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applied pi calculus



Symbolic models for protocol verification

Main ingredient of symbolic models

> messages = terms
enc

RN
pair k
e N
S1 52

» perfect cryptography (equational theories)
dec(enc(x,y),y) = x fst(pair(x,y)) = x snd(pair(x,y)) =y

» the network is the attacker

» messages can be eavesdropped
» messages can be intercepted
» messages can be injected

Dolev, Yao: On the Security of Public Key Protocols. FOCS'81



Modelling the protocol

Protocols modelled in a process calculus, e.g. the applied pi

calculus
P = 0
| c(x).P input
| <¢(t).P output
| if t; = t then P else Q@ conditional
| P|Q parallel
| 1P replication
|

new n.P restriction



Modelling the protocol

Protocols modelled in a process calculus, e.g. the applied pi

calculus
P = 0

| c(x).P input

| <¢(t).P output

| if t; = t then P else Q@ conditional

| P| @ parallel

| 1P replication

| new n.P restriction
Specificities:

» messages are terms (not just names as in the pi calculus)

» equality in conditionals interpreted modulo an equational
theory



Reasoning about attacker knowledge

Terms output by a process are organised in a frame:

d=new fi. {"/s,- " /x}



Reasoning about attacker knowledge

Terms output by a process are organised in a frame:
d=new fi. {"/s,- " /x}

Deducibility:
¢ FR tif Ris a public term and R¢ =g t

Example

k k k
@ = new ny, ny, kla k2- {enc(nl’ 1)/XlaenC(n2’ 2) /Xza ! /X3}

© l_dec(xl,X3) n © }7/ ny © |—1 1



Deduction may not be sufficient!

Some properties not captured by the terms an attacker can deduce.

Example
Consider 2 observations by an attacker

Y1 = {a/Xlao /X271 /X3v<a’0> /X4}

P2 = {a/Xlao /Xz’l /X37<a’1> /X4}

Note: set of terms deducible from both frames are identical.
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But the attacker may learn the link between a and either 0 or 1.



Deduction may not be sufficient!

Some properties not captured by the terms an attacker can deduce.

Example
Consider 2 observations by an attacker

Y1 = {a/Xlao /Xz’l /X3v<a’0> /X4}

Y2 = {a/Xlao /Xz’l /X37<a’1> /X4}
Note: set of terms deducible from both frames are identical.

But the attacker may learn the link between a and either 0 or 1.

Such properties are captured by the notion of indistinguishability:
an attacker is unable to distinguish two frames.



From authentication to privacy

Many good tools:
AVISPA, Casper, Maude-NPA, ProVerif, Scyther, Tamarin, ...

Good at verifying trace properties (predicates on system
behavior), e.g.,

» (weak) secrecy of a key

» authentication (correspondence properties)

If B ended a session with A (and parameters p) then A
must have started a session with B (and parameters p').



From authentication to privacy

Many good tools:
AVISPA, Casper, Maude-NPA, ProVerif, Scyther, Tamarin, ...

Good at verifying trace properties (predicates on system
behavior), e.g.,

» (weak) secrecy of a key
» authentication (correspondence properties)

If B ended a session with A (and parameters p) then A
must have started a session with B (and parameters p').

Not all properties can be expressed on a trace.

~> recent interest in indistinguishability properties.



Indistinguishability (informally)

Can the adversary distinguish two situations, i.e. decide whether
it is interacting with protocol P1 or protocol P27

P1 P2

L%J



Distinguishing messages

The notion of indistinguishability of message sequences is
formalised by static equivalence of frames.

Idea: any test an attacker can perform on one frame should also
hold in the other frame.

Definition (static equivalence)
@1 ~s ¢ if V public terms R, R'.

Ré1 = R'¢1 < Rpp = R'¢o



Static equivalence: examples

Example
p1=1{"/y} and o2 = {1/x.0/y}
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Example
Y1 = {O/Xal /y} and oy = {1/X70 /y}
©1 %s p2 as (x = 0)p1 while (x # 0)ps.

