
1/43

Models and Techniques for Symbolic
Analysis

of Security Protocols
Episode II: Equivalence properties

Steve Kremer

Summer School : Models and Tools for Cryptographic Proofs

2/43

Episode I

Part 1 Protocols
Part 2 Model : the applied-pi calculus

→ the ProVerif tool
Part 3 Analysis : protocols as Horn clauses

Episode II
Part 4 Indistinguishability properties in the applied pi calculus
Part 5 Applications: modelling security protocols
Part 6 Automated analysis : ProVerif & deepsec

3/43

Part I

Indistinguishability properties in the
applied pi calculus

4/43

Symbolic models for protocol verification
Main ingredient of symbolic models
I messages = terms

enc

pair

s1 s2

k

I perfect cryptography (equational theories)
dec(enc(x , y), y) = x fst(pair(x , y)) = x snd(pair(x , y)) = y

I the network is the attacker
I messages can be eavesdropped
I messages can be intercepted
I messages can be injected

Dolev, Yao: On the Security of Public Key Protocols. FOCS’81

5/43

Modelling the protocol

Protocols modelled in a process calculus, e.g. the applied pi
calculus

P ::= 0
| c(x).P input
| c〈t〉.P output
| if t1 = t2 then P else Q conditional
| P || Q parallel
| !P replication
| new n.P restriction

Specificities:
I messages are terms (not just names as in the pi calculus)
I equality in conditionals interpreted modulo an equational

theory

5/43

Modelling the protocol

Protocols modelled in a process calculus, e.g. the applied pi
calculus

P ::= 0
| c(x).P input
| c〈t〉.P output
| if t1 = t2 then P else Q conditional
| P || Q parallel
| !P replication
| new n.P restriction

Specificities:
I messages are terms (not just names as in the pi calculus)
I equality in conditionals interpreted modulo an equational

theory

6/43

Reasoning about attacker knowledge
Terms output by a process are organised in a frame:

φ = new n̄. {t1/x1 , . . . ,
tn /xn}

6/43

Reasoning about attacker knowledge
Terms output by a process are organised in a frame:

φ = new n̄. {t1/x1 , . . . ,
tn /xn}

Deducibility:
φ `R t if R is a public term and Rφ =E t

Example

ϕ = new n1, n2, k1, k2. {enc(n1,k1)/x1 ,
enc(n2,k2) /x2 ,

k1 /x3}

ϕ `dec(x1,x3) n1 ϕ 6` n2 ϕ `1 1

7/43

Deduction may not be sufficient!

Some properties not captured by the terms an attacker can deduce.

Example
Consider 2 observations by an attacker

ϕ1 = {a/x1 ,
0 /x2 ,

1 /x3 ,
〈a,0〉 /x4}

ϕ2 = {a/x1 ,
0 /x2 ,

1 /x3 ,
〈a,1〉 /x4}

Note: set of terms deducible from both frames are identical.

But the attacker may learn the link between a and either 0 or 1.

Such properties are captured by the notion of indistinguishability:
an attacker is unable to distinguish two frames.

7/43

Deduction may not be sufficient!

Some properties not captured by the terms an attacker can deduce.

Example
Consider 2 observations by an attacker

ϕ1 = {a/x1 ,
0 /x2 ,

1 /x3 ,
〈a,0〉 /x4}

ϕ2 = {a/x1 ,
0 /x2 ,

1 /x3 ,
〈a,1〉 /x4}

Note: set of terms deducible from both frames are identical.

But the attacker may learn the link between a and either 0 or 1.

Such properties are captured by the notion of indistinguishability:
an attacker is unable to distinguish two frames.

7/43

Deduction may not be sufficient!

Some properties not captured by the terms an attacker can deduce.

Example
Consider 2 observations by an attacker

ϕ1 = {a/x1 ,
0 /x2 ,

1 /x3 ,
〈a,0〉 /x4}

ϕ2 = {a/x1 ,
0 /x2 ,

1 /x3 ,
〈a,1〉 /x4}

Note: set of terms deducible from both frames are identical.

But the attacker may learn the link between a and either 0 or 1.

Such properties are captured by the notion of indistinguishability:
an attacker is unable to distinguish two frames.

8/43

From authentication to privacy

Many good tools:
AVISPA, Casper, Maude-NPA, ProVerif, Scyther, Tamarin, . . .

Good at verifying trace properties (predicates on system
behavior), e.g.,
I (weak) secrecy of a key
I authentication (correspondence properties)

If B ended a session with A (and parameters p) then A
must have started a session with B (and parameters p′).

Not all properties can be expressed on a trace.

 recent interest in indistinguishability properties.

8/43

From authentication to privacy

Many good tools:
AVISPA, Casper, Maude-NPA, ProVerif, Scyther, Tamarin, . . .

Good at verifying trace properties (predicates on system
behavior), e.g.,
I (weak) secrecy of a key
I authentication (correspondence properties)

If B ended a session with A (and parameters p) then A
must have started a session with B (and parameters p′).

Not all properties can be expressed on a trace.

 recent interest in indistinguishability properties.

9/43

Indistinguishability (informally)

Can the adversary distinguish two situations, i.e. decide whether
it is interacting with protocol P1 or protocol P2?

P1 P2

10/43

Distinguishing messages

The notion of indistinguishability of message sequences is
formalised by static equivalence of frames.

Idea: any test an attacker can perform on one frame should also
hold in the other frame.

Definition (static equivalence)
φ1 ∼s φ2 if ∀ public terms R,R ′.

Rφ1 = R ′φ1 ⇔ Rφ2 = R ′φ2

11/43

Static equivalence: examples

Example
ϕ1 = {0/x ,

1 /y} and ϕ2 = {1/x ,
0 /y}

ϕ1 6∼s ϕ2 as (x = 0)ϕ1 while (x 6= 0)ϕ2.

Example
ϕ1 = νk{aenc(0,pk(k))/x ,

pk(k) /y} ϕ2 = νk{aenc(1,pk(k))/x ,
pk(k) /y}

ϕ1 6∼s ϕ2 as (aenc(0, y) = x)ϕ1 while (aenc(0, y) 6= x)ϕ2

Need to model randomisation of encryption.

ϕ1 = νk, r{aenc(0,r ,pk(k))/x ,
pk(k) /y}

ϕ2 = νk, r{aenc(1,r ,pk(k))/x ,
pk(k) /y}

Then ϕ′1 ∼s ϕ
′
2.

11/43

Static equivalence: examples

Example
ϕ1 = {0/x ,

1 /y} and ϕ2 = {1/x ,
0 /y}

ϕ1 6∼s ϕ2 as (x = 0)ϕ1 while (x 6= 0)ϕ2.

Example
ϕ1 = νk{aenc(0,pk(k))/x ,

pk(k) /y} ϕ2 = νk{aenc(1,pk(k))/x ,
pk(k) /y}

ϕ1 6∼s ϕ2 as (aenc(0, y) = x)ϕ1 while (aenc(0, y) 6= x)ϕ2

Need to model randomisation of encryption.

ϕ1 = νk, r{aenc(0,r ,pk(k))/x ,
pk(k) /y}

ϕ2 = νk, r{aenc(1,r ,pk(k))/x ,
pk(k) /y}

Then ϕ′1 ∼s ϕ
′
2.

