
Epsilon Geometry: Building Robust Algorithms
from Imprecise Computations

Leonidas Guibas1t2 David Salesinl Jorge Stolfi2

‘Stanford University 2DEC Systems Research Center

1 Introduction

We describe a new general framework, called Epsilon
Geometry, for coping with computational errors in geo-
metric algorithms that arise from the use of finite pre-
cision arithmetic.

The Epsilon Geometry framework allows us to build
robust geometric algorithms out of imprecise geomet-
ric primitives. Our method combines the techniques of
interval arithmetic and backward error .analysis, along
with agood deal of geometric reasoning. Our algorithms
compute an exact solution for a perturbed version of the
input., and they return a bound on the size of this im-
plicit perturbation.

The problem of building robust geometric algorithms
has received a good deal of attention in the last few
years. For example, Yap [9] and Edelsbrunner and
Miicke [l] studied the problem of coping with geometric
degeneracies, such as the possibility of three collinear
points. The methods they propose are vaguely reminis-
cent of ours, in that they too make use of use perturba-
tions on the input data. However, their perturbations
are infinitesimal and bear only a superficial resemblance
to ours. Furthermore, the problem of imprecise compu-
tations that we address is distinct and much harder, in
the sense that rounding errors not only increase the like-
lihood of degenerate cases, but they also introduce the
possibility of inconsistencies. For example, imprecise
computations may tell us that points a, b, c and b, c, d
are collinear, but that points a,b, and d are not.

Ottmann, Thiemt, and Ullrich [8] showed how it is

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

0 1989 ACM 0-89791-318-3/89/0006/0208 $1.50

possible to create a robust segment-intersection algo-
rithm assuming a scalar-product operator that is ex-
act to within the machine’s precision. By contrast, our
framework is designed to cope with computations that
are significantly less accurate than the machine’s preci-
sion limits. Greene and Yao [2] showed how a discrete
version of the segment-intersection problem can be for-
mulated and satisfactorily solved, but they too assume
precise computations.

Our approach is more similar to those of
Milenkovic [S] and of Hoffmann, Hopcroft, and Kara-
sick [3]. These methods compute an exact result for a
perturbed version of the input data, but they assume
a perturbation bounded by a constant chosen a priori.
Among other differences, the algorithms in our frame-
work can determine the size of the required perturbation
based on the size of the rounding errors observed during
the computation.

1.1 Epsilon-Predicates

The following definitions attempt to capture the notion
of “‘approximate tests” in a very general setting. Let 0
be a set of objecis endowed with some distance metric
II., .I]. Let P be a predicate defined on 0. Then for
any X E 0 and any d 1 6, we define e-P(X) as a
shorthand for “P(X’) is true for some X’ E 0 such
that IlX, X’ll 2 E.” That is, X is at most E away from
satisfying P(X). Therefore, the truth-set of 6-P is that
of P, “fattened” by E. Note that O-P(X) is the same as

P(X)-
In order to extend these definitions to an n-ary pred-

icate P, we note that if 01, . . . , 0, are metric spaces
with distance functions II Iii,. . . , II Iln, then Uix...xO,
is a metric space with the distance function given by

Thus, for example, if CIi = 02 = % with metric
]]z,z’]~ =]Z - ~‘1, then 01 x 02 has the implicit metric
]l(z, y), (z’, y’)][= max (1~ - 2’1,]y - y’]). Therefore, if
P(x,y) is the predicate (Z > y), then &-P(z,y) means

208

that x > y can be made true by perturbing x and y by
at most .5.

Throughout this paper we will assume that 11 11 is a
Minkowski metric. Minkowski metrics include all L,
distance functions, in particular the Euclidean (Lz) and
Manhattan (Ll) metrics. Note that the composite met-
ric (1) is Minkowski if the metrics 11 [Ii are Minkowski.

It follows immediately from the definition of an
c-predicate that

and

E-P(X) * &‘-P(X) for all 6’ 2 E (2)

Ilot(&-P(X)) =R not(&-P(X)) for all 8 < e (3)

We can extend our definition of c-predicate to negative
values of E, in such a way that properties (2) and (3)
remain true for all E. If E > 0, we define (+)-P(X) as
a shorthand for “P(X’) is trzle for all X’ E 0 S&J ihat
11x, X’ll 5 E.” Intuitively, an object X that is (-6)-P
is “extremely P,” whereas an X that is only E-P is just
“nearly P.” This definition can also be expressed by
the identity

(-&)-P(X) * not(s-(not P(X)))

The following properties of epsilon-predicates follow
readily from the definitions and the triangle inequality
for distances:

Lemma 1 For any predicates, P and Q, and any E 2 0,

E-(P v Q)(X) (j E-P(X) v E-Q(X)

E-(P A Q)(X) =$ E-P(X) A E-Q(X)

Note that in the case of A the implication only works
in one direction, because even if it is possible to satisfy
P(X) and Q(X) separately with c-perturbations to X,
it may not always be possible to satisfy both constraints
simultaneously.

Lemma 2 For any ~,6 1 0, and any predicates
P, Q, R, if P(X) implies E-Q(X), and Q(X) implies
&R(X), then P(X) implies (E + 6)-R(X).