Example
@1 = vk{2enc(Opk(K) / Pk(K) / 1 oy = pk{aenc(Lpk(K)) /. pk(k) / 1

©1 s w2 as (aenc(0,y) = x)¢p1 while (aenc(0,y) # x)p2



Static equivalence: examples

Example
Y1 = {O/Xal /y} and oy = {1/X70 /y}
©1 %s p2 as (x = 0)p1 while (x # 0)ps.

Example
01 = yk{ae"C(ka(k))/X?Pk(k) /vy o= yk{aenC(ka(k))/X,pk(k) /)
©1 s w2 as (aenc(0,y) = x)¢p1 while (aenc(0,y) # x)p2

Need to model randomisation of encryption.
o1 = vk, r{aenc(O,r,pk(k))/X’pk(k) /y}
©0» = vk, r{aenc(l,r,pk(k))/X?pk(k) /y}

Then @} ~ ©5.



Semantics of the applied pi calculus

Before defining indistinguishability of processes, we need a precise
semantics!

A configuration is a triple:
(€,P, %)

» £ is the set of restricted names;
» P is the multiset of processes executed in parallel;

>  is the frame of output messages
(ignored in internal reduction)



Semantics of the applied pi calculus
Before defining indistinguishability of processes, we need a precise
semantics!
A configuration is a triple:
(€,P, %)

» £ is the set of restricted names;
» P is the multiset of processes executed in parallel;

>  is the frame of output messages
(ignored in internal reduction)

Initial configuration for process P: (0, {P},0)



Operational semantics: internal reduction

Internal reduction — is defined by rules (selection):

(E,PUf0}) S (&,P)
(E,PULP|@}) = (£, PU{P,Q})
(&, PU {new n.P}) S (EU{n'},P{" /a})
if n’ fresh
(E,PU{ifu=vthenPelse Q}) = (£,PU{P})
if u=gv

(&, PU{u(t).P,v(x).Q}) = (£, PU{P,Q{*/.}})

u=gv



Indistinguishability as a process equivalence

Naturally modelled using equivalences from process calculi

Testing equivalence (P ~ Q)
for all processes A, we have that:

Al P | cif,andonlyif, A| Q |l ¢

— P |l ¢ when P can send a message on the channel c.



Indistinguishability as a process equivalence

Naturally modelled using equivalences from process calculi

Testing equivalence (P ~ Q)
for all processes A, we have that:

Al Pl cif andonlyif, A| Q1 ¢
— P |l ¢ when P can send a message on the channel c.
Example

P = new k.c(x).c(enc(x, k))
Q = new k.c(x).c{enc(0, k))

P Qas AP d but AlQY d for

<(k)
(k)

A =7¢(1).c(y).c(z).if dec(y, z) = 1then d(1)



Labelled semantics
Reasoning about all processes A not convenient.

Extend < to directly interact with a (non specified) adversary.

(€. P U fu(x).P}, ®) < (£, P U P{®/1), ) (In)
if €O u

(&, Pu{u(t).P}, o) HEON (E,PU{P},®oU{"/x,}) (Our)
if V€D uand n= |0 +1



Labelled semantics
Reasoning about all processes A not convenient.

Extend < to directly interact with a (non specified) adversary.

(€. P U fu(x).P}, ®) < (£, P U P{®/1), ) (In)
if €O u

(&, Pu{u(t).P}, o) HEON (E,PU{P},®oU{"/x,}) (Our)
if V€D uand n= |0 +1

Example

P = new k.c(x).c(enc(x, k)).c(k)

(0, P,p) S AL Eel ey g genc@k) ) K1)

Y4 € * *

{ €
where = = —» — — .



Indistinguishability using labelled semantics

Trace equivalence
P~:Q
iff
if P (€,P,¢) then Q £ (£/,Q,¢') A ~s ¢’ for some £/, Q¢
(and vice-versa)

Intuition:
Same adversary behaviour (tr) yields indistinguishable frames (~5)



Indistinguishability using labelled semantics
Trace equivalence

P~ Q
iff

if P (£,P,p) then Q = (£',Q,¢') A ¢ ~s ¢ for some £, Q, ¢!