11/43

Static equivalence: examples

Example
ϕ1 = {0/x ,

1 /y} and ϕ2 = {1/x ,
0 /y}

ϕ1 6∼s ϕ2 as (x = 0)ϕ1 while (x 6= 0)ϕ2.

Example
ϕ1 = νk{aenc(0,pk(k))/x ,

pk(k) /y} ϕ2 = νk{aenc(1,pk(k))/x ,
pk(k) /y}

ϕ1 6∼s ϕ2 as (aenc(0, y) = x)ϕ1 while (aenc(0, y) 6= x)ϕ2

Need to model randomisation of encryption.

ϕ1 = νk, r{aenc(0,r ,pk(k))/x ,
pk(k) /y}

ϕ2 = νk, r{aenc(1,r ,pk(k))/x ,
pk(k) /y}

Then ϕ′1 ∼s ϕ
′
2.

11/43

Static equivalence: examples

Example
ϕ1 = {0/x ,

1 /y} and ϕ2 = {1/x ,
0 /y}

ϕ1 6∼s ϕ2 as (x = 0)ϕ1 while (x 6= 0)ϕ2.

Example
ϕ1 = νk{aenc(0,pk(k))/x ,

pk(k) /y} ϕ2 = νk{aenc(1,pk(k))/x ,
pk(k) /y}

ϕ1 6∼s ϕ2 as (aenc(0, y) = x)ϕ1 while (aenc(0, y) 6= x)ϕ2

Need to model randomisation of encryption.

ϕ1 = νk, r{aenc(0,r ,pk(k))/x ,
pk(k) /y}

ϕ2 = νk, r{aenc(1,r ,pk(k))/x ,
pk(k) /y}

Then ϕ′1 ∼s ϕ
′
2.

11/43

Static equivalence: examples

Example
ϕ1 = {0/x ,

1 /y} and ϕ2 = {1/x ,
0 /y}

ϕ1 6∼s ϕ2 as (x = 0)ϕ1 while (x 6= 0)ϕ2.

Example
ϕ1 = νk{aenc(0,pk(k))/x ,

pk(k) /y} ϕ2 = νk{aenc(1,pk(k))/x ,
pk(k) /y}

ϕ1 6∼s ϕ2 as (aenc(0, y) = x)ϕ1 while (aenc(0, y) 6= x)ϕ2

Need to model randomisation of encryption.

ϕ1 = νk, r{aenc(0,r ,pk(k))/x ,
pk(k) /y}

ϕ2 = νk, r{aenc(1,r ,pk(k))/x ,
pk(k) /y}

Then ϕ′1 ∼s ϕ
′
2.

12/43

Semantics of the applied pi calculus

Before defining indistinguishability of processes, we need a precise
semantics!

A configuration is a triple:

(E ,P, ϕ)

I E is the set of restricted names;
I P is the multiset of processes executed in parallel;
I ϕ is the frame of output messages

(ignored in internal reduction)

Initial configuration for process P: (∅, {{P}}, ∅)

12/43

Semantics of the applied pi calculus

Before defining indistinguishability of processes, we need a precise
semantics!

A configuration is a triple:

(E ,P, ϕ)

I E is the set of restricted names;
I P is the multiset of processes executed in parallel;
I ϕ is the frame of output messages

(ignored in internal reduction)

Initial configuration for process P: (∅, {{P}}, ∅)

13/43

Operational semantics: internal reduction

Internal reduction → is defined by rules (selection):

(E ,P ∪ {{0}}) ε−→ (E ,P) (Null)
(E ,P ∪ {{P | Q}}) ε−→ (E ,P ∪ {{P,Q}}) (Par)
(E ,P ∪ {{new n.P}}) ε−→ (E ∪ {n′},P{n′

/n}) (New)
if n′ fresh

(E ,P ∪ {{if u = v then P else Q}}) ε−→ (E ,P ∪ {{P}}) (Then)
if u =E v

(E ,P ∪ {{u〈t〉.P, v(x).Q}}) ε−→ (E ,P ∪ {{P,Q{t/x}}}) (Comm)
u =E v

14/43

Indistinguishability as a process equivalence
Naturally modelled using equivalences from process calculi

Testing equivalence (P ≈ Q)
for all processes A, we have that:

A | P ⇓ c if, and only if, A | Q ⇓ c

−→ P ⇓ c when P can send a message on the channel c.

Example

P = new k.c(x).c〈enc(x , k)〉.c〈k〉
Q = new k.c(x).c〈enc(0, k)〉.c〈k〉

P 6≈ Q as A|P ⇓ d , but A|Q 6⇓ d for

A = c〈1〉.c(y).c(z). if dec(y , z) = 1 then d〈1〉

14/43

Indistinguishability as a process equivalence
Naturally modelled using equivalences from process calculi

Testing equivalence (P ≈ Q)
for all processes A, we have that:

A | P ⇓ c if, and only if, A | Q ⇓ c

−→ P ⇓ c when P can send a message on the channel c.

Example

P = new k.c(x).c〈enc(x , k)〉.c〈k〉
Q = new k.c(x).c〈enc(0, k)〉.c〈k〉

P 6≈ Q as A|P ⇓ d , but A|Q 6⇓ d for

A = c〈1〉.c(y).c(z). if dec(y , z) = 1 then d〈1〉

15/43

Labelled semantics
Reasoning about all processes A not convenient.

Extend ε−→ to directly interact with a (non specified) adversary.

(E ,P ∪ {{u(x).P}},Φ) ξ(ζ)−−→ (E ,P ∪ {{P{ζΦ/x}}},Φ) (In)
if νE .Φ `ξ u

(E ,P ∪ {{u〈t〉.P}},Φ) ξ〈axn〉−−−−→ (E ,P ∪ {{P}},Φ ∪ {t/axn}) (Out)
if νE .Φ `ξ u and n = |Φ|+ 1

Example

P = new k.c(x).c〈enc(x , k)〉.c〈k〉

(∅,P, ∅) c(1)==⇒ c〈ax1〉===⇒ c〈ax2〉===⇒ ({k ′}, ∅, {enc(1,k′)/ax1 ,
k′
/ax2})

where `=⇒ = ε−→∗ `−→ ε−→∗.

15/43

Labelled semantics
Reasoning about all processes A not convenient.

Extend ε−→ to directly interact with a (non specified) adversary.

(E ,P ∪ {{u(x).P}},Φ) ξ(ζ)−−→ (E ,P ∪ {{P{ζΦ/x}}},Φ) (In)
if νE .Φ `ξ u

(E ,P ∪ {{u〈t〉.P}},Φ) ξ〈axn〉−−−−→ (E ,P ∪ {{P}},Φ ∪ {t/axn}) (Out)
if νE .Φ `ξ u and n = |Φ|+ 1

Example

P = new k.c(x).c〈enc(x , k)〉.c〈k〉

(∅,P, ∅) c(1)==⇒ c〈ax1〉===⇒ c〈ax2〉===⇒ ({k ′}, ∅, {enc(1,k′)/ax1 ,
k′
/ax2})

where `=⇒ = ε−→∗ `−→ ε−→∗.

