
1/30

Can Charlie distinguish Alice and Bob?
Automated verification of equivalence properties

Steve Kremer

joint work with:
Myrto Arapinis, David Baelde, Rohit Chadha, Vincent Cheval, Ştefan
Ciobăcâ, Véronique Cortier, Stéphanie Delaune, Ivan Gazeau, Itsaka

Rakotonirina, Mark Ryan

29th IEEE Computer Security Foundations Symposium

2/30

Cryptographic protocols everywhere!

I Distributed programs that
I use crypto primitives (encryption, digital signature ,. . .)
I to ensure security properties (confidentiality, authentication,

anonymity,. . .)

3/30

Symbolic models for protocol verification
Main ingredient of symbolic models
I messages = terms

enc

pair

s1 s2

k

I perfect cryptography (equational theories)
dec(enc(x , y), y) = x fst(pair(x , y)) = x snd(pair(x , y)) = y

I the network is the attacker
I messages can be eavesdropped
I messages can be intercepted
I messages can be injected

Dolev, Yao: On the Security of Public Key Protocols. FOCS’81

4/30

Cryptographic protocols are tricky!

Bhargavan et al.:FREAK, Logjam, SLOTH, . . .
Cremers et al., S&P’16

Arapinis et al., CCS’12

Cortier & Smyth, CSF’11
Steel et al., CSF’08, CCS’10

4/30

Cryptographic protocols are tricky!

Bhargavan et al.:FREAK, Logjam, SLOTH, . . .
Cremers et al., S&P’16

Arapinis et al., CCS’12

Cortier & Smyth, CSF’11
Steel et al., CSF’08, CCS’10

4/30

Cryptographic protocols are tricky!

Bhargavan et al.:FREAK, Logjam, SLOTH, . . .
Cremers et al., S&P’16

Arapinis et al., CCS’12

Cortier & Smyth, CSF’11
Steel et al., CSF’08, CCS’10

4/30

Cryptographic protocols are tricky!

Bhargavan et al.:FREAK, Logjam, SLOTH, . . .
Cremers et al., S&P’16

Arapinis et al., CCS’12

Cortier & Smyth, CSF’11

Steel et al., CSF’08, CCS’10

4/30

Cryptographic protocols are tricky!

Bhargavan et al.:FREAK, Logjam, SLOTH, . . .
Cremers et al., S&P’16

Arapinis et al., CCS’12

Cortier & Smyth, CSF’11
Steel et al., CSF’08, CCS’10

5/30

Modelling the protocol

Protocols modelled in a process calculus, e.g. the applied pi
calculus

P ::= 0
| in(c, x).P input
| out(c, t).P output
| if t1 = t2 then P else Q conditional
| P || Q parallel
| !P replication
| new n.P restriction

Specificities:
I messages are terms (not just names as in the pi calculus)
I equality in conditionals interpreted modulo an equational

theory

5/30

Modelling the protocol

Protocols modelled in a process calculus, e.g. the applied pi
calculus

P ::= 0
| in(c, x).P input
| out(c, t).P output
| if t1 = t2 then P else Q conditional
| P || Q parallel
| !P replication
| new n.P restriction

Specificities:
I messages are terms (not just names as in the pi calculus)
I equality in conditionals interpreted modulo an equational

theory

6/30

Reasoning about attacker knowledge
Terms output by a process are organised in a frame:

φ = new n̄. {t1/x1 , . . . ,
tn /xn}

6/30

Reasoning about attacker knowledge
Terms output by a process are organised in a frame:

φ = new n̄. {t1/x1 , . . . ,
tn /xn}

Deducibility:
φ `R t if R is a public term and Rφ =E t

Example

ϕ = new n1, n2, k1, k2. {enc(n1,k1)/x1 ,
enc(n2,k2) /x2 ,

k1 /x3}

ϕ `dec(x1,x3) n1 ϕ 6` n2 ϕ `1 1

6/30

Reasoning about attacker knowledge
Terms output by a process are organised in a frame:

φ = new n̄. {t1/x1 , . . . ,
tn /xn}

Static equivalence:
φ1 ∼s φ2 if ∀ public terms R,R ′.

Rφ1 = R ′φ1 ⇔ Rφ2 = R ′φ2

Examples

new k. {enc(0,k)/x1} ∼s new k. {enc(1,k)/x1}

6/30

Reasoning about attacker knowledge
Terms output by a process are organised in a frame:

φ = new n̄. {t1/x1 , . . . ,
tn /xn}

Static equivalence:
φ1 ∼s φ2 if ∀ public terms R,R ′.

Rφ1 = R ′φ1 ⇔ Rφ2 = R ′φ2

Examples

new n1, n2. {n1/x1 ,
n2 /x2} 6∼s new n1, n2. {n1/x1 ,

n1 /x2}

Check (x1
?= x2)

6/30

Reasoning about attacker knowledge
Terms output by a process are organised in a frame:

φ = new n̄. {t1/x1 , . . . ,
tn /xn}

Static equivalence:
φ1 ∼s φ2 if ∀ public terms R,R ′.

Rφ1 = R ′φ1 ⇔ Rφ2 = R ′φ2

Examples

{enc(n,k)/x1 ,
k /x2} 6∼s {enc(0,k)/x1 ,

k /x2}

Check (dec(x1, x2) ?= 0)

7/30

From authentication to privacy

Many good tools:
AVISPA, Casper, Maude-NPA, ProVerif, Scyther, Tamarin, . . .