Intuition:

(and vice-versa)

Same adversary behaviour (tr) yields indistinguishable frames (~5)

Example

P%:Q as
Q

c(1) c(ax1) c(axz)
————

c(1) ©(ax1) c(axz)
>

P = new k.c(x).c(enc(x, k)).c(k)
Q@ = new k.c(x).c(enc(0, k)).c(k)

({«'}.0, {e”c(” fax [ax})
({x'},0, {e”°(°k faxis¥ Jaxs})



Indistinguishability using labelled semantics

Trace equivalence
P~:Q
iff
if P (€,P,¢) then Q £ (£/,Q,¢') A ~s ¢’ for some £/, Q¢
(and vice-versa)

Intuition:
Same adversary behaviour (tr) yields indistinguishable frames (~5)

Theorem



A tour to the (equivalence) zoo

testing equiv. obs. equiv.

Abadi, Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus. CCS'97,
Inf.& Comp.'99

Abadi, Fournet. Mobile values, new names, and secure communication. POPL'01
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Blanchet et al.: Automated Verification of Selected Equivalences for Security

Protocols. LICS'05



A tour to the (equivalence) zoo

diff equiv.

testing equiv. obs. equiv.

labelled bisim.

Diff equivalence too fine grained for several properties.

Blanchet et al.: Automated Verification of Selected Equivalences for Security

Protocols. LICS'05



A tour to the (equivalence) zoo

diff equiv.

testing equiv.

obs. equiv.

labelled bisim.

symbolic bisim.

Delaune et al. Symbolic bisimulation for the applied pi calculus. JCS'10




A tour to the (equivalence) zoo

diff equiv.

testing equiv.

obs. equiv.

labelled bisim.

symbolic bisim.

Liu, Lin. A complete symbolic bisimulation for full applied pi calculus. TCS'12




A tour to the (equivalence) zoo

diff equiv.
testing equiv. obs. equiv.
trace equiv. labelled bisim. symbolic bisim.

Cheval et al.: Deciding equivalence-based properties using constraint solving. TCS'13



A tour to the (equivalence) zoo

diff equiv.
testing equiv. obs. equiv.
trace equiv. labelled bisim. symbolic bisim.

For a bounded number of sessions (no replication).

Cheval et al.: Deciding equivalence-based properties using constraint solving. TCS'13



A tour to the (equivalence) zoo

diff equiv.

testing equiv. [«=—=| obs. equiv.

trace equiv. |«~—=labelled bisim. symbolic bisim.

For a class of determinate processes.

Cheval et al.: Deciding equivalence-based properties using constraint solving. TCS'13
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Applications: modelling security
protocols



Secrecy in symbolic models

Symbolic analysis: secrecy generally modelled as non-deducibility:

the attacker cannot compute the value of the secret

~> partial leakage not detected

Example
Let h be a one-way hash function. The protocol

P = new s.out(c, h(s))

would be considered to enforce the secrecy of s.



Secrecy as indistinguishability

Stronger notions of secrecy can be defined using indistinguishability

» Strong secrecy of s: [Blanchet'04]
in(c, (t1, t2)). P{"/s} miin(c, (t1, t2)). P{®/s}

Even if the attacker chooses values t; or t» he
cannot distinguish whether t; or t, was used as the
secret.

» Real-or-random
P; out(s) ~ P; new s’.out(s')

The attacker cannot distinguish whether at the end of the
protocol he is given the real secret or a random value.

~> Resistance against offline guessing attacks



Modelling resistance against offline guessing attacks

vw.¢ is resistant to guessing attacks against w iff
vw (U {"/}) ~s v, W (UL [i})

Intuition: an attacker cannot distinguish the right guess from a
wrong guess

A process P is resistant against guessing attacks on w if whenever

*

({w}. {P}.0)= (£.P.¢)

then ¢ is resistant to guessing attacks.



