R, R') \Leftarrow B_{1}, \dots, B_{m}) \sigma \right)$$

Iterated until reaching fixpoint.

Properties of saturated set of clauses

A the end of the saturation we have a **finite set of solved clauses** that represents:

- all reachable traces of the protocol
- all deducible messages by the adversary
- all identities among adversary recipes

Trace equivalence:
$$P \sqsubseteq_t Q$$

if $(P,\emptyset) \stackrel{\operatorname{tr}}{\Rightarrow} (P',\varphi)$ then $\exists Q',\varphi'. (Q,\emptyset) \stackrel{\operatorname{tr}}{\Rightarrow} (Q',\varphi') \land \varphi \sim_s \varphi'$

$$P \approx Q \text{ iff } P \sqsubseteq Q \land Q \sqsubseteq P$$

Fine grained trace equivalence: $P \sqsubseteq_{ft} Q$

 \forall interleaving T of P. \exists interleaving T' of Q. $T \approx_t T'$

Trace equivalence: $P \sqsubseteq_t Q$

 $\mathsf{if}\; (P,\emptyset) \overset{\mathsf{tr}}{\Rightarrow} (P',\varphi) \; \mathsf{then} \; \exists \, Q',\varphi'. \; (Q,\emptyset) \overset{\mathsf{tr}}{\Rightarrow} (Q',\varphi') \, \wedge \, \varphi \sim_{\mathsf{s}} \varphi'$

$$P \approx Q \text{ iff } P \sqsubseteq Q \land Q \sqsubseteq P$$

Fine grained trace equivalence: $P \sqsubseteq_{ft} Q$

 \forall interleaving T of P. \exists interleaving T' of Q. $T \approx_t T'$

Trace equivalence: $P \sqsubseteq_t Q$

 $\mathsf{if}\; (P,\emptyset) \overset{\mathsf{tr}}{\Rightarrow} (P',\varphi) \; \mathsf{then} \; \exists \, Q',\varphi'. \; (Q,\emptyset) \overset{\mathsf{tr}}{\Rightarrow} (Q',\varphi') \, \wedge \, \varphi \sim_{\mathsf{s}} \varphi'$

$$P \approx Q \text{ iff } P \sqsubseteq Q \land Q \sqsubseteq P$$

Fine grained trace equivalence: $P \sqsubseteq_{ft} Q$

 \forall interleaving T of P. \exists interleaving T' of Q. $T \approx_t T'$

Trace equivalence:
$$P \sqsubseteq_t Q$$

 $\text{if } (P,\emptyset) \overset{\operatorname{tr}}{\Rightarrow} (P',\varphi) \text{ then } \exists Q',\varphi'. \ (Q,\emptyset) \overset{\operatorname{tr}}{\Rightarrow} (Q',\varphi') \land \varphi \sim_{\mathfrak{s}} \varphi'$

Coarse trace equivalence: $P \sqsubseteq_{ct} Q$

 $\mathsf{if}\,(P,\emptyset) \overset{\mathsf{tr}}{\Rightarrow} (P',\varphi) \land (r=s)\varphi \;\mathsf{then}\; \exists\, Q',\varphi'.\, (Q,\emptyset) \overset{\mathsf{tr}}{\Rightarrow} (Q',\varphi') \land (r=s)\varphi'$

$$P \approx Q \text{ iff } P \sqsubseteq Q \land Q \sqsubseteq P$$

Fine grained trace equivalence: $P \sqsubseteq_{ft} Q$

 \forall interleaving T of P. \exists interleaving T' of Q. $T \approx_t T'$

Trace equivalence: $P \sqsubseteq_t Q$

 $\mathsf{if}\; (P,\emptyset) \overset{\mathsf{tr}}{\Rightarrow} (P',\varphi) \; \mathsf{then} \; \exists Q',\varphi'. \; (Q,\emptyset) \overset{\mathsf{tr}}{\Rightarrow} (Q',\varphi') \; \land \; \varphi \sim_{\mathsf{s}} \varphi'$