Good at verifying trace properties (predicates on system
behavior), e.g.,
I (weak) secrecy of a key
I authentication (correspondence properties)

If B ended a session with A (and parameters p) then A
must have started a session with B (and parameters p′).

Not all properties can be expressed on a trace.

 recent interest in indistinguishability properties.

7/30

From authentication to privacy

Many good tools:
AVISPA, Casper, Maude-NPA, ProVerif, Scyther, Tamarin, . . .

Good at verifying trace properties (predicates on system
behavior), e.g.,
I (weak) secrecy of a key
I authentication (correspondence properties)

If B ended a session with A (and parameters p) then A
must have started a session with B (and parameters p′).

Not all properties can be expressed on a trace.

 recent interest in indistinguishability properties.

8/30

Indistinguishability as a process equivalence

Naturally modelled using equivalences from process calculi

Testing equivalence (P ≈ Q)
for all processes A, we have that:

A | P ⇓ c if, and only if, A | Q ⇓ c

−→ P ⇓ c when P can send a message on the channel c.

9/30

A tour to the (equivalence) zoo

testing equiv. obs. equiv.

trace equiv. labelled bisim. symbolic bisim.

diff equiv.

Abadi, Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus. CCS’97,
Inf.& Comp.’99
Abadi, Fournet. Mobile values, new names, and secure communication. POPL’01

9/30

A tour to the (equivalence) zoo

testing equiv. obs. equiv.

trace equiv.

labelled bisim.

symbolic bisim.

diff equiv.

Abadi, Fournet. Mobile values, new names, and secure communication. POPL’01

9/30

A tour to the (equivalence) zoo

testing equiv. obs. equiv.

trace equiv.

labelled bisim.

symbolic bisim.

diff equiv.

Blanchet et al.: Automated Verification of Selected Equivalences for Security
Protocols. LICS’05

9/30

A tour to the (equivalence) zoo

testing equiv. obs. equiv.

trace equiv.

labelled bisim.

symbolic bisim.

diff equiv.

Diff equivalence too fine grained for several properties.

Blanchet et al.: Automated Verification of Selected Equivalences for Security
Protocols. LICS’05

9/30

A tour to the (equivalence) zoo

testing equiv. obs. equiv.

trace equiv.

labelled bisim. symbolic bisim.

diff equiv.

Delaune et al. Symbolic bisimulation for the applied pi calculus. JCS’10

9/30

A tour to the (equivalence) zoo

testing equiv. obs. equiv.

trace equiv.

labelled bisim. symbolic bisim.

diff equiv.

Liu, Lin. A complete symbolic bisimulation for full applied pi calculus.TCS’12

9/30

A tour to the (equivalence) zoo

testing equiv. obs. equiv.

trace equiv. labelled bisim. symbolic bisim.

diff equiv.

Cheval et al.: Deciding equivalence-based properties using constraint solving. TCS’13

9/30

A tour to the (equivalence) zoo

testing equiv. obs. equiv.

trace equiv. labelled bisim. symbolic bisim.

diff equiv.

For a bounded number of sessions (no replication).

Cheval et al.: Deciding equivalence-based properties using constraint solving. TCS’13

9/30

A tour to the (equivalence) zoo

testing equiv. obs. equiv.

trace equiv. labelled bisim. symbolic bisim.

diff equiv.

For a class of determinate processes.

Cheval et al.: Deciding equivalence-based properties using constraint solving. TCS’13

10/30

A few security properties

“Strong” secrecy (non-interference)

in(c, x1).in(c, x2).P{x1/s} ≈ in(c, x1).in(c, x2).P{x2/s}

Real-or-random secrecy

P.out(c, s) ≈ P.new r .out(c, r)

Simulation based security (I is an ideal functionality)

∃S. P ≈ S[I]

Anonymity
P{a/id} ≈ P{b/id}

Vote privacy

Unlinkability

10/30

A few security properties

“Strong” secrecy (non-interference)

in(c, x1).in(c, x2).P{x1/s} ≈ in(c, x1).in(c, x2).P{x2/s}

Real-or-random secrecy

P.out(c, s) ≈ P.new r .out(c, r)

Simulation based security (I is an ideal functionality)

∃S. P ≈ S[I]

Anonymity
P{a/id} ≈ P{b/id}

Vote privacy

Unlinkability

10/30

A few security properties

“Strong” secrecy (non-interference)

in(c, x1).in(c, x2).P{x1/s} ≈ in(c, x1).in(c, x2).P{x2/s}

Real-or-random secrecy

P.out(c, s) ≈ P.new r .out(c, r)

Simulation based security (I is an ideal functionality)

∃S. P ≈ S[I]

Anonymity
P{a/id} ≈ P{b/id}

Vote privacy

Unlinkability

10/30

A few security properties

“Strong” secrecy (non-interference)

in(c, x1).in(c, x2).P{x1/s} ≈ in(c, x1).in(c, x2).P{x2/s}

Real-or-random secrecy

P.out(c, s) ≈ P.new r .out(c, r)

Simulation based security (I is an ideal functionality)

∃S. P ≈ S[I]

Anonymity
P{a/id} ≈ P{b/id}

Vote privacy

Unlinkability

10/30

A few security properties

“Strong” secrecy (non-interference)

in(c, x1).in(c, x2).P{x1/s} ≈ in(c, x1).in(c, x2).P{x2/s}

Real-or-random secrecy

P.out(c, s) ≈ P.new r .out(c, r)

Simulation based security (I is an ideal functionality)

∃S. P ≈ S[I]

Anonymity
P{a/id} ≈ P{b/id}

Vote privacy

Unlinkability

11/30

How to model vote privacy?
How can we model

“the attacker does not learn my vote (0 or 1)”?