16/43

Indistinguishability using labelled semantics

Trace equivalence

P ≈t Q
iff

if P tr=⇒ (E ,P, ϕ) then Q tr=⇒ (E ′,Q, ϕ′) ∧ ϕ ∼s ϕ
′ for some E ′,Q, ϕ′

(and vice-versa)

Intuition:
Same adversary behaviour (tr) yields indistinguishable frames (∼s)

Theorem

P ≈t Q =⇒ P ≈ Q

16/43

Indistinguishability using labelled semantics
Trace equivalence

P ≈t Q
iff

if P tr=⇒ (E ,P, ϕ) then Q tr=⇒ (E ′,Q, ϕ′) ∧ ϕ ∼s ϕ
′ for some E ′,Q, ϕ′

(and vice-versa)

Intuition:
Same adversary behaviour (tr) yields indistinguishable frames (∼s)
Example

P = new k.c(x).c〈enc(x , k)〉.c〈k〉
Q = new k.c(x).c〈enc(0, k)〉.c〈k〉

P 6≈t Q as
P c(1) c〈ax1〉 c〈ax2〉==========⇒ ({k ′}, ∅, {enc(1,k′)/ax1 ,

k′
/ax2})6∼s

Q c(1) c〈ax1〉 c〈ax2〉==========⇒ ({k ′}, ∅, {enc(0,k′)/ax1 ,
k′
/ax2})

Theorem

P ≈t Q =⇒ P ≈ Q

16/43

Indistinguishability using labelled semantics

Trace equivalence

P ≈t Q
iff

if P tr=⇒ (E ,P, ϕ) then Q tr=⇒ (E ′,Q, ϕ′) ∧ ϕ ∼s ϕ
′ for some E ′,Q, ϕ′

(and vice-versa)

Intuition:
Same adversary behaviour (tr) yields indistinguishable frames (∼s)

Theorem

P ≈t Q =⇒ P ≈ Q

17/43

A tour to the (equivalence) zoo

testing equiv. obs. equiv.

trace equiv. labelled bisim. symbolic bisim.

diff equiv.

Abadi, Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus. CCS’97,
Inf.& Comp.’99
Abadi, Fournet. Mobile values, new names, and secure communication. POPL’01

17/43

A tour to the (equivalence) zoo

testing equiv. obs. equiv.

trace equiv.

labelled bisim.

symbolic bisim.

diff equiv.

Abadi, Fournet. Mobile values, new names, and secure communication. POPL’01

17/43

A tour to the (equivalence) zoo

testing equiv. obs. equiv.

trace equiv.

labelled bisim.

symbolic bisim.

diff equiv.

Blanchet et al.: Automated Verification of Selected Equivalences for Security
Protocols. LICS’05

17/43

A tour to the (equivalence) zoo

testing equiv. obs. equiv.

trace equiv.

labelled bisim.

symbolic bisim.

diff equiv.

Diff equivalence too fine grained for several properties.

Blanchet et al.: Automated Verification of Selected Equivalences for Security
Protocols. LICS’05

17/43

A tour to the (equivalence) zoo

testing equiv. obs. equiv.

trace equiv.

labelled bisim. symbolic bisim.

diff equiv.

Delaune et al. Symbolic bisimulation for the applied pi calculus. JCS’10

17/43

A tour to the (equivalence) zoo

testing equiv. obs. equiv.

trace equiv.

labelled bisim. symbolic bisim.

diff equiv.

Liu, Lin. A complete symbolic bisimulation for full applied pi calculus.TCS’12

17/43

A tour to the (equivalence) zoo

testing equiv. obs. equiv.

trace equiv. labelled bisim. symbolic bisim.

diff equiv.

Cheval et al.: Deciding equivalence-based properties using constraint solving. TCS’13

17/43

A tour to the (equivalence) zoo

testing equiv. obs. equiv.

trace equiv. labelled bisim. symbolic bisim.

diff equiv.

For a bounded number of sessions (no replication).

Cheval et al.: Deciding equivalence-based properties using constraint solving. TCS’13

17/43

A tour to the (equivalence) zoo

testing equiv. obs. equiv.

trace equiv. labelled bisim. symbolic bisim.

diff equiv.

For a class of determinate processes.

Cheval et al.: Deciding equivalence-based properties using constraint solving. TCS’13

18/43

Part II

Applications: modelling security
protocols

19/43

Secrecy in symbolic models

Symbolic analysis: secrecy generally modelled as non-deducibility:
the attacker cannot compute the value of the secret

 partial leakage not detected

Example
Let h be a one-way hash function. The protocol

P = new s.out(c, h(s))

would be considered to enforce the secrecy of s.

20/43

Secrecy as indistinguishability
Stronger notions of secrecy can be defined using indistinguishability
I Strong secrecy of s: [Blanchet’04]

in(c, 〈t1, t2〉). P{t1/s} ≈ in(c, 〈t1, t2〉). P{t2/s}

Even if the attacker chooses values t1 or t2 he
cannot distinguish whether t1 or t2 was used as the
secret.

I Real-or-random

P; out(s) ≈ P; new s ′.out(s ′)

The attacker cannot distinguish whether at the end of the
protocol he is given the real secret or a random value.

 Resistance against offline guessing attacks

21/43

Modelling resistance against offline guessing attacks

νw .φ is resistant to guessing attacks against w iff

νw .(φ ∪ {w/x}) ∼s νw ,w ′.(φ ∪ {w ′
/x})

Intuition: an attacker cannot distinguish the right guess from a
wrong guess

A process P is resistant against guessing attacks on w if whenever

({w}, {{P}}, ∅) `=⇒
∗
(E ,P, ϕ)

then ϕ is resistant to guessing attacks.

22/43

Example: EKE protocol [BellovinMerritt92]

A→ B : enc(pk(k), w) (EKE.1)
B→ A : enc(aenc(r , pk(k)), w) (EKE.2)
A→ B : enc(na, r) (EKE.3)
B→ A : enc(〈na, nb〉, r) (EKE.4)
A→ B : enc(nb, r) (EKE.5)

φ = νk, r , na, nb. {enc(pk(k),w)/x1 ,
enc(aenc(r ,pk(k)),w) /x2 ,

enc(na,r) /x3 ,
enc(〈na,nb〉,r)/x4 ,

enc(nb,r) /x5}

νw .(φ ∪ {w/x})
?∼s νw ,w ′.(φ ∪ {w ′

/x)}

I holds if we suppose the equation enc(dec(x , y), y) = x
otherwise the test enc(dec(x1, x)) ?=E x1 distinguishes

I if we add equation ispubkey(pk(x)) = ok we distinguish
frames by ispubkey(dec(x1, x)) ?=E ok

22/43

Example: EKE protocol [BellovinMerritt92]

A→ B : enc(pk(k), w) (EKE.1)
B→ A : enc(aenc(r , pk(k)), w) (EKE.2)
A→ B : enc(na, r) (EKE.3)
B→ A : enc(〈na, nb〉, r) (EKE.4)
A→ B : enc(nb, r) (EKE.5)