1.2 Implementing Epsilon-Predicates

When geometric tests such as collinearity or convex-
ity are implemented using floating point arithmetic in
the straightforward way, their outcome becomes subject
to errors. In order to quantify those errors and allow
geometric algorithms to cope with them, we propose
to implement each geometric test P(X) as a procedure
P(X) that, instead of simply returning true or false,
returns an estimate of how far X is from satisfying P.

More precisely, the procedure P(X) should return a par-
tition of the real line into three sets F, U, T, such that
the predicate E-P(X) is false for 6 E F, true for E E T,
and unknown for E E U. We call such a procedure an
epsilon-box for P.

Given that E-P(X) is a monotonic boolean function
of E, for any fixed X, we can assume that F, U, and
T are intervals of the real line (empty, bounded, or un-
bounded), with F before U before T. Since the floating-
point numbers are a discrete set, such a partition can be
represented by a pair of numbers e = (e.lo, e.hi), such
that a-P(X) is false for e < e.lo, true for E > e.hi, and
unknown for e.lo 5 E < e.hi. To cover all possible tri-
partitions of 3, we must let e.lo and e-hi assume also
the special values +oo or -oo.

We will call such pairs intervals ofuncetiaintyor sim-
ply intervals. Note that this name is slightly misleading,
because the pairs cannot be viewed as ordinary intervals
of the real line. The difference is that two degenerate
pairs (2, x) and (Y, Y) with z # y are quite distinct out-
comes, even though they define the same (empty) set U
of “uncertain” E-values.

Informally, the pair e returned by P(X) tells us that
X is at least e.lo and at most e.hi away from satisfying
the predicate P. In particular, if e.lo > 0, then P(X)
is definitely false; if e.hi 5 0, then P(X) is definitely
true; and if e.lo 5 0 < e.hi, the procedure was unable
to decide whether P(X) is true of false because of com-
putation errors.

As we shall see, this approach allows us to build ro-
bust geometric algorithms out of arbitrarily inaccurate
primitives. In general, such an algorithm will produce
results that are correct only in an approximate sense.
However, the algorithm will always be able to combine
the uncertainty intervals returned by the primitives into
a “warranty” for the result: that is, an interval of uncer-
tainty that states how far the result that was returned
may be from the exact one.

In principle, we do not make any assumptions on
the size of the uncertainty intervals U returned by an
epsilon-box. We consider an epsilon-box to be correct
as long as E-P(X) is false for all E E F, and true for all
E E T. An epsilon-box box is always allowed to say “I
don’t know” for an arbitrarily large range U or E values.
In particular, the trivial epsilon-box that always returns
T = F = 4, U = SR is a correct implementation of any
predicate P.

In practice, of course, an epsilon-box should keep its
uncertainty trange U reasonably small in order to be
useful. Typically, a primitive box P(X) will compute
the distance from X to the truth-set of P using floating
point arithmetic, and estimate the uncertainty of the
result according to standard numerical analysis tech-
niques. For most primitives, this epsilon-box will be

209

only a few times slower than the naive implementation
of P(X). We will come back to this topic in section 2.

1.3 Combining Epsilon-Boxes

The following operations on uncertainty intervals turn
out to be useful for combining primitive epsilon-boxes
into more complex algorithms. Given two uncertainty
intervals a, b, we define

min{a,b} = (min{a.lo,b.lo}, min{a.hi,b.hi))
max {a, b} = (max {ale, b.Zo}, max {a.hi,b.hi})

sub = (min{a.lo,b.Zo}, max{a.hi,b.hi})
anb = (max {a.lo, b.lo}, min {ahi, b.hi})

For example, suppose we managed to prove that the
predicate e-R(X) is equivalent to e-P(X) V E-&(X), for
all X and all E. Then the predicate R(X) can be imple-
mented as the procedure R(X) that evaluates the inter-
vals a = P(X) and b = Q(X), and returns the interval
min{a, b}. Note that this interval is generally noi the
union of the intervals a and b.

This rule is easy to understand with the help of
figure 2, which shows the “graphs” of the predicates
E-W) 9 dxw, and E-R(X), for a particular X, as a
function of &. The “fuzzy” portion of each graph rep-
resents the uncertainty interval returned by the corre-
sponding epsilon-box.

q.lo ehi

T-Qcle
*C:

Figure 2.

Similary, if we know that the predicate &-R(X) is
equivalent to &-P(X) A E-Q(X), for all X and all &, then
the procedure R(X) should return max {P(X), Q(X)}.

Note that in most machines these operations can be
performed without any rounding errors. Note also that
the uncertainty c.hi - c.10 of the result c is no greater
than the uncertainty in the inputs a and b.

Another situation that often arises in algorithms is
the following. Suppose we computed two possible re-
sults a and b for the epsilon-box R(X), by two differ-
ent algorithms, and we know that the first algorithm
is correct when some condition P(X) is true, and the
second one is correct when P(X) is false. If we cannot
decide whether P(X) is true or false, we can still tell

that E-R(X) is false for & < min{a.lo,b.lo}, and true
for E 1 max {a.hi, b.hi). Therefore, the procedure R(X)
can safely return the pair T = a LI b, which we call the
join of a and b.