I The attacker cannot learn the value of my vote

 but the attacker knows values 0 and 1

I The attacker cannot distinguish A votes and B votes:
VA(v) ≈ VB(v)

 but identities are revealed

I The attacker cannot distinguish A votes 0 and A votes 1:
VA(0) ≈ VA(1)

 but election outcome is revealed

I The attacker cannot distinguish the situation where two
honest voters swap votes:

VA(0) || VB(1) ≈ VA(1) || VB(0)

Kremer, Ryan: Analysis of an E-Voting Protocol in the Applied Pi Calculus. ESOP’05

11/30

How to model vote privacy?
How can we model

“the attacker does not learn my vote (0 or 1)”?

I The attacker cannot learn the value of my vote

 but the attacker knows values 0 and 1
I The attacker cannot distinguish A votes and B votes:

VA(v) ≈ VB(v)

 but identities are revealed

I The attacker cannot distinguish A votes 0 and A votes 1:
VA(0) ≈ VA(1)

 but election outcome is revealed

I The attacker cannot distinguish the situation where two
honest voters swap votes:

VA(0) || VB(1) ≈ VA(1) || VB(0)

Kremer, Ryan: Analysis of an E-Voting Protocol in the Applied Pi Calculus. ESOP’05

11/30

How to model vote privacy?
How can we model

“the attacker does not learn my vote (0 or 1)”?

I The attacker cannot learn the value of my vote
 but the attacker knows values 0 and 1

I The attacker cannot distinguish A votes and B votes:
VA(v) ≈ VB(v)

 but identities are revealed

I The attacker cannot distinguish A votes 0 and A votes 1:
VA(0) ≈ VA(1)

 but election outcome is revealed

I The attacker cannot distinguish the situation where two
honest voters swap votes:

VA(0) || VB(1) ≈ VA(1) || VB(0)

Kremer, Ryan: Analysis of an E-Voting Protocol in the Applied Pi Calculus. ESOP’05

11/30

How to model vote privacy?
How can we model

“the attacker does not learn my vote (0 or 1)”?

I The attacker cannot learn the value of my vote

 but the attacker knows values 0 and 1

I The attacker cannot distinguish A votes and B votes:
VA(v) ≈ VB(v)

 but identities are revealed
I The attacker cannot distinguish A votes 0 and A votes 1:

VA(0) ≈ VA(1)

 but election outcome is revealed

I The attacker cannot distinguish the situation where two
honest voters swap votes:

VA(0) || VB(1) ≈ VA(1) || VB(0)

Kremer, Ryan: Analysis of an E-Voting Protocol in the Applied Pi Calculus. ESOP’05

11/30

How to model vote privacy?
How can we model

“the attacker does not learn my vote (0 or 1)”?

I The attacker cannot learn the value of my vote

 but the attacker knows values 0 and 1

I The attacker cannot distinguish A votes and B votes:
VA(v) ≈ VB(v)
 but identities are revealed

I The attacker cannot distinguish A votes 0 and A votes 1:
VA(0) ≈ VA(1)

 but election outcome is revealed

I The attacker cannot distinguish the situation where two
honest voters swap votes:

VA(0) || VB(1) ≈ VA(1) || VB(0)

Kremer, Ryan: Analysis of an E-Voting Protocol in the Applied Pi Calculus. ESOP’05

11/30

How to model vote privacy?
How can we model

“the attacker does not learn my vote (0 or 1)”?

I The attacker cannot learn the value of my vote

 but the attacker knows values 0 and 1

I The attacker cannot distinguish A votes and B votes:
VA(v) ≈ VB(v)

 but identities are revealed

I The attacker cannot distinguish A votes 0 and A votes 1:
VA(0) ≈ VA(1)

 but election outcome is revealed
I The attacker cannot distinguish the situation where two

honest voters swap votes:

VA(0) || VB(1) ≈ VA(1) || VB(0)

Kremer, Ryan: Analysis of an E-Voting Protocol in the Applied Pi Calculus. ESOP’05

11/30

How to model vote privacy?
How can we model

“the attacker does not learn my vote (0 or 1)”?

I The attacker cannot learn the value of my vote

 but the attacker knows values 0 and 1

I The attacker cannot distinguish A votes and B votes:
VA(v) ≈ VB(v)

 but identities are revealed

I The attacker cannot distinguish A votes 0 and A votes 1:
VA(0) ≈ VA(1)
 but election outcome is revealed

I The attacker cannot distinguish the situation where two
honest voters swap votes:

VA(0) || VB(1) ≈ VA(1) || VB(0)

Kremer, Ryan: Analysis of an E-Voting Protocol in the Applied Pi Calculus. ESOP’05

11/30

How to model vote privacy?
How can we model

“the attacker does not learn my vote (0 or 1)”?

I The attacker cannot learn the value of my vote

 but the attacker knows values 0 and 1

I The attacker cannot distinguish A votes and B votes:
VA(v) ≈ VB(v)

 but identities are revealed

I The attacker cannot distinguish A votes 0 and A votes 1:
VA(0) ≈ VA(1)

 but election outcome is revealed

I The attacker cannot distinguish the situation where two
honest voters swap votes:

VA(0) || VB(1) ≈ VA(1) || VB(0)

Kremer, Ryan: Analysis of an E-Voting Protocol in the Applied Pi Calculus. ESOP’05

12/30

How to verify vote privacy?
Definitions of privacy and stronger variants (receipt-freeness and
coercion-resistance) in terms of process equivalences.

