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Abstract

Let P be a polyhedral subdivision in R? with a total of
n faces. We show that there is an embedding & of the
vertices, edges, and facets of P into a subdivision @Q,
where every vertex coordinate of Q is an integral multi-
ple of 2-M°827%21, For each face f of P, the Hausdorff
distance in the L., metric between f and o(f) is at
most 3/2. The embedding & preserves or collapses ver-
tical order on faces of P. The subdivision Q has O(rn*)
vertices in the worst case, and can be computed in the
same time.

1 Introduction

Geometric algorithms are usually described in the “real-
number RAM” model of computation, where arithmetic
operations on real numbers have unit cost. A program-
mer implementing a geometric algorithm must find some
substitution for real arithmetic. The substitution of ex-
act arithmetic on a subset of the reals, say the integers
or the rationals, avoids the difficulties that can arise
from naive substitution of floating-point arithmetic [4,
12, 14, 15]. The substitution is not trivial, since the re-
quired arithmetic bit-length usually exceeds the native
arithmetic bit-length of most computer hardware, and
some form of software arithmetic is required.

Recent research has made the use of software exact
arithmetic for geometric algorithms much more attrac-
tive. A predicate on geometric data is determined by
the sign of an arithmetic expression in the coordinates
of the data. A promising strategy for sign-evaluation
is adaptive-precision arithmetic [6, 13, 20], where the
expression is evaluated to higher and higher precision
until its sign is known, i.e. until the magnitude of the
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expression exceeds an error bound. Low precision, even
floating-point, suffices most of the time, since most in-
stances of geometric predicates are easy. In addition,
for some basic predicates like the sign of a determinant,
there are alternative evaluation strategies that require
arithmetic with relatively low precision [1, 2, 3].

Exact arithmetic would be more useful if high-level
geometric rounding algorithms were available. Virtu-
ally any geometric construction that produces new geo-
metric data increases the bit-length of geometric coordi-
nates. For example, suppose points are represented with
homogeneous integer coordinates. The plane through
three such points has coefficients whose bit-lengths are
about three times the point coordinate bit-lengths; the
point of intersection of three such planes has coordinate
bit-length about nine times that of the original points.
Thus a solid modeler, which implements boolean oper-
ations and rigid motions on polyhedra, might produce
a polyhedron with high coordinate bit-length even if
the original polyhedra had short coordinate bit-length.
Typically an application requires only a low-precision
approximation, not the exact answer. Hence there is
a need for high-level rounding, which replaces a geo-
metric structure with high bit-length coordinates with
an approximating structure with short bit-length coor-
dinates. It does not suffice to round each coordinate
independently, since such rounding is a geometric per-
turbation, and may introduce inconsistencies between
geometric and combinatorial information. Furthermore,
some change in combinatorial structure is inevitable; in-
deed, in certain cases it is NP-hard to determine if it
is possible to round to low-precision without changing
combinatorial structure [19].

There are satisfactory high-level rounding algorithms
for polygonal subdivisions in two dimensions. Onre such
algorithm is snap-roundirng [10]. Fix a polygonal subdi-
vision, with arbitrary-precision coordinates. A pirelis
a unit square in the plane centered at a point with inte-
ger coordinates; a pixel is hot if it contains a vertex of
the subdivision. Snap-rounding replaces each vertex by
the center of the pixel containing the vertex, and each
edge by the polygonal chain through the centers of the
hot pixels met by the edge, in the same order as met



by the edge. The snap-rounded subdivision approxi-
mates the original subdivision in the sense that each
vertex and edge of the original subdivision has an image
in the snap-rounded arrangement whose Hausdorff dis-
tance is at most 1/2 in the Lo metric. Snap-rounding
may change the combinatorial structure of the subdivi-
sion, for example, vertices and edges may collapse to-
gether, but some combinatorial ordering information is
preserved [10].

This paper generalizes snap-rounding to polyhedral
subdivisions in three dimensions. Fix a polyhedral sub-
division P with a total of n vertices, edges, and facets.
We show that there is a polyhedral subdivision @ so
that each vertex coordinate is an integer multiple of
1/2M837142, Each face f of P has an image o(f) in Q
o that the Hausdorff distance between f and o(f) is
at most 3/2, As with snap-rounding in two dimensions,
J and o(f) may have different combinatorial structure:
an edge may be replaced with a polygonal chain, and
a facet with a triangulation, Two vertices may col-
lapse together; the polygonal chains for two edges or
the triangulations for two facets may collapse together
or overlap partially, perhaps in several places. However,
vertical order is preserved (or collapsed): if face f is ver-
tically above face f' (i.e. there is a line parallel to the
z~axis meeting both faces, and the intersection with f
has higher z-coordinate), then o(f) is above (or over-
laps) o(f'). In the worst case Q has O(n*) vertices and
can be computed in time O(n*).

Other work, Greene and Yao were the first to suggest
a rounding scheme for polygonal subdivisions in two
dimensions [8], Hobby [11] and Greene [9] give algo-
rithms to compute the snap-rounding of the arrange-
ment formed by a set of intersecting edges. Guibas
and Marimount {10] show how to maintain the snap-
rounded arrangement of edges under insertion and dele-
tion of edges; they also give elementary proofs of basic
topological properties of snap rounding. Goodrich et
al [7] give improved algorithms to snap-round a set of
intersecting edges, in the case when there are many in-
tersections within a pixel. Milenkovic [18] suggests a
“shortest-path” geometric rounding scheme that some-
times introduces fewer bends than snap rounding.