As a final example, suppose again that we have com-
puted two possible results a and b for R(X), but now
we know that both intervals are correct. This tells us
that E-R(X) is false for E < max{a.Zo, b.lo}, and true
for E 1 min {ahi, b.hi}. Therefore, R(X) can return the
pair r = a 176, which we call the meet of a and b.

Note that if both a and bare correct outcomes, the re-
sult r = an b is bound to satisfy r-lo 5 r.hi. IIowever, in
more complicated expressions this need not be the case.
For those situations, it is useful to define the “impossi-
ble” interval 0 = (+oo, -00) and define by convention
a fl b = 0 whenever a and b are incompatible outcomes,
that is, whenever a.10 > b.hi or b.lo > a.hi. Note that
0lla=a~0=0,andaU0=0Ua=a,foranya.

2 Some Basic Predicates

Now let’s consider in more detail the implementation
of basic geometric predicates of two-dimensional geom-
etry. Unless said otherwise, we will measure distances
between points in the plane with the familiar Euclidean
(~52) metric, tlp,qll = &.z - 4.z12 + (I-V - q412.
However, many of the results that follow can be adapted
to any other L, metric. In fact, some of the algorithms
described below may be easier to code (but probably
harder to prove) if we defined 11 11 to be the L, or L1
metric.

2.1 Coincidence

Let’s consider first the Coincident predicate, which
merely tests whether two points of the plane are coinci-
dent or distinct. According to the general definition, the
derived predicate E-Coincident(p, q) is true if and only
if& 2 alIp, qll. Therefore, the procedure Coincident
that implements this predicate should compute the dis-
tance IIp,qII, and return a pair (e.lo,e.hi) such that
e.lo 5 fllp,qll 5 e.hi. This interval tells us that it
is possible to make p and q coincident if we displace
both points by e.hi in suitable directions, and it is not
possible to make p and q coincident if we displace them
by less than e.lo.

Note that depending on the application, it may
not be necessary to compute the Euclidean distance
Ilp,q(l with high accuracy. For example, we can use
the property that IIP, !?II, I III? !7II 5 fillP7 qll,,
where IIP, 4, = max(1p.z - q.zl, 1p.y - q.yl}. The
Coincident box may then compute D = IIp,qII,, and
return the interval (e.lo, e.hi) = (D/2, D/d). This is a

210

very coarse approximation, with a relative uncertainty
of the result is almost 50%; however, it is somewhat
faster to compute than the square root formula, and it
may still be accurate enough for many applications.

2.2 Estimating Roundoff Errors

In practice, besides the approximation error that results
from using the L, norm to compute a distance, we also
have rounding errors due to the subtraction and the
division by 4. Fortunately, the magnitude of these
errors is easy to estimate.

A fundamental “axiom” of numerical analysis [5] says
that for each floating-point number system there is a
constant u (the machine precision) such that the result
c* of computing c = a * b in floating point (where * is
either +, -, a, or /) satisfies c* = c(1 + A), for some A
with [Al < u. Furthermore, the same guarantee applies
to the basic numerical functions (J, sin, exp, etc.), if
they are properly implemented.

So, for example, the computed value d’ of the distance

d = d(p.z - q.x)2 + (P.Y - Q.YJ2 (4)

is actually

8 = { [(P.X - VW+ h)12(l + A2)

+ KP.Y - !l.Y)P f W12(1 + bp2 0 + J45) (5)

where I&(5 21 for all i.
We can simplify the last expression by resorting to

a standard numerical analysis trick. Observe that the
maximum relative rounding error IA1 in a floating-point
operation is normally very small, typically 10-s or less.
If we define u to be just a little bigger than this max-
imum error (say, twice as big), then we can prove that
any expression of the form

fi(l+xi)/fi(l+J;)
i=l j=l

lies in the interval 1 f (m + n)u, provided m and n are
not too big. In particular, this “safety factor” built into
u allows us to ignore second and higher powers of the
Ai in error bounds, and freely move factors of (1 f Xi)
between the numerator and denominator. Using this
trick, formula (5) simplifies to

d“ = j/[(p.x - q.x)2 + (p.9 - q.y)]‘(l + 3A6) (1 + A5)

and finally to

d’ = &.x - q.x)2 + (p.y - q.y)2 (1 + ;A,) (6)

for some Ji with IAil 5 21. We conclude that the exact
distance d is well inside the interval d’ f 3u. Therefore,

the Coincident procedure can return the uncertainty
interval

e = (e.lo, e.hi) = (d*(l - 3u)/2, d*(l + 3u)/2) (7)

Note that the division by 2 is exact, and the rounding
error in the multiplication by (1 + 3u) is on the order of
u2 and is therefore covered by the safety factor implicit
in u.

Of course there are many other correct implementa-
tions of Coincident, each with its own cost and accuracy.
We are not concerned here with the problem of choosing
between those alternatives. Our goal is not so much to
design fast or accurate primitives, but to show how to
make good use of arbitrarily inaccurate ones.

2.3 Collinearity and Orientation

The tests for collinearity and orientation of three given
points deserve careful discussion, since they are basic
building blocks of many two-dimensional geometric al-
gorithms. We denote by Collinear(p, q, r) the predi-
cate that checks whether the points p, q and P of ?R2
lie on a common straight line, in any order. There-
fore, c-Collinear(p,q, r) is true if there exists a line 1
that passes within & of all three points. The predicates
Collinear and e-Collinear are obviously symmetric in
their three arguments.