Our first case study: the FOO protocol based on blind signatures

I ProVerif was the only tool able to check equivalence properties
I Diff-equivalence checked by ProVerif is too fine-grained
I Needed to do hand proofs

 Motivation for an alternate tool.

see Ben Smyth’s talk in next session

Kremer, Ryan: Analysis of an E-Voting Protocol in the Applied Pi Calculus. ESOP’05
Delaune et al.: Coercion-Resistance and Receipt-Freeness in E-Voting. CSFW’06

12/30

How to verify vote privacy?
Definitions of privacy and stronger variants (receipt-freeness and
coercion-resistance) in terms of process equivalences.

Our first case study: the FOO protocol based on blind signatures

I ProVerif was the only tool able to check equivalence properties
I Diff-equivalence checked by ProVerif is too fine-grained
I Needed to do hand proofs

 Motivation for an alternate tool.

see Ben Smyth’s talk in next session

Kremer, Ryan: Analysis of an E-Voting Protocol in the Applied Pi Calculus. ESOP’05
Delaune et al.: Coercion-Resistance and Receipt-Freeness in E-Voting. CSFW’06

12/30

How to verify vote privacy?
Definitions of privacy and stronger variants (receipt-freeness and
coercion-resistance) in terms of process equivalences.

Our first case study: the FOO protocol based on blind signatures

I ProVerif was the only tool able to check equivalence properties
I Diff-equivalence checked by ProVerif is too fine-grained
I Needed to do hand proofs

 Motivation for an alternate tool.

see Ben Smyth’s talk in next session

Kremer, Ryan: Analysis of an E-Voting Protocol in the Applied Pi Calculus. ESOP’05
Delaune et al.: Coercion-Resistance and Receipt-Freeness in E-Voting. CSFW’06

12/30

How to verify vote privacy?
Definitions of privacy and stronger variants (receipt-freeness and
coercion-resistance) in terms of process equivalences.

Our first case study: the FOO protocol based on blind signatures

I ProVerif was the only tool able to check equivalence properties
I Diff-equivalence checked by ProVerif is too fine-grained
I Needed to do hand proofs

 Motivation for an alternate tool.

see Ben Smyth’s talk in next session

Kremer, Ryan: Analysis of an E-Voting Protocol in the Applied Pi Calculus. ESOP’05
Delaune et al.: Coercion-Resistance and Receipt-Freeness in E-Voting. CSFW’06

13/30

AKiSs: our goals and approach
Decision procedure for trace equivalence:
I many equational theories,
I practical implementation

Protocols modelled as first order Horn clauses (bounded
number of sessions, i.e., no replication)

Resolution based procedure for trace equivalence for
convergent equational theories (that have the finite variant
property)

Chadha et al.: Automated Verification of Equivalence Properties of Cryptographic
Protocols. ESOP’12, TOCL’16

14/30

AKiSs: overview

Protocol
specification

process calculus
no replication

no else branches

Rewrite rules
Query
P ./ Q

Translation into first order Horn clauses

Saluration of Horn clauses
(Resolution based procedure)

Check P ./ Q
Yes

No + witness

15/30

Modelling protocols in Horn clauses: an example

R = {dec(enc(x , y), y)→ x}
T = in(c , x).if dec(x , k) = a then out(c , s)

rin(c,x) ⇐ k(X , x)
rin(c,x),test ⇐ k(X , x), dec(x , k) =R a

rin(c,x),test,out(c) ⇐ k(X , x), dec(x , k) =R a

kin(c,x),test,out(c)(w1, s) ⇐ k(X , x), dec(x , k) =R a

15/30

Modelling protocols in Horn clauses: an example

R = {dec(enc(x , y), y)→ x}
T = in(c , x).if dec(x , k) = a then out(c , s)

rin(c,x) ⇐ k(X , x)
rin(c,x),test ⇐ k(X , x), dec(x , k) =R a

rin(c,x),test,out(c) ⇐ k(X , x), dec(x , k) =R a

kin(c,x),test,out(c)(w1, s) ⇐ k(X , x), dec(x , k) =R a

Get rid of equalities by equational unification.

mguR(dec(x , k) =R a) : x 7→ enc(a, k)

15/30

Modelling protocols in Horn clauses: an example

R = {dec(enc(x , y), y)→ x}
T = in(c , x).if dec(x , k) = a then out(c , s)

rin(c,x) ⇐ k(X , x)
rin(c,enc(a,k)),test ⇐ k(X , enc(a, k))

rin(c,enc(a,k)),test,out(c) ⇐ k(X , enc(a, k))

kin(c,enc(a,k)),test,out(c)(w1, s) ⇐ k(X , enc(a, k))

Get rid of equalities by equational unification.

mguR(dec(x , k) =R a) : x 7→ enc(a, k)

15/30

Modelling protocols in Horn clauses: an example

R = {dec(enc(x , y), y)→ x}
T = in(c , x).if dec(x , k) = a then out(c , s)

k(enc(X ,Y), enc(x , y)) ⇐ k(X , x), k(Y , y)
k(dec(X ,Y), dec(x , y)) ⇐ k(X , x), k(Y , y)

k(dec(X ,Y), z) ⇐ k(X , enc(z , y)), k(Y , y)