Example: EKE protocol [BellovinMerritt92]

A — B: enc(pk(k),w) ( )
B — A: enc(aenc(r, pk(k)), w) ( )
A — B: enc(na,r) (EKE.3)
B — A: enc({(na,nb),r) ( )
A — B: enc(nb,r) ( )

¢ = l/k, r, na, nb. {enc(pk(k),w)/)q7enc(aenc(r,pk(k)),w) /Xz,enc(na,r) /X3,
enc((na,nb},r)/ enc(nb,r)/ }
X4 X5

vw (UL /1) ~s vw, W (U {" /,)}



Example: EKE protocol [BellovinMerritt92]

A—B:
B—A:
A—B:
B— A:
A—B:

¢ = vk, r,na, nb.

enc(pk(k), w) (EKE.1)
enc(aenc(r, pk(k)), w) (EKE.2)
enc(na, r) (EKE.3)
enc({na, nb), r) (EKE.4)
enc(nb, r) (EKE.5)

{enc(pk(k),w)/)qfnc(aenc(r,pk(k)),w) /Xz,enc(na,r) /X3,

enc((na,nb},r)/ enc(nb,r)/ }
X4 X5

vw (UL /1) ~s vw, W (U {" /,)}

» holds if we suppose the equation enc(dec(x, y),y) = x

5
otherwise the test enc(dec(x1, x)) =¢ x1 distinguishes



Example: EKE protocol [BellovinMerritt92]

A—B:
B—A:
A—B:
B— A:
A—B:

¢ = vk, r,na, nb.

enc(pk(k), w) (EKE.1)
enc(aenc(r, pk(k)), w) (EKE.2)
enc(na, r) (EKE.3)
enc({na, nb), r) (EKE.4)
enc(nb, r) (EKE.5)

{enc(pk(k),w)/x1fnc(aenc(r,pk(k)),w) /Xz,enc(na,r) /X3,

enc((na,nb},r)/ enc(nb,r)/ }
X4 X5

vw. (UL /1) ~s vw, W (U {" /.)}

» holds if we suppose the equation enc(dec(x, y),y) = x

5
otherwise the test enc(dec(x1, x)) =¢ x1 distinguishes

» if we add equation ispubkey(pk(x)) = ok we distinguish

frames by ispubkey(dec(x1, x)) L ok



How to model vote privacy?
How can we model

“the attacker does not learn my vote (0 or 1)"?
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“the attacker does not learn my vote (0 or 1)"?

» The attacker cannot learn the value of my vote
~~ but the attacker knows values 0 and 1
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How to model vote privacy?
How can we model

“the attacker does not learn my vote (0 or 1)"?
> The-attackercannot-tearn—thevalueof my—vote

> The-attacker-eannot-distingaish-A—votes—and-B-votes:
Votv)=Vp{v}

» The attacker cannot distinguish A votes 0 and A votes 1:
VA(O) =~ VA(l)



How to model vote privacy?
How can we model

“the attacker does not learn my vote (0 or 1)"?
> Theattackercannotlearnthevalveof my—vete

> TFhe-attackereannotdistingaish-A—votes—and-B—votes:
Votv)=Vp{v}

» The attacker cannot distinguish A votes 0 and A votes 1:
VA(O) =~ VA(l)
~> but election outcome is revealed



How to model vote privacy?
How can we model

“the attacker does not learn my vote (0 or 1)"?

> Theattackercannotlearnthevalveof my—vete

T | otingsich 2 o and :
Val0)Vatl)

» The attacker cannot distinguish the situation where two
honest voters swap votes:

Va(0) | V(1) = Va(1) | Vs(0)

Kremer, Ryan: Analysis of an E-Voting Protocol in the Applied Pi Calculus. ESOP'05



The Helios e-voting protocol (MixNet version)

authenticated channel BB

(idy, aenc(pkg, ri, v1))

Vl <id1?aenc(pkE? I, V1)>

where pkg is the election public key and MIX a verifiable mixnet.
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where pkg is the election public key and MIX a verifiable mixnet.