φ = νk, r , na, nb. {enc(pk(k),w)/x1 ,
enc(aenc(r ,pk(k)),w) /x2 ,

enc(na,r) /x3 ,
enc(〈na,nb〉,r)/x4 ,

enc(nb,r) /x5}

νw .(φ ∪ {w/x})
?∼s νw ,w ′.(φ ∪ {w ′

/x)}

I holds if we suppose the equation enc(dec(x , y), y) = x
otherwise the test enc(dec(x1, x)) ?=E x1 distinguishes

I if we add equation ispubkey(pk(x)) = ok we distinguish
frames by ispubkey(dec(x1, x)) ?=E ok

22/43

Example: EKE protocol [BellovinMerritt92]

A→ B : enc(pk(k), w) (EKE.1)
B→ A : enc(aenc(r , pk(k)), w) (EKE.2)
A→ B : enc(na, r) (EKE.3)
B→ A : enc(〈na, nb〉, r) (EKE.4)
A→ B : enc(nb, r) (EKE.5)

φ = νk, r , na, nb. {enc(pk(k),w)/x1 ,
enc(aenc(r ,pk(k)),w) /x2 ,

enc(na,r) /x3 ,
enc(〈na,nb〉,r)/x4 ,

enc(nb,r) /x5}

νw .(φ ∪ {w/x})
?∼s νw ,w ′.(φ ∪ {w ′

/x)}

I holds if we suppose the equation enc(dec(x , y), y) = x
otherwise the test enc(dec(x1, x)) ?=E x1 distinguishes

I if we add equation ispubkey(pk(x)) = ok we distinguish
frames by ispubkey(dec(x1, x)) ?=E ok

23/43

How to model vote privacy?
How can we model

“the attacker does not learn my vote (0 or 1)”?

I The attacker cannot learn the value of my vote

 but the attacker knows values 0 and 1

I The attacker cannot distinguish A votes and B votes:
VA(v) ≈ VB(v)

 but identities are revealed

I The attacker cannot distinguish A votes 0 and A votes 1:
VA(0) ≈ VA(1)

 but election outcome is revealed

I The attacker cannot distinguish the situation where two
honest voters swap votes:

VA(0) || VB(1) ≈ VA(1) || VB(0)

Kremer, Ryan: Analysis of an E-Voting Protocol in the Applied Pi Calculus. ESOP’05

23/43

How to model vote privacy?
How can we model

“the attacker does not learn my vote (0 or 1)”?

I The attacker cannot learn the value of my vote

 but the attacker knows values 0 and 1
I The attacker cannot distinguish A votes and B votes:

VA(v) ≈ VB(v)

 but identities are revealed

I The attacker cannot distinguish A votes 0 and A votes 1:
VA(0) ≈ VA(1)

 but election outcome is revealed

I The attacker cannot distinguish the situation where two
honest voters swap votes:

VA(0) || VB(1) ≈ VA(1) || VB(0)

Kremer, Ryan: Analysis of an E-Voting Protocol in the Applied Pi Calculus. ESOP’05

23/43

How to model vote privacy?
How can we model

“the attacker does not learn my vote (0 or 1)”?

I The attacker cannot learn the value of my vote
 but the attacker knows values 0 and 1

I The attacker cannot distinguish A votes and B votes:
VA(v) ≈ VB(v)

 but identities are revealed

I The attacker cannot distinguish A votes 0 and A votes 1:
VA(0) ≈ VA(1)

 but election outcome is revealed

I The attacker cannot distinguish the situation where two
honest voters swap votes:

VA(0) || VB(1) ≈ VA(1) || VB(0)

Kremer, Ryan: Analysis of an E-Voting Protocol in the Applied Pi Calculus. ESOP’05

23/43

How to model vote privacy?
How can we model

“the attacker does not learn my vote (0 or 1)”?

I The attacker cannot learn the value of my vote

 but the attacker knows values 0 and 1

I The attacker cannot distinguish A votes and B votes:
VA(v) ≈ VB(v)

 but identities are revealed
I The attacker cannot distinguish A votes 0 and A votes 1:

VA(0) ≈ VA(1)

 but election outcome is revealed

I The attacker cannot distinguish the situation where two
honest voters swap votes:

VA(0) || VB(1) ≈ VA(1) || VB(0)

Kremer, Ryan: Analysis of an E-Voting Protocol in the Applied Pi Calculus. ESOP’05

23/43

How to model vote privacy?
How can we model

“the attacker does not learn my vote (0 or 1)”?

I The attacker cannot learn the value of my vote

 but the attacker knows values 0 and 1

I The attacker cannot distinguish A votes and B votes:
VA(v) ≈ VB(v)
 but identities are revealed

I The attacker cannot distinguish A votes 0 and A votes 1:
VA(0) ≈ VA(1)

 but election outcome is revealed

I The attacker cannot distinguish the situation where two
honest voters swap votes:

VA(0) || VB(1) ≈ VA(1) || VB(0)

Kremer, Ryan: Analysis of an E-Voting Protocol in the Applied Pi Calculus. ESOP’05

23/43

How to model vote privacy?
How can we model

“the attacker does not learn my vote (0 or 1)”?

I The attacker cannot learn the value of my vote

 but the attacker knows values 0 and 1

I The attacker cannot distinguish A votes and B votes:
VA(v) ≈ VB(v)

 but identities are revealed

I The attacker cannot distinguish A votes 0 and A votes 1:
VA(0) ≈ VA(1)

 but election outcome is revealed
I The attacker cannot distinguish the situation where two

honest voters swap votes:

VA(0) || VB(1) ≈ VA(1) || VB(0)

Kremer, Ryan: Analysis of an E-Voting Protocol in the Applied Pi Calculus. ESOP’05

23/43

How to model vote privacy?
How can we model

“the attacker does not learn my vote (0 or 1)”?

I The attacker cannot learn the value of my vote

 but the attacker knows values 0 and 1

I The attacker cannot distinguish A votes and B votes:
VA(v) ≈ VB(v)

 but identities are revealed

I The attacker cannot distinguish A votes 0 and A votes 1:
VA(0) ≈ VA(1)
 but election outcome is revealed

I The attacker cannot distinguish the situation where two
honest voters swap votes:

VA(0) || VB(1) ≈ VA(1) || VB(0)

Kremer, Ryan: Analysis of an E-Voting Protocol in the Applied Pi Calculus. ESOP’05

23/43

How to model vote privacy?
How can we model

“the attacker does not learn my vote (0 or 1)”?

I The attacker cannot learn the value of my vote

 but the attacker knows values 0 and 1

I The attacker cannot distinguish A votes and B votes:
VA(v) ≈ VB(v)

 but identities are revealed

I The attacker cannot distinguish A votes 0 and A votes 1:
VA(0) ≈ VA(1)

 but election outcome is revealed

I The attacker cannot distinguish the situation where two
honest voters swap votes:

VA(0) || VB(1) ≈ VA(1) || VB(0)

Kremer, Ryan: Analysis of an E-Voting Protocol in the Applied Pi Calculus. ESOP’05

24/43

The Helios e-voting protocol (MixNet version)

V1

V2
...

Vn

〈id1, aenc(pkE , r1, v1)〉

〈id2, aenc(pkE , r2, v2)〉
...