15/30

Modelling protocols in Horn clauses: an example

R = {dec(enc(x , y), y)→ x}
T = in(c , x).if dec(x , k) = a then out(c , s)

k(enc(X ,Y), enc(x , y)) ⇐ k(X , x), k(Y , y)
k(dec(X ,Y), dec(x , y)) ⇐ k(X , x), k(Y , y)

k(dec(X ,Y), z) ⇐ k(X , enc(z , y)), k(Y , y)

Rewrite systems with the finite variant property:
precompute all possible normal forms
 get rid of equational reasoning

15/30

Modelling protocols in Horn clauses: an example

R = {dec(enc(x , y), y)→ x}
T = in(c , x).if dec(x , k) = a then out(c , s)

k(enc(X ,Y), enc(x , y)) ⇐ k(X , x), k(Y , y)
k(dec(X ,Y), dec(x , y)) ⇐ k(X , x), k(Y , y)

k(dec(X ,Y), z) ⇐ k(X , enc(z , y)), k(Y , y)

Rewrite systems with the finite variant property:
precompute all possible normal forms
 get rid of equational reasoning

16/30

Saturating clauses
A clause is solved if it is of the form

H ⇐ kw1(X1, x1), . . . , kwn (Xn, xn)

Resolution

H ⇐ kuv (X , t),B1, . . . ,Bn ∈ K , kw (R, t ′)⇐ Bn+1, . . . ,Bm ∈ Ksolved
t not a var σ = mgu(ku(X , t), kw (R, t ′))

K := K ∪
(

(H ⇐ B1, . . . ,Bm)σ
)

Identity

ku(R, t)⇐ B1, . . . ,Bn ∈ Ksolved ku′v′ (R ′, t ′)⇐ Bn+1, . . . ,Bm ∈ Ksolved
σ = mgu(ku(, t), ku′ (, t ′))

K = K ∪
(

(iu′v′ (R,R ′)⇐ B1, . . . ,Bm)σ
)

Iterated until reaching fixpoint.

17/30

Properties of saturated set of clauses

A the end of the saturation we have a finite set of solved clauses
that represents:
I all reachable traces of the protocol
I all deducible messages by the adversary
I all identities among adversary recipes

18/30

Trace equivalences

Trace equivalence: P vt Q
if (P, ∅) tr=⇒ (P ′, ϕ) then ∃Q′, ϕ′. (Q, ∅) tr=⇒ (Q′, ϕ′) ∧ ϕ ∼s ϕ

′

Fine grained trace equivalence: P vft Q
∀ interleaving T of P. ∃ interleaving T ′ of Q. T ≈t T ′

(
Coarse trace equivalence: P vct Q
if (P, ∅) tr=⇒ (P ′, ϕ)∧(r = s)ϕ then ∃Q′, ϕ′. (Q, ∅) tr=⇒ (Q′, ϕ′) ∧ (r = s)ϕ′

(=
det.
proc.

P is determinate if whenever (P, ∅) tr=⇒
(T , ϕ) and (P, ∅) tr=⇒ (T ′, ϕ′) then ϕ ∼s ϕ

′.

P ≈ Q iff P v Q ∧ Q v P

18/30

Trace equivalences

Trace equivalence: P vt Q
if (P, ∅) tr=⇒ (P ′, ϕ) then ∃Q′, ϕ′. (Q, ∅) tr=⇒ (Q′, ϕ′) ∧ ϕ ∼s ϕ

′

Fine grained trace equivalence: P vft Q
∀ interleaving T of P. ∃ interleaving T ′ of Q. T ≈t T ′

(
Coarse trace equivalence: P vct Q
if (P, ∅) tr=⇒ (P ′, ϕ)∧(r = s)ϕ then ∃Q′, ϕ′. (Q, ∅) tr=⇒ (Q′, ϕ′) ∧ (r = s)ϕ′

(=
det.
proc.

P is determinate if whenever (P, ∅) tr=⇒
(T , ϕ) and (P, ∅) tr=⇒ (T ′, ϕ′) then ϕ ∼s ϕ

′.

P ≈ Q iff P v Q ∧ Q v P

18/30

Trace equivalences

Trace equivalence: P vt Q
if (P, ∅) tr=⇒ (P ′, ϕ) then ∃Q′, ϕ′. (Q, ∅) tr=⇒ (Q′, ϕ′) ∧ ϕ ∼s ϕ

′

Fine grained trace equivalence: P vft Q
∀ interleaving T of P. ∃ interleaving T ′ of Q. T ≈t T ′

(

Coarse trace equivalence: P vct Q
if (P, ∅) tr=⇒ (P ′, ϕ)∧(r = s)ϕ then ∃Q′, ϕ′. (Q, ∅) tr=⇒ (Q′, ϕ′) ∧ (r = s)ϕ′

(=
det.
proc.

P is determinate if whenever (P, ∅) tr=⇒
(T , ϕ) and (P, ∅) tr=⇒ (T ′, ϕ′) then ϕ ∼s ϕ

′.

P ≈ Q iff P v Q ∧ Q v P

18/30

Trace equivalences

Trace equivalence: P vt Q
if (P, ∅) tr=⇒ (P ′, ϕ) then ∃Q′, ϕ′. (Q, ∅) tr=⇒ (Q′, ϕ′) ∧ ϕ ∼s ϕ

′

Fine grained trace equivalence: P vft Q
∀ interleaving T of P. ∃ interleaving T ′ of Q. T ≈t T ′

(
Coarse trace equivalence: P vct Q
if (P, ∅) tr=⇒ (P ′, ϕ)∧(r = s)ϕ then ∃Q′, ϕ′. (Q, ∅) tr=⇒ (Q′, ϕ′) ∧ (r = s)ϕ′

(=
det.
proc.