The Helios e-voting protocol (MixNet version)

authenticated channel BB
(id1, aenc(pkg, ri, v1)) .

Vl <’d1? aenc(pkE? I, V1)>
(id2, aenc(pkg, r2, v2)) .

V2 (ldz,aenc(pkE,rz, V2)>

(idn, aenc(pkg, r3, vn))

Vi (id,, aenc(pkg, rn, Va))

where pkg is the election public key and MIX a verifiable mixnet.



The Helios e-voting protocol (MixNet version)

authenticated channel BB M IX Ta”y
(idy, aenc(pkg, r1, v1)) .

Vl (id1, aenc(pkE? ri, vi)) : L V2
(idy, aenc(pkg, r2, v2)) . e

V2 (ldz,aenc(pkE,rz, V2)> B & Vn
(idp, aenc(pkg, r3, vn)) . B 4

Vi (id,, aenc(pkg, rn, va)) Vi

where pkg is the election public key and MIX a verifiable mixnet.



The Helios e-voting protocol (MixNet version)

authenticated channel BB M IX Ta”y
(idy, aenc(pkg, r1, v1)) .

Vl (id1, aenc(pkE? ri, vi)) : L V2
(idy, aenc(pkg, 2, v2)) .

Vo (id2, aenc(pkg, 2, v2)) Vn
(idp, aenc(pkg, r3, vn)) . 4

Vn <Idn’ aenc(pkE7 rﬂ7 Vﬂ)> . Vl

where pkg is the election public key and MIX a verifiable mixnet.

)
Privacy: Helios(vy, v2) ~; Helios(vz, v1)



The Helios e-voting protocol (MixNet version)

authenticated channel BB MIX Ta”y
(idy, aenc(pkg, ri, v1)) .

Vl (id1, aenc(pkE? ri, vi)) : Y
(idy, aenc(pkg, 2, v2)) .

Vo (id2, aenc(pkg, 2, v2)) Vn
(idp, aenc(pkg, r3, vn)) . 4

Vn <Idn7 aenc(pkE7 rﬂ7 Vﬂ)> . Vl

where pkg is the election public key and MIX a verifiable mixnet.

?
Privacy: Helios(v1, v2) = Helios(v, v1) ~~ replay attack!

Cortier,Smyth: Attacking and Fixing Helios: An Analysis of Ballot Secrecy. CSF'11



The Helios e-voting protocol (MixNet version)

authenticated channel BB MIX Ta”y
(idy, aenc(pkg, r1, v1)) .

Vl (id1, aenc(pkE? ri, vi)) : L V2
(idy, aenc(pkg, 2, v2)) .

Vo (id2, aenc(pkg, 2, v2)) Vn
(idp, aenc(pkg, r3, vn)) . ’ )

Vn <Idn’ aenc(pkE7 rﬂ7 Vﬂ)> . Vl

where pkg is the election public key and MIX a verifiable mixnet.

?
Privacy: Helios(vy, v») ~; Helios(v», v1) ~- replay attack!

Fix: either use weeding, or zkp that voter knows encryption
randomness



Everlasting privacy

Does verifiability decrease vote privacy?
Publishing encrypted votes on the bulletin board may be a threat
for vote privacy.

» Future technology and scientific advances may break
encryptions

» How long must a vote remain private?
1 year? 10 years? 100 years? 100 years?

» Impossible to predict the necessary key length with certainty:

typical recommendations for less than 10 years
(cf www.keylength.com)



Everlasting privacy

Does verifiability decrease vote privacy?
Publishing encrypted votes on the bulletin board may be a threat
for vote privacy.

» Future technology and scientific advances may break
encryptions

» How long must a vote remain private?
1 year? 10 years? 100 years? 100 years?