We can visualize the .c-Collinear predicate as follows.
Consider the disks P and & of radius E centered at p
and Q, respectively. The set of all lines passing through
a point of r-and a point of Q cover a bow-tie-shaped
region of the plane bounded by the two inner and two
outer tangents of P and Q. (If P and Q have a point
in common, then this region degenerates to the entire
plane.) We call this region the c-buttefly determined
by p and q. See figure 3.

Figure 3. The E-butterfly of p and q.

Obviously, the three points p, q, and r are E-collinear
if and only if the E-disk centered at r intersects the
c-butterfly of p and q. Equivalently, the three points
are E-collinear if and only if one of the c-disks intersects
the c-stroke of the other two points, which is how we
call the convex hull of the two c-disks centered at those

211

points. See figure 4.

Figure 4. E-Collinearity.

In exact geometry, a triangle T = (p, q, r) whose ver-
tices are not collinear can be further classified by its ori-
entation, either positive (counterclockwise) or negative
(clockwise). The orientation is the sign of the determi-
nant

1 Pax P*Y
D(P, q, r) = 1 q-2 Q*Y (8)

1 r.2 r.y

We define the predicates Pos(p, q, r) and Neg(p, q, r) as
meaning D(p, q, r) > 0 and D(p, q, r) 5 0, respectively.
Note that PM(T) is not the same thing as not Neg(T);
in fact Pm(T) A Neg(T) s Collinear(T). (This conven-
tion is a bit confusing, but it seems to simplify many of
the proofs and algorithms we will see later on.)

By definition, then, E-Pos(p, q, r) means that is possi-
ble to make D(p, q, r) 1 0 by displacing the three points
by at most E in suitable directions. In graphical terms,
E-Pos(p, q, r) means that the closed e-disk centered at r
either intersects the c-butterfly ofp and Q, or lies fully to
the left of it (as looking from p towards q). See figure 5.

Figure 5. E-Orientation.

From linear algebra we know that the the determinant
D changes sign if we swap any two of the three points,
and remains unchanged if the three permuted are per-
muted in a cyclic fashion. Thus,

E-Pos(p, q, r) G e-Pos(q, r,p) E c-Pos(r,p, q)
E e-Neg(q, p, r) G c-iVeg(r, q,p) E c-Neg(p, r, q)

Note again that &-Neg(T) is quite different from
not a-Pas(T), and, in fact,

e- Collinear(p, q, r) E c-Neg(p, q, r) A c-Pos(p, q, r)

Geometrically, the determinant D is twice the area of
the triangle pqr, with a plus or minus sign depending
on the orientation of the three points. In the Euclidean
metric, the smallest perturbation that makes the three
points collinear is one that moves them onto the perpen-
dicular bisector of the shortest altitude of the triangle.
See figure 6.

Figure 6.

Since the area of a triangle is given by one half its base
times its height, the necessary perturbation E is iIDJ/b,
where b is the length of the longest side.

We can use this result to implement a Pos box that
uses only single-precision floating-point computations,
as follows. First, we need to estimate the rounding er-
rors incurred in the computation of IDl/b. From equa-
tion (8) we get

D= (q.x-p.z)(r.y-p.y)-(q.y-p.y)(r.x-p.x) (9)

If we compute this formula using floating-point opera-
tions, we obtain an approximate result D’ satisfying

Dk = ((4.x - p.x)(r.y - p.y)(l + 3X1)

-(q.y - p.y)(r.+ - p.x)(l + W))(l + X3)

= D(l + X3) + 3A4M

where M = IQ.2 - p.xl1r.y - p-yI+lq-y - p4llr.x - p.21,
and l&l < U. We can compute the longest side b by the
obvious formula

b = max {IIP, 41, Ilq, 41, Ilv4lI
where II II is the familiar square root formula (4). As we
discussed in section 2.2, if we assume that the square
root operation is accurate to the machine precision, then
the the computed value b’ satisfies b’ = b(1 + 3Xe).
Therefore, the computed value h* for the triangle’s
height h = D/b satisfies

h* = D(1+ A3) + 3X&4

b(l + 3A7)
(1 + k3)

=

In fact, since IDI 2 I<, we can further simplify this to
h* = h + 7AllM/b. Therefore, we conclude that

h E h’ f 7uM*/b* (10)

212

Note that M can be as large as b2, and that uM/b can
easily be greater then h, which means that the rela-
tive error of h* can be arbitrarily large. Formula (10)
says that the absolute error of h’ is small compared to
the distances between the three points. If this inaccu-
racy is a problem, one can make the relative error small
by computing D with extended precision; more specifi-
cally, with at least 2m + 1 fraction bits, where m is the
number of fraction bits in single-precision floating-point
numbers.

Even though Pos and Neg are not the exact oppo-
sites of each other, the asymmetric representation we
use for the outcome of epsilon-boxes allows us to state
the following result: if the pair a = (U./O, a.hi) is a valid
outcome for Pas(T), then the pair -a = (-a.hi, -a.lo)
is a valid outcome of Neg(p, Q, r). Therefore the proce-
dures Pos and Neg can share most of their code, and if
we evaluate Pas(T) we do not need to evaluate Neg(T).