P is determinate if whenever (P, ∅) tr=⇒
(T , ϕ) and (P, ∅) tr=⇒ (T ′, ϕ′) then ϕ ∼s ϕ

′.

P ≈ Q iff P v Q ∧ Q v P

18/30

Trace equivalences

Trace equivalence: P vt Q
if (P, ∅) tr=⇒ (P ′, ϕ) then ∃Q′, ϕ′. (Q, ∅) tr=⇒ (Q′, ϕ′) ∧ ϕ ∼s ϕ

′

Fine grained trace equivalence: P vft Q
∀ interleaving T of P. ∃ interleaving T ′ of Q. T ≈t T ′

(
Coarse trace equivalence: P vct Q
if (P, ∅) tr=⇒ (P ′, ϕ)∧(r = s)ϕ then ∃Q′, ϕ′. (Q, ∅) tr=⇒ (Q′, ϕ′) ∧ (r = s)ϕ′

(

=
det.
proc.

P is determinate if whenever (P, ∅) tr=⇒
(T , ϕ) and (P, ∅) tr=⇒ (T ′, ϕ′) then ϕ ∼s ϕ

′.

P ≈ Q iff P v Q ∧ Q v P

18/30

Trace equivalences

Trace equivalence: P vt Q
if (P, ∅) tr=⇒ (P ′, ϕ) then ∃Q′, ϕ′. (Q, ∅) tr=⇒ (Q′, ϕ′) ∧ ϕ ∼s ϕ

′

Fine grained trace equivalence: P vft Q
∀ interleaving T of P. ∃ interleaving T ′ of Q. T ≈t T ′

(
Coarse trace equivalence: P vct Q
if (P, ∅) tr=⇒ (P ′, ϕ)∧(r = s)ϕ then ∃Q′, ϕ′. (Q, ∅) tr=⇒ (Q′, ϕ′) ∧ (r = s)ϕ′

(=
det.
proc.

P is determinate if whenever (P, ∅) tr=⇒
(T , ϕ) and (P, ∅) tr=⇒ (T ′, ϕ′) then ϕ ∼s ϕ

′.P ≈ Q iff P v Q ∧ Q v P

19/30

AKiSs: checking equivalences

AKiSs can be used to
I under-approximate trace equivalence : prove ≈ft
I over-approximate trace equivalence : prove 6≈ct
I prove trace equivalence for determinate processes

Correctness:
any convergent rewrite system that has the finite variant property
no else branches

Termination:
guaranteed for any subterm convergent rewrite system
`→ r : r is either a subterm of ` or ground

Terminates in practice on other examples as well

First automated proof of FOO e-voting protocol

20/30

The Helios e-voting protocol (MixNet version)

V1

V2
...

Vn

〈id1, aenc(pkE , r1, v1)〉

〈id2, aenc(pkE , r2, v2)〉
...

〈idn, aenc(pkE , rn, vn)〉

〈id1, aenc(pkE , r1, v1)〉

〈id2, aenc(pkE , r2, v2)〉

〈idn, aenc(pkE , r3, vn)〉

v2
vn

v1

BBauthenticated channel

MIX Tally

where pkE is the election public key and MIX a verifiable mixnet.

Privacy: Helios(v1, v2) ?≈t Helios(v2, v1) replay attack!

20/30

The Helios e-voting protocol (MixNet version)

V1
V2

...
Vn

〈id1, aenc(pkE , r1, v1)〉
〈id2, aenc(pkE , r2, v2)〉

...
〈idn, aenc(pkE , rn, vn)〉

〈id1, aenc(pkE , r1, v1)〉

〈id2, aenc(pkE , r2, v2)〉

〈idn, aenc(pkE , r3, vn)〉

v2
vn

v1

BBauthenticated channel

MIX Tally

where pkE is the election public key and MIX a verifiable mixnet.

Privacy: Helios(v1, v2) ?≈t Helios(v2, v1) replay attack!

20/30

The Helios e-voting protocol (MixNet version)

V1
V2
...

Vn

〈id1, aenc(pkE , r1, v1)〉
〈id2, aenc(pkE , r2, v2)〉

...
〈idn, aenc(pkE , rn, vn)〉

〈id1, aenc(pkE , r1, v1)〉

〈id2, aenc(pkE , r2, v2)〉

〈idn, aenc(pkE , r3, vn)〉

v2
vn

v1

BBauthenticated channel

MIX Tally

where pkE is the election public key and MIX a verifiable mixnet.

Privacy: Helios(v1, v2) ?≈t Helios(v2, v1) replay attack!

20/30

The Helios e-voting protocol (MixNet version)

V1
V2
...

Vn

〈id1, aenc(pkE , r1, v1)〉
〈id2, aenc(pkE , r2, v2)〉

...
〈idn, aenc(pkE , rn, vn)〉

〈id1, aenc(pkE , r1, v1)〉

〈id2, aenc(pkE , r2, v2)〉

〈idn, aenc(pkE , r3, vn)〉

v2
vn

v1

BBauthenticated channel MIX Tally

where pkE is the election public key and MIX a verifiable mixnet.

Privacy: Helios(v1, v2) ?≈t Helios(v2, v1) replay attack!

20/30

The Helios e-voting protocol (MixNet version)

V1
V2
...

Vn

〈id1, aenc(pkE , r1, v1)〉
〈id2, aenc(pkE , r2, v2)〉

...
〈idn, aenc(pkE , rn, vn)〉

〈id1, aenc(pkE , r1, v1)〉

〈id2, aenc(pkE , r2, v2)〉

〈idn, aenc(pkE , r3, vn)〉

v2
vn

v1

BBauthenticated channel MIX Tally

where pkE is the election public key and MIX a verifiable mixnet.