〈idn, aenc(pkE , rn, vn)〉

〈id1, aenc(pkE , r1, v1)〉

〈id2, aenc(pkE , r2, v2)〉

〈idn, aenc(pkE , r3, vn)〉

v2
vn

v1

BBauthenticated channel

MIX Tally

where pkE is the election public key and MIX a verifiable mixnet.

Privacy: Helios(v1, v2) ?≈t Helios(v2, v1) replay attack!

24/43

The Helios e-voting protocol (MixNet version)

V1
V2

...
Vn

〈id1, aenc(pkE , r1, v1)〉
〈id2, aenc(pkE , r2, v2)〉

...
〈idn, aenc(pkE , rn, vn)〉

〈id1, aenc(pkE , r1, v1)〉

〈id2, aenc(pkE , r2, v2)〉

〈idn, aenc(pkE , r3, vn)〉

v2
vn

v1

BBauthenticated channel

MIX Tally

where pkE is the election public key and MIX a verifiable mixnet.

Privacy: Helios(v1, v2) ?≈t Helios(v2, v1) replay attack!

24/43

The Helios e-voting protocol (MixNet version)

V1
V2
...

Vn

〈id1, aenc(pkE , r1, v1)〉
〈id2, aenc(pkE , r2, v2)〉

...
〈idn, aenc(pkE , rn, vn)〉

〈id1, aenc(pkE , r1, v1)〉

〈id2, aenc(pkE , r2, v2)〉

〈idn, aenc(pkE , r3, vn)〉

v2
vn

v1

BBauthenticated channel

MIX Tally

where pkE is the election public key and MIX a verifiable mixnet.

Privacy: Helios(v1, v2) ?≈t Helios(v2, v1) replay attack!

24/43

The Helios e-voting protocol (MixNet version)

V1
V2
...

Vn

〈id1, aenc(pkE , r1, v1)〉
〈id2, aenc(pkE , r2, v2)〉

...
〈idn, aenc(pkE , rn, vn)〉

〈id1, aenc(pkE , r1, v1)〉

〈id2, aenc(pkE , r2, v2)〉

〈idn, aenc(pkE , r3, vn)〉

v2
vn

v1

BBauthenticated channel MIX Tally

where pkE is the election public key and MIX a verifiable mixnet.

Privacy: Helios(v1, v2) ?≈t Helios(v2, v1) replay attack!

24/43

The Helios e-voting protocol (MixNet version)

V1
V2
...

Vn

〈id1, aenc(pkE , r1, v1)〉
〈id2, aenc(pkE , r2, v2)〉

...
〈idn, aenc(pkE , rn, vn)〉

〈id1, aenc(pkE , r1, v1)〉

〈id2, aenc(pkE , r2, v2)〉

〈idn, aenc(pkE , r3, vn)〉

v2
vn

v1

BBauthenticated channel MIX Tally

where pkE is the election public key and MIX a verifiable mixnet.

Privacy: Helios(v1, v2) ?≈t Helios(v2, v1)

 replay attack!

24/43

The Helios e-voting protocol (MixNet version)

V1
V2
...

Vn

〈id1, aenc(pkE , r1, v1)〉
〈id2, aenc(pkE , r2, v2)〉

...
〈idn, aenc(pkE , rn, vn)〉

〈id1, aenc(pkE , r1, v1)〉

〈id2, aenc(pkE , r2, v2)〉

〈idn, aenc(pkE , r3, vn)〉

v2
vn

v1

BBauthenticated channel MIX Tally

where pkE is the election public key and MIX a verifiable mixnet.

Privacy: Helios(v1, v2) ?≈t Helios(v2, v1) replay attack!

Cortier,Smyth: Attacking and Fixing Helios: An Analysis of Ballot Secrecy. CSF’11

24/43

The Helios e-voting protocol (MixNet version)

V1
V2
...

Vn

〈id1, aenc(pkE , r1, v1)〉
〈id2, aenc(pkE , r2, v2)〉

...
〈idn, aenc(pkE , rn, vn)〉

〈id1, aenc(pkE , r1, v1)〉

〈id2, aenc(pkE , r2, v2)〉

〈idn, aenc(pkE , r3, vn)〉

v2
vn

v1

BBauthenticated channel MIX Tally

where pkE is the election public key and MIX a verifiable mixnet.

Privacy: Helios(v1, v2) ?≈t Helios(v2, v1) replay attack!

Fix: either use weeding, or zkp that voter knows encryption
randomness

25/43

Everlasting privacy

Does verifiability decrease vote privacy?
Publishing encrypted votes on the bulletin board may be a threat
for vote privacy.
I Future technology and scientific advances may break

encryptions

I How long must a vote remain private?
1 year? 10 years? 100 years? 1010 years?

I Impossible to predict the necessary key length with certainty:
typical recommendations for less than 10 years

(cf www.keylength.com)

 everlasting privacy: guarantee privacy even if crypto is
broken

25/43

Everlasting privacy

Does verifiability decrease vote privacy?
Publishing encrypted votes on the bulletin board may be a threat
for vote privacy.
I Future technology and scientific advances may break

encryptions

I How long must a vote remain private?
1 year? 10 years? 100 years? 1010 years?

I Impossible to predict the necessary key length with certainty:
typical recommendations for less than 10 years

(cf www.keylength.com)

 everlasting privacy: guarantee privacy even if crypto is
broken

26/43

Modelling everlasting privacy
I Information available in the future: everlasting channels
I Define future attacker capabilities (crypto assumption broken)

 equational theory E +

Example: break(aenc(pk(x), y , z))→ z
I Check in two phases:

1. check trace equivalence with E
2. check static equivalence with E + on future information

 implemented in AKiSs and ProVerif

Achieving everlasting privacy:
I Do not publish encryption on the BB, but only a perfectly

hiding commitment
I Replace identities by anonymous credentials Belenios

Arapinis et al.: Practical Everlasting Privacy. POST’13

26/43

Modelling everlasting privacy
I Information available in the future: everlasting channels
I Define future attacker capabilities (crypto assumption broken)

 equational theory E +

Example: break(aenc(pk(x), y , z))→ z
I Check in two phases:

1. check trace equivalence with E
2. check static equivalence with E + on future information

 implemented in AKiSs and ProVerif

Achieving everlasting privacy:
I Do not publish encryption on the BB, but only a perfectly

hiding commitment
I Replace identities by anonymous credentials Belenios

Arapinis et al.: Practical Everlasting Privacy. POST’13

27/43

How to model unlinkability
Unlinkability [ISO/IEC 15408]:

Ensuring that a user may make multiple uses of a service
or resource without others being able to link these uses
together.

Applications: e-Passport, mobile phones, RFID tags, . . .

Can be modelled as an equivalence property:

2 sessions of the same device ≈ 2 sessions of different devices

Arapinis et al. Analysing Unlinkability and Anonymity Using the Applied Pi Calculus.
CSF’10
Brusò et al. Formal Verification of Privacy for RFID Systems. CSF’10

27/43

How to model unlinkability
Unlinkability [ISO/IEC 15408]:

Ensuring that a user may make multiple uses of a service
or resource without others being able to link these uses
together.

Applications: e-Passport, mobile phones, RFID tags, . . .