2.4 Betweenness

We say that a point z is between two other points z and Q
if z lies on the closed segment pg. We denote this fact by
Between(z,pq). It is easy to see that E-Between(z,pq)
if and only if the distance from z to the segment pq is
at most 2s; or, equivalently, if and only if the c-disk
centered at z intersects the E-stroke of p and q. See
figure 7.

Figure 7. The &-Between test.

In order to compute the distance from z to the seg-
ment pq we must find the projection z’ oft on the line 1
through p and q, and then return either illz,pll, $llz, 111,

or ~ll~~dl, d P d g e en in on whether z’ lies before p, be-
tween p and Q, or after q, respectively.

We can check the position of z’ by checking the
signs of the dot products LY = (z - p) . (q - p) and

P = (z - 9) ’ (P - q). If cr < 0, then z’ lies before
p; if ,B < 0, then z’ lies after q; otherwise z’ lies be-
tween p and q. If we compute these dot products with
single-precision floating point arithmetic, we must take
into account the attendant rounding errors. An analysis
similar to the one we did for the Pos predicate shows
that the computed value (Y* of Ly satisfies a E a*f4~1(,‘,
where I(p* is the computed value of the quantity

ICp = I(= -I-)(9.2: - P.C)l f 1lr.y - P.Y)(9.Y - P.Y)l

A similar result holds for /?. Therefore, these computa-
tions give us two intervals a and b, which may or may
not include 0.

We obtain uncertainty intervals dp and dq for the dis-
tances $l/z,pll and $1jz,qll by calling the Coincident
box. As for ~llz,~lJ, its value is twice the area of
the triangle zpq, divided by the length of pq; that is

I%> p, dI/IIp, nil, w h ere D is the determinant defined
by equation (8). Therefore the analysis we did for the
Pos subroutine applies here too (except that b is the
length of pq, instead of the longest side), and we get the
same uncertainty interval dl = h*f7uM*/b*. (If b’ = 0
then we can conclude that b = 0, in which case we let
dl be the pair (O,O).)

We now have to put all this information together and
deduce from it an uncertainty interval e for the distance
from z to the segment pg. The algorithm is relatively
straightforward:

1. et0
2. if a.lo_<OAb.hi_>O then e+-eUd, ii
3. if b.lo<OAa.hikO then eteUd, ii
4. if a.hi>Ohb.hi>O then e+eUd, ii
5. return e

Step 1 initializes e to the dummy interval 0 that is a
neutral element of U. Step 2 checks whether the projec-
tion .z’ could lie before p, in which case the uncertainty
interval e is set to the range of possible values of ~&~,pll.
Step 3 does the same thing for q. Finally, step 5 checks
whether z’ could lie strictly between p and q, in which
case it sets to e the range of)IIz, /Il. Note that if the
algorithm cannot decide between any two cases, it will
simply merge the corresponding uncertainty intervals.

3 Approximate Point Inclusion

3.1 Point Inclusion in a Triangle

We now show how these primitives can be combined
into a more complex algorithm. We consider the prob-
lem of testing whether a point z is inside a trian-
gle T = (to,tl,tz), which we denote by the predicate
Inside(z,T). We define “inside” to include the trian-
gle’s boundary.

The E-version of this predicate is true if the point z
and the triangle T can be perturbed by at most E so
that Inside(z,T) becomes true. Here, the distance be-
tween two triangles is defined as the maximum distance
between a vertex of one triangle and the corresponding
vertex of the other. Thus, e-Inside(z, T) is true if and
only if Z it is within 2~ of some point of T.

Assume for the moment that the vertices to, tl, t2 of
T are known to be non-collinear and positively (coun-
terclockwise) oriented. Then ordinary geometry tells US

213

that % is inside T if and only if the triangles ztctr , ztrtz,
and %-&to are all positively oriented (or flat). Moreover,
if % is inside T, any perturbation that puts I outside the
triangle must reverse the orientation of one (or more) of
these triangles. We conclude that

Lemma 3 If a point % is inside a positively oriented
triangle T = (to, tl, tz), then for any e (positive or neg-
ative),

c-lnside(z,T) e i .z-Pos(z,ti,ti+l) (11)
i=O

If T is a negatively oriented triangle, formula (11) holds
with Pos replaced by Neg.

Unfortunately, equation (11) does not hold if % is out-
side T. as figure 8 shows, the triangles Aiti+l can be
all c-positive, and yet % may be arbitrarily far from T.
The explanation is that it is indeed possible to make ei-
ther one of the triangles ztotl and ztltz positive with an
c-perturbation, but there is no such perturbation that
makes them both positive at the same time.

Therefore, when % is outside T, the information re-
turned by the Pos boxes is not sufficient. To handle
this case, we introduce the predicate Bounday(z,T),
that tests whether the point % lies on the boundary of
the triangle T. This predicate has a simple expression:

n

Bounday(r,T) e c Betweeu(z,ti, ti+l). . (12)
i=O

Recall that for E > 0 the e- qualifier distributes over V.
Therfore, we can write

c-Bounday(z,T) H c &-Between(z,ti, ti+l). (13)
i=O

In other words, we are E away from the boundary if and
only if we are e-away from some side. This identity holds
also for E < 0, since in that case both sides are false.
The implementation of Boundary follows immediately
from equation (13) and the V construction described in

section 1.3: evaluate Between(z,p, q) for all edges p, q
of T, and return the min of the resulting pairs. In fact,
it is easy to check that this algorithm works even if T
is replaced by an arbitrary polygon.