Privacy: Helios(v1, v2) ?≈t Helios(v2, v1)

 replay attack!

20/30

The Helios e-voting protocol (MixNet version)

V1
V2
...

Vn

〈id1, aenc(pkE , r1, v1)〉
〈id2, aenc(pkE , r2, v2)〉

...
〈idn, aenc(pkE , rn, vn)〉

〈id1, aenc(pkE , r1, v1)〉

〈id2, aenc(pkE , r2, v2)〉

〈idn, aenc(pkE , r3, vn)〉

v2
vn

v1

BBauthenticated channel MIX Tally

where pkE is the election public key and MIX a verifiable mixnet.

Privacy: Helios(v1, v2) ?≈t Helios(v2, v1) replay attack!

Cortier,Smyth: Attacking and Fixing Helios: An Analysis of Ballot Secrecy. CSF’11

20/30

The Helios e-voting protocol (MixNet version)

V1
V2
...

Vn

〈id1, aenc(pkE , r1, v1)〉
〈id2, aenc(pkE , r2, v2)〉

...
〈idn, aenc(pkE , rn, vn)〉

〈id1, aenc(pkE , r1, v1)〉

〈id2, aenc(pkE , r2, v2)〉

〈idn, aenc(pkE , r3, vn)〉

v2
vn

v1

BBauthenticated channel MIX Tally

where pkE is the election public key and MIX a verifiable mixnet.

Privacy: Helios(v1, v2) ?≈t Helios(v2, v1) replay attack!

Fix: either use weeding, or zkp that voter knows encryption
randomness

21/30

Everlasting privacy

Does verifiability decrease vote privacy?
Publishing encrypted votes on the bulletin board may be a threat
for vote privacy.
I Future technology and scientific advances may break

encryptions

I How long must a vote remain private?
1 year? 10 years? 100 years? 1010 years?

I Impossible to predict the necessary key length with certainty:
typical recommendations for less than 10 years

(cf www.keylength.com)

 everlasting privacy: guarantee privacy even if crypto is
broken

21/30

Everlasting privacy

Does verifiability decrease vote privacy?
Publishing encrypted votes on the bulletin board may be a threat
for vote privacy.
I Future technology and scientific advances may break

encryptions

I How long must a vote remain private?
1 year? 10 years? 100 years? 1010 years?

I Impossible to predict the necessary key length with certainty:
typical recommendations for less than 10 years

(cf www.keylength.com)

 everlasting privacy: guarantee privacy even if crypto is
broken

22/30

Modelling everlasting privacy
I Information available in the future: everlasting channels
I Define future attacker capabilities (crypto assumption broken)

 equational theory E +

Example: break(aenc(pk(x), y , z))→ z
I Check in two phases:

1. check trace equivalence with E
2. check static equivalence with E + on future information

 implemented in AKiSs and ProVerif

Achieving everlasting privacy:
I Do not publish encryption on the BB, but only a perfectly

hiding commitment
I Replace identities by anonymous credentials Belenios

Arapinis et al.: Practical Everlasting Privacy. POST’13

22/30

Modelling everlasting privacy
I Information available in the future: everlasting channels
I Define future attacker capabilities (crypto assumption broken)

 equational theory E +

Example: break(aenc(pk(x), y , z))→ z
I Check in two phases:

1. check trace equivalence with E
2. check static equivalence with E + on future information

 implemented in AKiSs and ProVerif

Achieving everlasting privacy:
I Do not publish encryption on the BB, but only a perfectly

hiding commitment
I Replace identities by anonymous credentials Belenios

Arapinis et al.: Practical Everlasting Privacy. POST’13

23/30

How to model unlinkability
Unlinkability [ISO/IEC 15408]:

Ensuring that a user may make multiple uses of a service
or resource without others being able to link these uses
together.

Applications: e-Passport, mobile phones, RFID tags, . . .

Can be modelled as an equivalence property:

2 sessions of the same device ≈ 2 sessions of different devices

Arapinis et al. Analysing Unlinkability and Anonymity Using the Applied Pi Calculus.
CSF’10
Brusò et al. Formal Verification of Privacy for RFID Systems. CSF’10

23/30

How to model unlinkability
Unlinkability [ISO/IEC 15408]:

Ensuring that a user may make multiple uses of a service
or resource without others being able to link these uses
together.

Applications: e-Passport, mobile phones, RFID tags, . . .

Can be modelled as an equivalence property:

2 sessions of the same device ≈ 2 sessions of different devices

Arapinis et al. Analysing Unlinkability and Anonymity Using the Applied Pi Calculus.
CSF’10
Brusò et al. Formal Verification of Privacy for RFID Systems. CSF’10

24/30

Authentication protocol of a RFID tag (KCL)

Reader
k, id

Tag
k, id

new r1 r1

new r2

〈id ⊕ r2, h(〈r1, k〉)⊕ r2〉

(id ⊕ r2)⊕ (h(〈r1, k〉)⊕ r2)⊕ id
?= h(〈r1, k〉)

Is unlinkability satisfied?

tag(id , k) | tag(id , k) ?≈ tag(id , k) | tag(id ′, k ′)

25/30

Linkability attack

1 Tag
k, id

Att 2 Tags
k, id

r1r1

new r2new r2

〈id⊕ r2, h(〈r1, k〉)⊕ r2〉〈id⊕ r2, h(〈r1, k〉)⊕ r2〉

k ′, id ′
r1r1

new r ′
2 new r ′

2

〈id⊕ r ′
2, h(〈r1, k〉)⊕ r ′

2〉 〈id′ ⊕ r ′
2, h(〈r1, k′〉)⊕ r ′

2〉

(id⊕ r2)⊕ (h(〈r1, k〉)⊕ r2) ?=
([id/id′]⊕ r ′

2)⊕ (h(〈r1, [k/k′]〉)⊕ r ′
2)

26/30

Automated analysis of KCL?