Can be modelled as an equivalence property:

2 sessions of the same device ≈ 2 sessions of different devices

Arapinis et al. Analysing Unlinkability and Anonymity Using the Applied Pi Calculus.
CSF’10
Brusò et al. Formal Verification of Privacy for RFID Systems. CSF’10

28/43

Authentication protocol of a RFID tag (KCL)

Reader
k, id

Tag
k, id

new r1 r1

new r2

〈id ⊕ r2, h(〈r1, k〉)⊕ r2〉

(id ⊕ r2)⊕ (h(〈r1, k〉)⊕ r2)⊕ id
?= h(〈r1, k〉)

Is unlinkability satisfied?

tag(id , k) | tag(id , k) ?≈ tag(id , k) | tag(id ′, k ′)

29/43

Linkability attack

1 Tag
k, id

Att 2 Tags
k, id

r1r1

new r2new r2

〈id⊕ r2, h(〈r1, k〉)⊕ r2〉〈id⊕ r2, h(〈r1, k〉)⊕ r2〉

k ′, id ′r1r1

new r ′
2 new r ′

2

〈id⊕ r ′
2, h(〈r1, k〉)⊕ r ′

2〉 〈id′ ⊕ r ′
2, h(〈r1, k′〉)⊕ r ′

2〉

(id⊕ r2)⊕ (h(〈r1, k〉)⊕ r2) ?=
([id/id′]⊕ r ′

2)⊕ (h(〈r1, [k/k′]〉)⊕ r ′
2)

30/43

Part III

Automated analysis : ProVerif

31/43

Bi-processes

We want to prove P1 ≈ P2.

In ProVerif P1 and P2 are jointly specified using a bi-process.
using the choice[t1, t2] operator.

When P contains choice[t1, t2]:
I P1 is defined by replacing choice[t1, t2] by t1;
I P2 is defined by replacing choice[t1, t2] by t2.

Remark: Any process can be defined as a bi-process:

if choice[0,1] = 0 then P1 else P2

but ProVerif does not succeed on general processes

31/43

Bi-processes

We want to prove P1 ≈ P2.

In ProVerif P1 and P2 are jointly specified using a bi-process.
using the choice[t1, t2] operator.

When P contains choice[t1, t2]:
I P1 is defined by replacing choice[t1, t2] by t1;
I P2 is defined by replacing choice[t1, t2] by t2.

Remark: Any process can be defined as a bi-process:

if choice[0,1] = 0 then P1 else P2

but ProVerif does not succeed on general processes

32/43

Diff-equivalence

Diff equivalence is a fine-grained equivalence that implies trace
equivalence

P ≈diff Q: taking the same branches in P and Q implies static
equivalence (∼ reachability + static equivalence).

Often too fine-grained:

c〈choice[a, b]〉|c〈choice[b, a]〉 not considered equivalent!

Recent versions include a command equivalence, constructing the
bi-process automatically:

32/43

Diff-equivalence
Diff equivalence is a fine-grained equivalence that implies trace
equivalence

P ≈diff Q: taking the same branches in P and Q implies static
equivalence (∼ reachability + static equivalence).

Often too fine-grained:

c〈choice[a, b]〉|c〈choice[b, a]〉 not considered equivalent!

Recent versions include a command equivalence, constructing the
bi-process automatically:

P = c〈a〉 || c〈b〉
Q = c〈b〉 || c〈a〉
equivalence P Q

succeeds, but fragile . . .

32/43

Diff-equivalence
Diff equivalence is a fine-grained equivalence that implies trace
equivalence

P ≈diff Q: taking the same branches in P and Q implies static
equivalence (∼ reachability + static equivalence).

Often too fine-grained:

c〈choice[a, b]〉|c〈choice[b, a]〉 not considered equivalent!

Recent versions include a command equivalence, constructing the
bi-process automatically:

P = c〈a〉.c〈b〉 || c〈b〉.c〈a〉
Q = c〈b〉.c〈a〉 || c〈a〉.c〈b〉
equivalence P Q

fails

33/43

Strong flavors of secrecy

Strong secrecy (non-interference) of x

c(x1).c(x2).P{x 7→ choice[x1, x2]}

(or direct query noninterf x)

Resistance to guessing attacks of w

new w .P.new w ′.c〈choice[w ,w ′]〉}

(or direct query weaksecret w)

34/43

Modelling equivalence in Horn clauses

Reachability properties: att(t) models attacker knows t

Equivalence properties:
att′(t1, t2) models attacker knows t1 in P1 and t2 in P2

c〈choice[t1, t2]〉 is translated into att′(t1, t2)

Special clauses for equivalence

att′(x , y) ∧ att′(x , y ′) ∧ nounif(y , y ′)→ bad
att′(x , y) ∧ att′(x ′, y) ∧ nounif(x , x ′)→ bad

where nounif(t, t ′) holds when t, t ′ cannot be unified.

Equivalence holds when bad cannot be derived.

35/43

Part IV

Automated analysis : deepsec

36/43

deepsec: DEciding Equivalence Properties in SECurity protocols

I Decision procedure for trace equivalence
(no approximation, but high complexity coNEXP!)

I Bounded number of sessions
(no replication; otherwise full applied pi)

I Crypto primitives specified by
destructor subterm convergent rewrite systems

I Tool implemented in OCaml:
https://github.com/DeepSec-prover/deepsec

I Input language similar to (untyped) ProVerif
I Possibility to distribute the verification

(on multiple cores and multiple machines)

https://github.com/DeepSec-prover/deepsec

37/43

Destructor subterm convergent rewrite systems

Rewrite rules orient equational theories : `→ r rather than ` = r .
I Partition function symbols into constructors and destructors
I Messages do not contain destructors
I Each destructor g defined by rules g(t1, . . . , tn)→ u
I For any rule `→ r r is a subterm of ` (or constant)

Example

Fc = {enc, pair} Fd = {dec, fst, snd}
R = {dec(enc(x , y), y)→ x , fst(pair(x , y))→ x , snd(pair(x , y))→ y}

dec(pair(t1, t2)) not a valid message!

38/43

Verification for a bounded number of sessions

Bounded number of sessions: why is it difficult?

The state space is still infinite: unbounded number of attacker
inputs!

Idea: represent infinite number of possible inputs symbolically in
a constraint system

Example
c(x).P transitions to P but keeps a deduction constraint X `? x

if t1 = t2 then P else Q : 2 transitions
I to P with constraint t1 =?

R t2
I to Q with constraint t1 6=?

R t2

38/43

Verification for a bounded number of sessions

Bounded number of sessions: why is it difficult?

The state space is still infinite: unbounded number of attacker
inputs!

Idea: represent infinite number of possible inputs symbolically in
a constraint system

Example
c(x).P transitions to P but keeps a deduction constraint X `? x

if t1 = t2 then P else Q : 2 transitions
I to P with constraint t1 =?

R t2
I to Q with constraint t1 6=?

R t2

38/43

Verification for a bounded number of sessions

Bounded number of sessions: why is it difficult?

The state space is still infinite: unbounded number of attacker
inputs!