Coarse trace equivalence: $P \sqsubseteq_{ct} Q$

 $\mathsf{if}\,(P,\emptyset) \overset{\mathsf{tr}}{\Rightarrow} (P',\varphi) \wedge (r=\mathsf{s})\varphi \;\mathsf{then}\; \exists Q',\varphi'.\, (Q,\emptyset) \overset{\mathsf{tr}}{\Rightarrow} (Q',\varphi') \wedge (r=\mathsf{s})\varphi'$

$$P \approx Q \text{ iff } P \sqsubseteq Q \land Q \sqsubseteq P$$

Fine grained trace equivalence: $P \sqsubseteq_{ft} Q$

 \forall interleaving T of P. \exists interleaving T' of Q. $T \approx_t T'$

Trace equivalence:
$$P \sqsubseteq_t Q$$

if $(P,\emptyset) \stackrel{\operatorname{tr}}{\Rightarrow} (P',\varphi)$ then $\exists Q',\varphi'. (Q,\emptyset) \stackrel{\operatorname{tr}}{\Rightarrow} (Q',\varphi') \land \varphi \sim_{\operatorname{s}} \varphi'$

Coarse trace equivalence: $P \sqsubseteq_{ct} Q$

 $\mathsf{if}\ (P,\emptyset) \overset{\mathsf{tr}}{\Rightarrow} (P',\varphi) \land (r=s)\varphi \ \mathsf{then}\ \exists Q',\varphi'.\ (Q,\emptyset) \overset{\mathsf{tr}}{\Rightarrow} (Q',\varphi') \land (r=s)\varphi'$

$$P \approx Q \text{ iff } P \sqsubseteq Q \land Q \sqsubseteq P$$

P is determinate if whenever $(P,\emptyset) \stackrel{\operatorname{tr}}{\Rightarrow} (T,\varphi)$ and $(P,\emptyset) \stackrel{\operatorname{tr}}{\Rightarrow} (T',\varphi')$ then $\varphi \sim_s \varphi'$.

AKiSs: checking equivalences

AKiSs can be used to

- under-approximate trace equivalence : prove \approx_{ft}
- **ver-approximate** trace equivalence : prove $\not\approx_{ct}$
- prove trace equivalence for determinate processes

Correctness:

any convergent rewrite system that has the finite variant property no else branches

Termination:

guaranteed for any subterm convergent rewrite system $\ell \to r$: r is either a subterm of ℓ or ground

Terminates in practice on other examples as well

First automated proof of FOO e-voting protocol

where pk_E is the election public key and MIX a verifiable mixnet.

Privacy: Helios $(v_1, v_2) \stackrel{?}{\approx}_t$ Helios (v_2, v_1)

where pk_E is the election public key and MIX a verifiable mixnet.

Privacy: Helios $(v_1, v_2) \stackrel{?}{\approx_t}$ Helios $(v_2, v_1) \rightsquigarrow$ replay attack!

where pk_E is the election public key and MIX a verifiable mixnet.

Privacy: Helios
$$(v_1, v_2) \stackrel{?}{\approx_t}$$
 Helios $(v_2, v_1) \rightsquigarrow$ replay attack!

Fix: either use weeding, or zkp that voter knows encryption randomness

Everlasting privacy

Does verifiability decrease vote privacy?

Publishing encrypted votes on the bulletin board may be a threat for vote privacy.

- Future technology and scientific advances may break encryptions
- How long must a vote remain private? 1 year? 10 years? 100 years? 10¹⁰ years?
- ▶ Impossible to predict the necessary key length with certainty: typical recommendations for less than 10 years (cf www.keylength.com)

Everlasting privacy

Does verifiability decrease vote privacy?

Publishing encrypted votes on the bulletin board may be a threat for vote privacy.

- Future technology and scientific advances may break encryptions
- How long must a vote remain private? 1 year? 10 years? 100 years? 10¹⁰ years?
- ▶ Impossible to predict the necessary key length with certainty: typical recommendations for less than 10 years (cf www.keylength.com)
- everlasting privacy: guarantee privacy even if crypto is broken

Modelling everlasting privacy

- Information available in the future: everlasting channels

```
Example: break(aenc(pk(x), y, z)) \rightarrow z
```

- Check in two phases:
 - 1. check trace equivalence with E
 - 2. check static equivalence with E^+ on future information
- → implemented in AKiSs and ProVerif

Modelling everlasting privacy

- Information available in the future: everlasting channels

```
Example: break(aenc(pk(x), y, z)) \rightarrow z
```

- Check in two phases:
 - 1. check trace equivalence with E
 - 2. check static equivalence with E^+ on future information
- → implemented in AKiSs and ProVerif

Achieving everlasting privacy:

- Do not publish encryption on the BB, but only a perfectly hiding commitment
- ► Replace identities by anonymous credentials → Belenios

How to model unlinkability

Unlinkability [ISO/IEC 15408]:

Ensuring that a user may make multiple uses of a service or resource without others being able to link these uses together.