» Impossible to predict the necessary key length with certainty:

typical recommendations for less than 10 years
(cf www.keylength.com)

~> everlasting privacy: guarantee privacy even if crypto is
broken



Modelling everlasting privacy
» Information available in the future: everlasting channels

» Define future attacker capabilities (crypto assumption broken)
~ equational theory E™
Example: break(aenc(pk(x),y,z)) — z

» Check in two phases:

1. check trace equivalence with E
2. check static equivalence with E* on future information

~ implemented in AKiSs and ProVerif

Arapinis et al.: Practical Everlasting Privacy. POST'13



Modelling everlasting privacy
» Information available in the future: everlasting channels

» Define future attacker capabilities (crypto assumption broken)
~ equational theory E™
Example: break(aenc(pk(x),y,z)) — z
» Check in two phases:

1. check trace equivalence with E
2. check static equivalence with E* on future information

~ implemented in AKiSs and ProVerif

Achieving everlasting privacy:

» Do not publish encryption on the BB, but only a perfectly
hiding commitment

> Replace identities by anonymous credentials ~~ Belenios

Arapinis et al.: Practical Everlasting Privacy. POST'13



How to model unlinkability

Unlinkability [1ISO/IEC 15408]:

Ensuring that a user may make multiple uses of a service
or resource without others being able to link these uses
together.

Applications: e-Passport, mobile phones, RFID tags, ...



How to model unlinkability

Unlinkability [1ISO/IEC 15408]:

Ensuring that a user may make multiple uses of a service
or resource without others being able to link these uses
together.

Applications: e-Passport, mobile phones, RFID tags, ...

Can be modelled as an equivalence property:

2 sessions of the same device ~ 2 sessions of different devices

Arapinis et al. Analysing Unlinkability and Anonymity Using the Applied Pi Calculus.
CSF'10
Bruso et al. Formal Verification of Privacy for RFID Systems. CSF'10



Authentication protocol of a RFID tag (KCL)

READER TaG

new ry n

3
>

<id D r, h((r]_, k>) D I’2>

<
<

(id © rp) @?(h(<r1, k) @) ®id

= h((n, k))
I

Is unlinkability satisfied?

tag(id, k) | tag(id, k) < tag(id, k) | tag(id’, k)



Linkability attack

1 TAaG

ri

ATT

ri

3

new r

(id ® r2,h((r1, k) @ r2)

N

<id D n, h(<r1, k)) D r2>

r

<

r _

new rj

(id ® r2, h((r, k) & rz)

Z1

2 TAGS

new rj

(id" @ rz, h((r, k') ® r2)

<
<

(id ® r2) @ (h({r1, k) @ r2) =
(lid/id'| @ ) @ (h((r1, [k/K'])) @ r3)

29/43



Part Il

Automated analysis : ProVerif



Bi-processes

We want to prove P; = P5.

In ProVerif P; and P, are jointly specified using a bi-process.
using the choice|ty, t,] operator.

When P contains choice|[t;, t5]:

» Pj is defined by replacing choice[t1, t2] by t1;
» P, is defined by replacing choice[t1, t2] by to.



Bi-processes

We want to prove P; = P5.

In ProVerif P; and P, are jointly specified using a bi-process.
using the choice|ty, t,] operator.

When P contains choice|[t;, t5]:
» Pj is defined by replacing choice[t1, t2] by t1;
» P, is defined by replacing choice[t1, t2] by to.

Remark: Any process can be defined as a bi-process:

if choice[0,1] = Othen P; else P,

but ProVerif does not succeed on general processes



Diff-equivalence

Diff equivalence is a fine-grained equivalence that implies trace
equivalence

P ~4ir Q: taking the same branches in P and Q implies static
equivalence (~ reachability + static equivalence).
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¢(choice[a, b])|¢(choice[b, a]) not considered equivalent!



Diff-equivalence

Diff equivalence is a fine-grained equivalence that implies trace
equivalence

P ~4ir Q: taking the same branches in P and Q implies static
equivalence (~ reachability + static equivalence).

Often too fine-grained:

T(choice[a, b])|c(choice[b, a]) not considered equivalent!