Idea: represent infinite number of possible inputs symbolically in
a constraint system

Example
c(x).P transitions to P but keeps a deduction constraint X `? x

if t1 = t2 then P else Q : 2 transitions
I to P with constraint t1 =?

R t2
I to Q with constraint t1 6=?

R t2

38/43

Verification for a bounded number of sessions

Bounded number of sessions: why is it difficult?

The state space is still infinite: unbounded number of attacker
inputs!

Idea: represent infinite number of possible inputs symbolically in
a constraint system

Example
c(x).P transitions to P but keeps a deduction constraint X `? x

if t1 = t2 then P else Q : 2 transitions
I to P with constraint t1 =?

R t2
I to Q with constraint t1 6=?

R t2

38/43

Verification for a bounded number of sessions

Bounded number of sessions: why is it difficult?

The state space is still infinite: unbounded number of attacker
inputs!

Idea: represent infinite number of possible inputs symbolically in
a constraint system

Example
c(x).P transitions to P but keeps a deduction constraint X `? x

if t1 = t2 then P else Q : 2 transitions
I to P with constraint t1 =?

R t2
I to Q with constraint t1 6=?

R t2

39/43

Constraint systems

A constraint system is a tuple C = (Φ,D,E1) where:
I Φ = {ax1 7→ t1, . . . , axn 7→ tn} is a frame;
I D is a conjunction of deduction facts X `? x ;
I E1 is a conjunction of formulas u =?

R v or u 6=?
R v .

A solution is a pair of substitutions Σ, σ such that
I Φσ `XΣ xσ for all X `? x ∈ D
I uσ ./ vσ for all u ./ v ∈ E1

Note: Σ represents attacker inputs and constraints are such that
it completely defines σ

40/43

Symbolic semantics

Symbolic semantics: associate a constraint system to the process
(sample rules)

(P ∪ {{if u = v then Q}}, (Φ,D,E1)) ε−→s (P ∪ {{Q}}, (Φ,D,E1 ∧ u =?
R v))

(P ∪ {{c(x).Q}}, (Φ,D,E1)) c(X)−−−→s (P ∪ {{Q}}, (Φ,D ∧ X `? x ,E1))
(P ∪ {{c〈t〉.Q}}, (Φ,D,E1)) c〈ax〉−−−→s (P ∪ {{Q}}, (Φ ∪ {ax 7→ t},D,E1))

Sound: if (A, C) `−→s (A′, C′) then for any (Σ, σ) ∈ Sol(C) we have
that Aσ `Σ−→ A′σ

Complete: if (Σ, σ) ∈ Sol(C) and Aσ `Σ−→ A′ then
(A, C) `−→s (A′, C′) and Σ′, σ′ ∈ Sol(C ′) and A′′σ′ = A′

40/43

Symbolic semantics

Symbolic semantics: associate a constraint system to the process
(sample rules)

(P ∪ {{if u = v then Q}}, (Φ,D,E1)) ε−→s (P ∪ {{Q}}, (Φ,D,E1 ∧ u =?
R v))

(P ∪ {{c(x).Q}}, (Φ,D,E1)) c(X)−−−→s (P ∪ {{Q}}, (Φ,D ∧ X `? x ,E1))
(P ∪ {{c〈t〉.Q}}, (Φ,D,E1)) c〈ax〉−−−→s (P ∪ {{Q}}, (Φ ∪ {ax 7→ t},D,E1))

Sound: if (A, C) `−→s (A′, C′) then for any (Σ, σ) ∈ Sol(C) we have
that Aσ `Σ−→ A′σ

Complete: if (Σ, σ) ∈ Sol(C) and Aσ `Σ−→ A′ then
(A, C) `−→s (A′, C′) and Σ′, σ′ ∈ Sol(C ′) and A′′σ′ = A′

41/43

A simple example

Pb , c(x). if x = b then c〈0〉 else c〈x〉 b ∈ {0, 1}
Q , c(x).c〈x〉

P0 ≈t Q but P1 6≈t Q (different behavior on input 1)

Symbolic transitions tree:

(Pb
0 , C∅) (Pb

1 , Cb
1)

(Pb
2 , Cb

2)

(Pb
3 , Cb

3)

(Pb
4 , Cb

4)

(Pb
5 , Cb

5)

c(X)
s

ε
sε

s

c〈ax1〉
s

c〈ax1〉
s

(Q0, C∅) (Q1, C1) (Q2, C2)
c(X)

s
c〈ax1〉

s

C2 , ({ax1 7→ x},X `? x , ∅)
Cb

4 , ({ax1 7→ 0},X `? x , x =?
R b)

Cb
4 , ({ax1 7→ x},X `? x , x 6=?

R b)

41/43

A simple example

Pb , c(x). if x = b then c〈0〉 else c〈x〉 b ∈ {0, 1}
Q , c(x).c〈x〉

P0 ≈t Q but P1 6≈t Q (different behavior on input 1)

Symbolic transitions tree:

(Pb
0 , C∅) (Pb

1 , Cb
1)

(Pb
2 , Cb

2)

(Pb
3 , Cb

3)

(Pb
4 , Cb

4)

(Pb
5 , Cb

5)

c(X)
s

ε
sε

s

c〈ax1〉
s

c〈ax1〉
s

(Q0, C∅) (Q1, C1) (Q2, C2)
c(X)

s
c〈ax1〉

s

C2 , ({ax1 7→ x},X `? x , ∅)
Cb

4 , ({ax1 7→ 0},X `? x , x =?
R b)

Cb
4 , ({ax1 7→ x},X `? x , x 6=?

R b)

41/43

A simple example

Pb , c(x). if x = b then c〈0〉 else c〈x〉 b ∈ {0, 1}
Q , c(x).c〈x〉

P0 ≈t Q but P1 6≈t Q (different behavior on input 1)

Symbolic transitions tree:

(Pb
0 , C∅) (Pb

1 , Cb
1)

(Pb
2 , Cb

2)

(Pb
3 , Cb

3)

(Pb
4 , Cb

4)

(Pb
5 , Cb

5)

c(X)
s

ε
sε

s

c〈ax1〉
s

c〈ax1〉
s

(Q0, C∅) (Q1, C1) (Q2, C2)
c(X)

s
c〈ax1〉

s

C2 , ({ax1 7→ x},X `? x , ∅)
Cb

4 , ({ax1 7→ 0},X `? x , x =?
R b)

Cb
4 , ({ax1 7→ x},X `? x , x 6=?