Applications: e-Passport, mobile phones, RFID tags, ...

How to model unlinkability

Unlinkability [ISO/IEC 15408]:

Ensuring that a user may make multiple uses of a service or resource without others being able to link these uses together.

Applications: e-Passport, mobile phones, RFID tags, . . .

Can be modelled as an equivalence property:

2 sessions of the same device \approx 2 sessions of different devices

Arapinis et al. Analysing Unlinkability and Anonymity Using the Applied Pi Calculus. ${\sf CSF'}10$

Brusò et al. Formal Verification of Privacy for RFID Systems. CSF'10

Authentication protocol of a RFID tag (KCL)

Is unlinkability satisfied?

$$tag(id, k) \mid tag(id, k) \stackrel{?}{\approx} tag(id, k) \mid tag(id', k')$$

Linkability attack

Which tool to choose?

Which tool to choose?

► None provides **support for** ⊕

Which tool to choose?

- ► None provides **support for** ⊕
- Abstracting away from algebraic properties: we miss the linkability attack

Which tool to choose?

- ► None provides **support for** ⊕
- Abstracting away from algebraic properties: we miss the linkability attack

Motivated an **extension of AKiSs with** ⊕:

joint work with Baelde, Delaune and Gazeau

- perform Horn clause resolution modulo AC
- new strategy: forbid some resolutions to avoid non-termination
 - → major changes in the completeness proof
- successfully tested among others on 5 RFID protocols

Overview of tools

Unbounded number of sessions (no termination guarantees)

	ProVerif	Tamarin	Maude NPA
equivalence	diff (+ extensions)	diff	diff
protocol model	applied pi	MSR (state, else,)	strands (no else)
eq. theories	finite variant (?)	subterm conv. + DH	finite variant + algebraic prop.

Overview of tools

Unbounded number of sessions (no termination guarantees)

	ProVerif	Tamarin	Maude NPA
equivalence	diff (+ extensions)	diff	diff
protocol model	applied pi	MSR (state, else,)	strands (no else)
eq. theories	finite variant (?)	subterm conv. + DH	finite variant + algebraic prop.

Bounded number of sessions

	SPEC	APTE	AKiSs
oguivalanca	symb.	trace	\sim trace
equivalence	bisimulations	equiv	equiv
protocol	spi	annlied ni	applied pi
model	(no else)	applied pi	(no else)
eq. theories	fixed	fixed	finite variant
			+ xor

Overview of tools

Unbounded number of sessions (no termination guarantees)

	ProVerif	Tamarin	Maude NPA
equivalence	diff (+ extensions)	diff	diff
protocol model	applied pi	MSR (state, else,)	strands (no else)
eq. theories	finite variant (?)	subterm conv. + DH	finite variant + algebraic prop.

Bounded number of sessions

	SPEC	APTE	AKiSs
oguivalanca	symb.	trace	\sim trace
equivalence	bisimulations	equiv	equiv
protocol	spi	ammliad mi	applied pi
model	(no else)	applied pi	(no else)
eq. theories	fixed	fixed	finite variant
			+ xor

No swiss knife for equivalence properties

Theory and practice of equivalence properties

Extensions of AKiSs

- else branches, needed e.g. for analysing unlinkability for the e-Passport
- ▶ more algebraic properties, e.g., DH exponentiation à la tamarin

Theory and practice of equivalence properties

Extensions of AKiSs

- else branches, needed e.g. for analysing unlinkability for the e-Passport
- more algebraic properties, e.g., DH exponentiation à la tamarin

Merge APTE and AKISS

joint work with Cheval

- decide trace equivalence
- general processes (else branches, not necessarily determinate)
- many equational theories

Theory and practice of equivalence properties (2)

Decidability and complexity joint work with Cheval and Rakotonirina

e.g. for subterm convergent equational theories, obs. equivalence is coNP complete for determinate processes, but coNEXP hard otherwise

→ interesting insights on how to make tools efficient

see Itsaka's 5 minute talk

Automated Security Proofs of Cryptographic Protocols

- Theory and practice for equivalence properties
- ▶ Models for and analysis of secure elements (TPM, SGX, ...)
- Multi-factor authentication
- E-voting on untrusted clients

Join us: open PhD and post-doc positions