Recent versions include a command equivalence, constructing the
bi-process automatically:

P = ¢(a).c(b) | c(b).c(a)
Q =¢(b).c(a) | c(a).c

equivalence P @

fails



Strong flavors of secrecy

Strong secrecy (non-interference) of x

c(x1).c(x2).P{x — choice[x1, x2]}

(or direct query noninterf x)

Resistance to guessing attacks of w

new w.P.new w'.¢(choice[w, w'])}

(or direct query weaksecret w)



Modelling equivalence in Horn clauses

Reachability properties: att(t) models attacker knows t

Equivalence properties:
att'(t1, to) models attacker knows t; in Py and t; in P,

¢(choice[t1, tp]) is translated into att/(t1, to)

Special clauses for equivalence

att’(x,y) A att’(x,y’) A nounif(y,y’) — bad
att’(x, y) A att’(x’, y) A nounif(x, x’) — bad

where nounif(t, t') holds when t, t' cannot be unified.

Equivalence holds when bad cannot be derived.



Part IV

Automated analysis : DEEPSEC



DEEPSEC: DEcipiNG EQUIVALENCE PROPERTIES IN SECURITY PROTOCOLS

» Decision procedure for trace equivalence
(no approximation, but high complexity coNEXP!)

» Bounded number of sessions
(no replication; otherwise full applied pi)

» Crypto primitives specified by
destructor subterm convergent rewrite systems

» Tool implemented in OCaml:
https://github.com/DeepSec-prover/deepsec

» Input language similar to (untyped) ProVerif

» Possibility to distribute the verification
(on multiple cores and multiple machines)


https://github.com/DeepSec-prover/deepsec

Destructor subterm convergent rewrite systems

Rewrite rules orient equational theories : £ — r rather than ¢ = r.

v

Partition function symbols into constructors and destructors

v

Messages do not contain destructors

v

Each destructor g defined by rules g(t1,...,t,) = u

v

For any rule £ — r r is a subterm of ¢ (or constant)

Example

Fe = {enc, pair} Fy = {dec,fst,snd}
R = {dec(enc(x,y),y) — x,fst(pair(x,y)) — x,snd(pair(x,y)) — v}

dec(pair(t1, t2)) not a valid message!



Verification for a bounded number of sessions

Bounded number of sessions: why is it difficult?
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Verification for a bounded number of sessions

Bounded number of sessions: why is it difficult?

The state space is still infinite: unbounded number of attacker
inputs!

Idea: represent infinite number of possible inputs symbolically in
a constraint system

Example
c(x).P transitions to P but keeps a deduction constraint X -7 x
if t; = trthen Pelse Q : 2 transitions

> to P with constraint t; =% t

> to Q with constraint t; #% t



Constraint systems

A constraint system is a tuple C = (¢, D, E') where:
» & = {axj > ty,...,ax, — t,} is a frame;
» D is a conjunction of deduction facts X F x:

. . . ? ?
» E! is a conjunction of formulas u =% v or u #% v.

A solution is a pair of substitutions X, ¢ such that
» &g XX xg forall X ' x € D
» uo > vo forall uav e EL

Note: X represents attacker inputs and constraints are such that
it completely defines o



Symbolic semantics

Symbolic semantics: associate a constraint system to the process
(sample rules)

(P U {if u= vthen Q},(¢,D,EY)) S, (PU{QY, (®,D,E'Au=] v))
(P U fc(x).QY, (¢,D,EN)) Y% (P ULQD, (#,D A X F’ x,EY))
(P U {c(t).QY, (¢,D,EN)) <L (PU{QY, (¢ U {ax — t},D,EY))



Symbolic semantics

Symbolic semantics: associate a constraint system to the process
(sample rules)

(P U {if u= vthen Q},(¢,D,EY)) S, (PU{QY, (®,D,E'Au=] v))
(P U fc(x).QY, (¢,D,EN)) Y% (P ULQD, (#,D A X F’ x,EY))
(P U {c(t).QY, (¢,D,EN)) <L (PU{QY, (¢ U {ax — t},D,EY))

Sound: if (A,C) L, (A, C') then for any (X,0) € Sol(C) we have
that Ac = Ao

Complete: if (¥,0) € Sol(C) and Ac 2= A’ then

(A,C) 5 (A,C) and X/, 0" € Sol(C') and A’ = A’