How does the Boundary predicate help us? The an-
swer is given by the foiowing trivial properties:

Lemma 4 If a point z is outside a triangle T, then for
all E 2 0

E-Inside(z, T) M c-Boundary(z, T) (14)

Lemma 5 If a point z is inside a triangle T, then for
all E < 0,

e-lnside(r, T) e not (-&)-Bounday(z, T) (15)

With these results, we can implement the Inside tests
for a point and a triangle by the procedure InTriangle
below:

1. al) + Pos(r,to,t~)
2. a1 + Pos(%,t&)
3. a2 + Pos(z,t2,to)
4. sp +m={ao,al,a2}

5. if s,.hi < 0 then return sp
6. sn +-max{-a~,-al,-a2)
7. if s,.hi < 0 then return sn
8. s +Pos(to,tl,t2)
9. if s.hi 50 then r tsp

10. elsif s.10 2 0 then r t s,,
ii. else r+-s,Usp
12. ii
13. b + Boundary(t, T)
14. return (All (r.lo-00))Ub

In this algorithm, steps l-4 compute the perturbation
sp needed to independently make each of the triangles
ztotl, ztlt2, and zt2tO positive or collinear. If this per-
turbation is definitely negative, meaning all three tri-
angles are positively oriented, then we can deduce that
the triangle T itself is positively oriented, and that % is
inside it. Lemma 3 then authorizes us to return sp itself
in step 5 as the uncertainty interval of Pos. Steps 6-
7 perform the symmetric test for the case when T is
negatively oriented.

If these two tests fail, the algorithm does some addi-
tional work in order to find the minimum perturbation
T that makes each of the three triangles have (idepen-
dently) the same orientation as T. First the algorithm
tries to determine the orientation of T by evaluating
Pos(tc, tl, t2). If the result of this test has a definite
sign, then r is taken to be either sp or s,. If the test is
inconclusive, then r is set to the join of the two intervals.
Note that in any case we will end up with r.hi 10.

214

As we observed before, the interval P is still not the
answer we want, since r was obtained by considering
independent perturbations to each of the three edges,
and those perturbations may not be simultaneously re-
alizable. The only useful information contained in r is
its lower endpoint r.10, provided it is less than zero: if
--E < r.lo < 0, that is, if we cannot change the orien-
tation of one of any of the three triangles with any E-
perturbation, then we cannot move z out of T with any
&-perturbation, which means z is (-&)-inside T; and
conversely. On the other hand, if r.lo 2 0, we know
only that z is outside, but we can’t tell by how much.
In other words, at step 13 the uncertainty interval of
Pos is (r.10 _ 00) U(0 _ infty).

In order to reduce this uncertainty to a useful level,
we evaluate b = Boundary(z, T), the minimum pertur-
bation needed to put z on the boundary of t. The re-
sulting interval b is always non-negative; moreover, by
lemmas 4 and 5, the result we want is either -b or +b,
depending on whether t is inside or outside T. So, the
result we want is the intersection of those two inter-
vals with (r.lo _ oo) Ll (0 _ infty), which simplifies to
(-bn(r.lo _ co)) LI b, as returned in step 14.

Note that the width of the interval returned by this
algorithm is at most twice the size of the widest interval
returned by the Pos and Between boxes.

As usual, there is here a tradeoff between speed and
accuracy. One could reduce the width of the uncertainty
interval returned by InTriangle(z, T) by performing
more elaborate tests, by using more accurate primitives,
by combining their results in a more sophisticated fash-
ion, or by implementing the InTriangle procedure as a
primitive, as we did with Poe.

3.2 Point Inclusion in a Convex Polygon

Let’s now consider the more general predicate that
tests whether a point z lies inside a convex polygon
P=(poJQ,... ,pn-r). One might think that the imple-
mentation InConvex of this predicate is a trivial general-
ization of InTriangle, but that is not the case. While
lemmas 4 and 5 generalize nicely to arbitrary convex
polygons, lemma 3 does not. , ,

Figure 8.

As figure 8 shows, a point can be well inside the polygon
P, even if it is possible to reverse the orientation of some
triangle zpipi+r by an arbitrarily small perturbation to
those three points. Therefore, for InConvex must use a
different approach, as follows. When z is inside P, we
will estimate the degree of “insideness” from the output
of the Boundary box alone, using lemma 5. When z is
outside P, we will estimate its degree of “outsideness”
with several calls to InTriangle, using the following
obvious property:

Lemma 6 LetTr,Tz,..., T, be a set of triangles whose
union is the set P. If a point z is outside P, then for
all E 1 0,

c-Inside(t, P) H 6 E-lnside(z, Ti)
i=l

Note that lemma 6 cannot be extended to E < 0, be-
cause J can be near an edge of some triangle Ti and
still be arbitrarily far from the boundary of P. Nev-
ertheless, lemma 6 allows us to write an epsilon-box
InPolygon(z, P, Tl, . . . , Tm) that implements the Inside
test for a planar figure P, given a collection of triangles
Tl,T2 ,..., Tm whose union is P:

1. r c rain {InTriangle(z, Ti) : 15 i 5 m}
2. if r.lo 2 0 then return r f i
3. r.10 c -00
4. b c Boundary(z, P)
6. return (r fl b) LI (r fl -b)

Step 1 computes the perturbation r necessary to put
z inside one of the triangles Ti::. If r.lo 2 0, it means
z is outside P, and by lemma 6 we can return r itself
as the outcome. If r.lo < 0, lemma 6 tells us nothing:
the uncertainty interval for Inside(z,P) is not r but
the whole interval (-oo,r.hi). In order to reduce this
uncertainty, we look at the perturbation b needed to put
z on the boundary of P (step 4). According to lemmas 4
and 5, the InPolygon box can safely return r 17 b is z
is outside P, and r tl -b if z is inside P; therefore, it
can always return return the join of these two intervals
(step 5).

Given this algorithm, the InConvex box that im-
plements the Inside test for convex polygons is triv-
ial: it suffices to note that a convex polygon P =

(Pod%... ,p,-1) is the union of the triangles Popipi+l
for 1 5 i 2 n - 2.

Note that, as in the the case of InTriangle, the width
of the uncertainty interval returned by InPolygon or
InConvex is at most twice that of the widest interval
returned by any of the primitive epsilon-boxes called by
them.

215

Some applications of the InConvex box may not re-
quire all the information that it returns. In such cases
the algorithm can often be made simpler and faster, at
the cost of returning a much wider uncertainty interval.
For example, if we only want to know whether we are
inside or outside P, but we don’t care by how much, we
can omit steps 4 and 5. In that case, when z is inside P
or close enough to it the algorithm will return intervals
of the form (--00, E).

4 Approximate Convexity

The InConvex test of the previous section assumes the
polygon is convex in the ordinary sense. By itself, such
a test isn’t very useful, since in many applications we
cannot always ensure that the polygons are strictly con-
vex, because they can be the result of previous ap-
proximate computations, and the rounding errors in-
curred may have introduced slightly concave corners,
self-intersections, and other similar defects. Worse still,
if we are allowed to use only approximate primitives
like the ones we described, we will not even be able to
clrecA whether a given polygon is convex. Therefore, we
must learn how to handle polygons that are only “ap-
proximately convex.” In order to do this, we must first
define more carefully the meaning of “inside,,, and prove
a few results about closed curves in general.

4.1 Closed Curves

We define a closed curve to be a continuous function
from the unit circle Sr into the plane, and we consider
two curves to be the same if they differ only by a simple
reparametrization, that is, by a homeomorphism of Sl
to itself. We say that a point z is inside such a curve C
if the curve passes through Z, or if its winding number
around z is non-zero [4]. Note that the curve need not
be simple. We denote this fact by Inside(z) C).

We define the distance between two curves C,C’
as the smallest value of max {]]C((~(t)),C’(t)]l : t E Si},
when cp ranges over all reparametrizations of C. In
spite of this complicated metric, the meaning of
e-Inside(r) C) is quite simple: if E 1 0, this predicate
means that z is either inside C or at most 21~1 away
from C; and if E < 0, it means that z is inside C but at
least]&I away from C.

Lemma 7 Let P and Q be two closed curves with the
property that IIP(t), Q(t)/1 5 E for allt on the unit circle.
Then any point that is inside P is (E/2)-inside Q, and
vice versa.

Proof: Let x be a point inside P. If x is inside Q or x
is on the curve P, then we are done. Let’s assume that

z is inside P but not inside Q. Consider the rays from
x to P(t) and from z to Q(t). As t goes once -around
the unit circle, the first ray makes a non-zero number of
full turns, while the second makes zero full turns. Since
the curves are continuous, there must exist a value oft
for which the angle between the two rays is a. At that
moment, 2 is on the segment connecting P(t) and Q(t),
whose length is at most E, by hypothesis. q

This result is not as trivial as it may sound. For
instance, it is not enough to merely require that every
point of the curve P be within E of Q and vice versa.

4.2 Polygons

The next lemma states an elementary property of
Minkowski metrics is useful when applying lemma 7 to
polygons:

Lemma 8 Let 11,II b e any Minkowski metric. Then for
any four points p, q, p’, q’ such that IIp,p’ll < E and
IIq, q’jl < e, and for any cx E [0 _ 11, we have

ll(1 - @Y)P + %I, (1 - (Y)p’ + q’ll I E

The next result is a trivial corollary of lemmas 7
and 8:

l$rny; “, If the polygons P = (~0, pl, . . . ,p,,-1) and
= 0, l,.**,!In-1) are such that lIpi, gill 5 2~ for

all i, then any point inside P is e-inside Q (and vice
versa).