R b)

42/43

Partition Tree

Build a joint symbolic execution tree

Partition solutions (split nodes): ensure static equivalences of all
solutions in a same node
 done by constraint solving algorithm

(Q0, C∅)
(P0

0 , C∅)

(Q1, C1), (P0
1 , C0

1)
(P0

2 , C0
2), (P0

3 , C0
3)

c(X)
s

(Q2, C2),
(P0

4 , C0
4), (P0

5 , C0
5)

c〈ax1〉
s

(Q2, C2),
(P0

4 , C0
4)

X = 0
c〈ax1〉

s

(Q2, C2),
(P0

5 , C0
5)

X 6= 0

c〈ax1〉

s

(Q2, C2),
X = 1c〈ax1〉

s
(P1

4 , C1
4)

X = 1
c〈ax1〉

s
(Q2, C2),
(P0

5 , C0
5)

X 6= 1

c〈ax1〉

s

42/43

Partition Tree

Build a joint symbolic execution tree

Partition solutions (split nodes): ensure static equivalences of all
solutions in a same node
 done by constraint solving algorithm

(Q0, C∅)
(P0

0 , C∅)
(Q1, C1), (P0

1 , C0
1)

(P0
2 , C0

2), (P0
3 , C0

3)
c(X)

s

(Q2, C2),
(P0

4 , C0
4), (P0

5 , C0
5)

c〈ax1〉
s

(Q2, C2),
(P0

4 , C0
4)

X = 0
c〈ax1〉

s

(Q2, C2),
(P0

5 , C0
5)

X 6= 0

c〈ax1〉

s

(Q2, C2),
X = 1c〈ax1〉

s
(P1

4 , C1
4)

X = 1
c〈ax1〉

s
(Q2, C2),
(P0

5 , C0
5)

X 6= 1

c〈ax1〉

s

42/43

Partition Tree

Build a joint symbolic execution tree

Partition solutions (split nodes): ensure static equivalences of all
solutions in a same node
 done by constraint solving algorithm

(Q0, C∅)
(P0

0 , C∅)
(Q1, C1), (P0

1 , C0
1)

(P0
2 , C0

2), (P0
3 , C0

3)
c(X)

s
(Q2, C2),

(P0
4 , C0

4), (P0
5 , C0

5)
c〈ax1〉

s

(Q2, C2),
(P0

4 , C0
4)

X = 0
c〈ax1〉

s

(Q2, C2),
(P0

5 , C0
5)

X 6= 0

c〈ax1〉

s

(Q2, C2),
X = 1c〈ax1〉

s
(P1

4 , C1
4)

X = 1
c〈ax1〉

s
(Q2, C2),
(P0

5 , C0
5)

X 6= 1

c〈ax1〉

s

Need to partition: C0
4 enforces X = 0 and C0

5 enforces X 6= 0.

42/43

Partition Tree

Build a joint symbolic execution tree

Partition solutions (split nodes): ensure static equivalences of all
solutions in a same node
 done by constraint solving algorithm

(Q0, C∅)
(P0

0 , C∅)
(Q1, C1), (P0

1 , C0
1)

(P0
2 , C0

2), (P0
3 , C0

3)
c(X)

s

(Q2, C2),
(P0

4 , C0
4), (P0

5 , C0
5)

c〈ax1〉
s

(Q2, C2),
(P0

4 , C0
4)

X = 0
c〈ax1〉

s

(Q2, C2),
(P0

5 , C0
5)

X 6= 0

c〈ax1〉

s

(Q2, C2),
X = 1c〈ax1〉

s
(P1

4 , C1
4)

X = 1
c〈ax1〉

s
(Q2, C2),
(P0

5 , C0
5)

X 6= 1

c〈ax1〉

s

Need to partition: C0
4 enforces X = 0 and C0

5 enforces X 6= 0.

42/43

Partition Tree

Build a joint symbolic execution tree

Partition solutions (split nodes): ensure static equivalences of all
solutions in a same node
 done by constraint solving algorithm

(Q0, C∅)
(P0

0 , C∅)
(Q1, C1), (P0

1 , C0
1)

(P0
2 , C0

2), (P0
3 , C0

3)
c(X)

s

(Q2, C2),
(P0

4 , C0
4), (P0

5 , C0
5)

c〈ax1〉
s

(Q2, C2),
(P0

4 , C0
4)

X = 0
c〈ax1〉

s

(Q2, C2),
(P0

5 , C0
5)

X 6= 0

c〈ax1〉

s

(Q2, C2),
X = 1c〈ax1〉

s
(P1

4 , C1
4)

X = 1
c〈ax1〉

s
(Q2, C2),
(P0

5 , C0
5)

X 6= 1

c〈ax1〉

s

Need to partition: C0
4 enforces X = 0 and C0

5 enforces X 6= 0.
P0 ≈t Q: each leaf contains processes derived from P0 and Q.

42/43

Partition Tree

Build a joint symbolic execution tree

Partition solutions (split nodes): ensure static equivalences of all
solutions in a same node
 done by constraint solving algorithm

(Q0, C∅)
(P1

0 , C∅)
(Q1, C1), (P1

1 , C1
1)

(P1
2 , C1

2), (P1
3 , C1

3)
c(X)

s

(Q2, C2),
(P1

4 , C1
4), (P1

5 , C1
5)

c〈ax1〉
s

(Q2, C2),
(P0

4 , C0
4)

X = 0
c〈ax1〉

s

(Q2, C2),
(P0

5 , C0
5)

X 6= 0

c〈ax1〉

s

(Q2, C2),
X = 1c〈ax1〉

s
(P1

4 , C1
4)

X = 1
c〈ax1〉

s
(Q2, C2),
(P0

5 , C0
5)

X 6= 1

c〈ax1〉

s

Need to partition more to ensure static equivalence inside nodes.
P1 6≈t Q: leaves with processes only from P1.

43/43

Overview of tools
Unbounded number of sessions (no termination guarantees)

ProVerif Tamarin Maude NPA

equivalence diff
(+ extensions) diff diff

protocol
model applied pi MSR

(state, loops, . . .) strands

eq. theories finite variant (?) subterm conv.
+ DH

finite variant
+ algebraic prop.

Bounded number of sessions

SPEC APTE AKiSs deepsec

equivalence symb.
bisimulations

trace
equiv

∼ trace
equiv

trace
equiv

protocol
model

spi
(no else) applied pi applied pi applied pi

eq. theories fixed fixed finite variant
+ xor

destructor
subterm conv.

No swiss knife for equivalence properties

43/43

Overview of tools
Unbounded number of sessions (no termination guarantees)

ProVerif Tamarin Maude NPA

equivalence diff
(+ extensions) diff diff

protocol
model applied pi MSR

(state, loops, . . .) strands

eq. theories finite variant (?) subterm conv.
+ DH

finite variant
+ algebraic prop.

Bounded number of sessions

SPEC APTE AKiSs deepsec

equivalence symb.
bisimulations

trace
equiv

∼ trace
equiv

trace
equiv

protocol
model

spi
(no else) applied pi applied pi applied pi

eq. theories fixed fixed finite variant
+ xor

destructor
subterm conv.

No swiss knife for equivalence properties

43/43

Overview of tools
Unbounded number of sessions (no termination guarantees)

ProVerif Tamarin Maude NPA

equivalence diff
(+ extensions) diff diff

protocol
model applied pi MSR

(state, loops, . . .) strands

eq. theories finite variant (?) subterm conv.
+ DH

finite variant
+ algebraic prop.

Bounded number of sessions

SPEC APTE AKiSs deepsec

equivalence symb.
bisimulations

trace
equiv

∼ trace
equiv

trace
equiv

protocol
model

spi
(no else) applied pi applied pi applied pi

eq. theories fixed fixed finite variant
+ xor

destructor
subterm conv.

No swiss knife for equivalence properties

	Indistinguishability properties in the applied pi calculus
	Applications: modelling security protocols
	Automated analysis : ProVerif
	Automated analysis : deepsec