A simple example

Pb

c(x).if x = bthenc(0) else T(x) b e {0,1}
Q

c(x).c(x)

> 1>
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P% ~; @ but P! %, Q (different behavior on input 1)



A simple example

PP £ ¢(x).if x = bthenc(0) else ¢(x) b e {0,1}
Q2 c(x)2lx)

P% ~; @ but P! %, Q (different behavior on input 1)

Symbolic transitions tree:

c(X) b />(P2vc ) (P4,C4)
(P07C(Z)) (Plvcl)\ €(ax1)
(P3,C3) (P5aCS)
c(X) C(ax1)
(Qo,Cp) ——(Q1,C1) . (Q2,02)
Ca = ({axy = x}L X x,0)
C? 2 ({axy = 0}, X F' x,x =% b)
C & ({axy = x}, X F' x,x #5 b)



Partition Tree

Build a joint symbolic execution tree

Partition solutions (split nodes): ensure static equivalences of all
solutions in a same node
~ done by constraint solving algorithm

(Qo, Co)
(PJ,Ca)
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Partition Tree

Build a joint symbolic execution tree

Partition solutions (split nodes): ensure static equivalences of all
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(Q0,Co) _X)  (Qi,C1), (P,Cf) Elax) (22,C2),
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Partition Tree

Build a joint symbolic execution tree

Partition solutions (split nodes): ensure static equivalences of all
solutions in a same node
~ done by constraint solving algorithm

(Q2,C2),
E(ax1 (,Pé(l)v Cg)

(Q0,Co) X)) (Q1,¢1), (P?,CP) = X=0
(PS,Co) — s (P,CD), (PL,C3) gﬁ (02.0).

s (Ps,C9)
X #0

Need to partition: C§ enforces X = 0 and C¢ enforces X # 0.



Partition Tree

Build a joint symbolic execution tree

Partition solutions (split nodes): ensure static equivalences of all
solutions in a same node
~ done by constraint solving algorithm

(Q27 C2)a
caxy) (PP,CH)

(0,Cp) <X) (Q1,G1), (P?,CP) s X=0

(,P(())’Cw) :>S (733768)7 (P:E’)’Cg) @ (Q27C2)a
s (PL,CP)
X#0

Need to partition: CJ enforces X = 0 and C{ enforces X # 0.
PO ~, Q: each leaf contains processes derived from P° and Q.



Partition Tree

Build a joint symbolic execution tree

Partition solutions (split nodes): ensure static equivalences of all
solutions in a same node
~» done by constraint solving algorithm

(Q2,C2),
claxy X=1

S
(Qo,Cp) _<X)  (Qy,¢1), (PL,Cl) <) (P ci)
(P37C®) S (7)21765)7 (,P?LC?}) X=1
(Q2,C2),
s (P3,C3)
X#£1

E<aX1> s

Need to partition more to ensure static equivalence inside nodes.
P! %, Q: leaves with processes only from P.



Overview of tools
Unbounded number of sessions (no termination guarantees)

ProVerif Tamarin Maude NPA
. diff . .
equivalence (+ extensions) diff diff
protocol . . MSR
model applied pi (state, loops, ...) strands
. - . subterm conv. finite variant
eq. theories | finite variant (?)

+ DH

+ algebraic prop.
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Overview of

tools

Unbounded number of sessions (no termination guarantees)

ProVerif Tamarin Maude NPA
. diff . .
equivalence (+ extensions) diff diff
protocol . . MSR
model applied pi (state, loops, ...) strands
eq. theories | finite variant (?) subterm conv. finite variant
a- ’ + DH + algebraic prop.
Bounded number of sessions
SPEC APTE AKiSs DEEPSEC
. symb. trace ~ trace trace
equivalence .. . . . .
bisimulations equiv equiv equiv
protocol spi . . . . . .
model (no else) applied pi applied pi applied pi
eq. theories fied fied finite variant destructor
+ xor subterm conv.

No swiss knife for equivalence properties
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