4.3 Inclusion in an E-Convex Polygon

Now let’s try to extend the InConvex algorithm to
polygons that are not necessarily convex, but merely
&-convex. According to the general definition, a poly-
gon P is &-convex: if there exists a convex polygon P’
that is at most E away from P; or, equivalently, if we
can perturb the vertices of P by at most E in such a
way that the result is a convex polygon. We will use
the following result:

Lemma 10 Let P = (po,p1,. . . ,p,,l) be an e-convex
polygon, with E > 0, and z a point of the plane. Let P”
be the union of the triangles popipi+l for 1 5 i 2 n - 2.
Then

Inside(z) P) =S Inside(z, P’) + &-lnside(z, P)

Proof: Let’s prove first that Inside(r,P) =+
Inside(z,P*). If the point z is inside the polygon P,
then any ray starting from z should meet at least one
edge pipi+ of P for 1 5 i 5 n- 2. (Assuming each edge
includes its endpoints.) In particular, this should hap-
pen for the ray out of z that is directed away from po.

216

This ray proves that z is inside the triangle popipi+l,
and hence inside P”.

Now let’s prove that Inside(z, P’) + .e-1nside(r, P).
By definition there exists a convex polygon P’ such that
]]pi,dl] 5 E for all i. By corollary 9, every point inside
P’ is (a/2)-inside P. By the same argument, any point
of triangle popipi+l is (E/2)-inside the corresponding tri-
angle pbp:pi+,; therefore, by lemma 6, any point in P*
is (s/2)-inside P’. By the triangle inequality (lemma 2),
then, any point of P’ is E-inside P. 0
This lemma gives us an algorithm InEpsConvex(z, P, E)
that tests whether a point z is &Inside a polygon P,
assuming that P is &-convex. The algorithm is a slight
modification of the InConvex box that we gave in sec-
tion 3.2:

1. r e min{InTriangle(z,pcpipi+l) : 1 _< i 5 ta - 2)
2. r.hi+r.hi+s

3. if r.10 2 0 then return r ii
4. r.lot--00
5. b + Boundary(z,P)
6. return (r ll b) U (r ll -b)

After step 1 we know that I is b-inside some of the
triangles papipi+l, for 6 2 r.hi, and not b-inside any of
them for 6 < r.lo. Step 2 adjusts r.hi to account for the
fact that the union of those triangles may include points
that are up to 2~ away from P. This step is justified
by the triangle inequality (lemma 2). The rest of the
algorithm is shown correct by the same arguments used
for InPolygon in section 3.2.

5 Conclusions

The Epsilon Geometry framework we described in this
paper allows us to build robust algorithms using im-
precise computations. Because our framework allows us
to use ordinary fixed- or floating-point arithmetic and
substitute simpler approximations for hard-to-compute
formulas, we believe it has great practical potential.

An important feature of the Epsilon Geometry ap-
proach is its flexibility, in that it gives the designer of a
geometric algorithms great freedom to choose between
accuracy, efficiency and simplicity. Our approach allows
us to combine primitive epsilon-boxes into more com-
plex algorithms, independently of the number represen-
tation and machine precision used inside each primitive
box.

We have barely started to explore the application of
this framework to classical computer geometry prob-
lems. If the examples we give in this paper are too
elementary, it is only because we haven’t had time yet
to consider more complex ones.

Acknowledgements

The ideas for this paper grew out of discussions
with Bernard Chazelle, Herbert Edelsbrunner, Michel
Gangnet, Ricky Pollack, Franc0 Preparata, and Micha
Sharir. Victor Milenkovic showed us the proper way
to compute the orientation primitive and estimate its
rounding error. We would like to thank the DEC Paris
Research Lab and the DEC Systems Research Center,
which supported much of this work.

References

[1] Herbert Edelsbrunner and Ernst Peter Miicke, “A
technique to cope with degenerate cases in geomet-
ric algorithms.” Proc. 4th Annual ACM Symp. on
Computational Geometry (1988), 118-133.

[2] Daniel H. Greene and F. Frances Yao, “Finite-
resolution computational geometry.” Proc. 27th
IEEE Symp. on the Foundations of Computer Sci-
ence (1986), 143-152.

[3] Christoph M. Hoffman, John E. Hopcroft, and
Michael S. Karasick, “Towards implementing ro-
bust geometric computations.” Proc. 4th Annual
ACM Symp. on Computational Geometry (1988),
106-l 17.

[4] Leo Guibas, Lyle Ramshaw, and Jorge Stolfi, “A
kinetic framework for computational geometry.”
Proc. 24th IEEE Symp. on Foundations of Com-
puter Science (October 1983), 100-111.

[5] Donald E. Knuth, “The art of computer program-
ming, vol. 2: Seminumerical algorithms” (second
edition), section 4.2.2. Addison-Wesley (1981).

[S] Victor J. Milenkovic, “Verifiable implementations
of geometric algorithms using finite precision arith-
metic.” International Workshop on Geometric Rea-
soning (Oxford, England, July 1986).

[7] S. P. Mudur and P. A. Koparkar, ‘qnterval methods
for processing geometric objects.” IEEE Computer
Graphics and Applications (February 1984), 7-17.

[S] Thomas Ottmann, Gerald Thiemt, and Christian
Ullrich, “Numerical stability of geometric algo-
rithms.” Proc. 3rd Annual ACM Symp. on Com-
putational Geometry (1987), 119-125.

[9] Chee-Keng Yap, “A geometric consistency theo-
rem for a symbolic perturbation scheme.” Proc. 4th
Annual ACM Symp. on Computational Geometry
(1988), 134-142.

217