Which tool to choose?

I None provides support for ⊕
I Abstracting away from algebraic properties: we miss the

linkability attack

Motivated an extension of AKiSs with ⊕:
joint work with Baelde, Delaune and Gazeau

I perform Horn clause resolution modulo AC
I new strategy: forbid some resolutions to avoid

non-termination
 major changes in the completeness proof

I successfully tested among others on 5 RFID protocols

26/30

Automated analysis of KCL?

Which tool to choose?
I None provides support for ⊕

I Abstracting away from algebraic properties: we miss the
linkability attack

Motivated an extension of AKiSs with ⊕:
joint work with Baelde, Delaune and Gazeau

I perform Horn clause resolution modulo AC
I new strategy: forbid some resolutions to avoid

non-termination
 major changes in the completeness proof

I successfully tested among others on 5 RFID protocols

26/30

Automated analysis of KCL?

Which tool to choose?
I None provides support for ⊕
I Abstracting away from algebraic properties: we miss the

linkability attack

Motivated an extension of AKiSs with ⊕:
joint work with Baelde, Delaune and Gazeau

I perform Horn clause resolution modulo AC
I new strategy: forbid some resolutions to avoid

non-termination
 major changes in the completeness proof

I successfully tested among others on 5 RFID protocols

26/30

Automated analysis of KCL?

Which tool to choose?
I None provides support for ⊕
I Abstracting away from algebraic properties: we miss the

linkability attack

Motivated an extension of AKiSs with ⊕:
joint work with Baelde, Delaune and Gazeau

I perform Horn clause resolution modulo AC
I new strategy: forbid some resolutions to avoid

non-termination
 major changes in the completeness proof

I successfully tested among others on 5 RFID protocols

27/30

Overview of tools
Unbounded number of sessions (no termination guarantees)

ProVerif Tamarin Maude NPA

equivalence diff
(+ extensions) diff diff

protocol
model applied pi MSR

(state, else, . . .)
strands

(no else)

eq. theories finite variant (?) subterm conv.
+ DH

finite variant
+ algebraic prop.

Bounded number of sessions

SPEC APTE AKiSs

equivalence symb.
bisimulations

trace
equiv

∼ trace
equiv

protocol
model

spi
(no else) applied pi applied pi

(no else)

eq. theories fixed fixed finite variant
+ xor

No swiss knife for equivalence properties

27/30

Overview of tools
Unbounded number of sessions (no termination guarantees)

ProVerif Tamarin Maude NPA

equivalence diff
(+ extensions) diff diff

protocol
model applied pi MSR

(state, else, . . .)
strands

(no else)

eq. theories finite variant (?) subterm conv.
+ DH

finite variant
+ algebraic prop.

Bounded number of sessions

SPEC APTE AKiSs

equivalence symb.
bisimulations

trace
equiv

∼ trace
equiv

protocol
model

spi
(no else) applied pi applied pi

(no else)

eq. theories fixed fixed finite variant
+ xor

No swiss knife for equivalence properties

27/30

Overview of tools
Unbounded number of sessions (no termination guarantees)

ProVerif Tamarin Maude NPA

equivalence diff
(+ extensions) diff diff

protocol
model applied pi MSR

(state, else, . . .)
strands

(no else)

eq. theories finite variant (?) subterm conv.
+ DH

finite variant
+ algebraic prop.

Bounded number of sessions

SPEC APTE AKiSs

equivalence symb.
bisimulations

trace
equiv

∼ trace
equiv

protocol
model

spi
(no else) applied pi applied pi

(no else)

eq. theories fixed fixed finite variant
+ xor

No swiss knife for equivalence properties

28/30

Theory and practice of equivalence properties

Extensions of AKiSs
I else branches, needed e.g. for analysing unlinkability for the

e-Passport
I more algebraic properties, e.g., DH exponentiation à la

tamarin

Merge APTE and AKISS
joint work with Cheval

I decide trace equivalence
I general processes (else branches, not necessarily determinate)
I many equational theories

28/30

Theory and practice of equivalence properties

Extensions of AKiSs
I else branches, needed e.g. for analysing unlinkability for the

e-Passport
I more algebraic properties, e.g., DH exponentiation à la

tamarin

Merge APTE and AKISS
joint work with Cheval

I decide trace equivalence
I general processes (else branches, not necessarily determinate)
I many equational theories

29/30

Theory and practice of equivalence properties (2)

Decidability and complexity joint work with Cheval and Rakotonirina

e.g. for subterm convergent equational theories, obs. equivalence is
coNP complete for determinate processes, but
coNEXP hard otherwise

 interesting insights on how to make tools efficient

see Itsaka’s 5 minute talk

30/30

Automated Security Proofs
of Cryptographic Protocols

I Theory and practice for equivalence properties
I Models for and analysis of secure elements (TPM, SGX, . . .)
I Multi-factor authentication
I E-voting on untrusted clients

Join us: open PhD and post-doc positions