Goodrich et al[7] propose a scheme for snap-rounding
a set of edges in three dimensions after first adding
as vertices the points of “closest encounter” between
nearby edges. Milenkovic [16] sketches a scheme for
rounding a polyhedral subdivision in three dimensions
(in fact, any dimension). Unfortunately, both schemes
have the property that rounded edges can cross (see
below), which violates any notion of topological consis-
tency.

Fortune [5] suggests a high-level rounding algorithm
for polyhedra in three dimensions. His algorithm as-
sumes that a polyhedron is presented by the equations
of its face planes (and the combinatorial incidence struc-
ture of faces), not the coordinates of vertices as assumed
by snap-rounding, His algorithm does not appear to ex-
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tend from polyhedra to polyhedral subdivisions.

1.1 Overview

We give a brief overview of the rounding algorithm, We
start by mentioning some difficulties with the three-
dimensional extension of snap-rounding.

The obvious way to smap-round a vertex in three
dimensions is to replace it with the center of the voxel
containing it. (A vozelis a unit cube centered at an
integer point.) However, it is less clear how to snap-
round edges and facets.

Snap-rounding a set of edges in three-dimensions re-
quires the addition of new vertices, unlike the situa-
tion in two dimensions. Consider two transverse nearby
edges. Rounding the endpoints to voxel centers perturbs
the edges, and hence the edges may change orientation
or cross. We can attempt to prevent this by adding a
vertex in the interior of each edge near the other edge;
then either the two new vertices are in the same voxel
and snap-round together, or they are in different voxels
and the snap-rounded edges will not cross. Clearly, it
might be necessary to add quadratically many vertices,
if the edges form a “cross-hatch” pattern.

Snap-rounding with facets as well is more problem-
atic. If a vertex v and a facet f are nearby, we can add
a new vertex v’ to f to ensure that v and f are prop-
erly separated or collapsed. However, this requires that
f be triangulated, which introduces new edges. Poten-
tially these edges are close to old edges, which could
require new vertices, and it is not immediate that the
process is finite. We can attempt to ensure termina-
tion by projecting nearby edges onto a facet, and then
triangulating the facet compatibly with the projection.
The actunal rounding algorithm is a formalization of this
idea.

The rounding algorithm. Orthogonally project all the
edges of the subdivision P onto the zy-plane, form the
arrangement, snap-round, and compute a triangulation
T. Each face of P has an image within the triangulation:
the image of an edge is a polygonal chain, and the image
of a facet is a subtriangulation of T. The rounding of
each facet f is obtained by lifting the image of fin T
to three dimensions in such a way as to approximate
f. By considering each cylinder over a vertex, edge, or
triangle of T separately, we can ensure that the lifting
preserves {or collapses) the vertical order on faces of P.

There are several technical difficulties with this algo-
rithm. We must first ensure that there are no crossings
among the polygonal chains that result from rounding
the edges of P. Figure 1 indicates one way such a cross-
ing could occur. To prevent crossings, we subdivide the
edges of P by all zy—, zz—, and yz-intersection points.
(If the orthogonal projections of e and e’ into the zz-
plane cross at a point p, and ! is the line parallel to the
y-axis through p, then enl and e’N! are zz-intersection
points.) Unfortunately, this subdivision is not quite suf-
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Figure 1: Vertices a and o’ project to the same pixel in
the zy-plane, as do b and b'. Hence in three dimensions,
the snap-rounding of ab crosses the snap-rounding of
a'b'.

ficient to prevent crossings among snap-rounded edges.
In figure 2, d* and ¢* have endpoints on column facets.
The 2y-, 22-, and yz-projections of d* and e* are all dis-
joint, but their snap-roundings cross. Fortunately, the
configuration of figure 2 is almost the only way this can
happen, and we can show that there is a slight modifica-
tion of snap-rounding that avoids crossings. In figure 2,
the modified snap-rounding of d* is a two-edge polyg-
onal chain, connecting a snap-rounded endpoint of d*
to the snap-rounded endpoint of ¢* on the same verti-
cal line, and then to the other snap-rounded endpoint
of d*. We show that the distance between an edge and
its modified snap-rounding increases slightly, to at most
3/2. (The configuration in figure 2 can be meodified to
show that the “close encounter” subdivision of Goodrich
¢t al {7] does not prevent edge crossings.) Section 4 de-
scribes the modification of snap-rounding.

Let Ty be the image of facet f within triangulation
T. We lift T to three dimensions by first lifting each
edge and then the interior of each triangle. The lifting
of an edge must satisfy three conditions: it must be
close to f; it must not cross any other edge; and it
must preserve vertical order. This last condition is a
bit tricky. Consider the situation given in cross-section
in figure 3, with e, ¢’, and f orthogonal to the figure.
Assume that edges ¢ and €' project and snap-round to
the same edge d in the triangulation T'. Edge ¢ is above
facet f, so the lifting of edge d for facet f must be on
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Figure 2: p(d*) and p(e*) cross, although the zy-, v2-,
and yz-projections of d* and ¢* do not.
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Figure 3: Side view. Edge ¢ is above facet f and ¢’ is
below. Hence the rounding of facet f must contain the
vertical interval from the rounding of e to the rounding
of ¢'.

or below the rounding of e. Similarly, edge ¢’ is below
facet f, so the lifting of edge d for facet f must on or
above the rounding of e. Hence the lifting of d for facet
f must at least span the vertical interval between the
rounding of e and the rounding of e’. Section 5 below
describes how to lift triangulation edges.

Consider a triangle A = Aabc of T¢. If the lifted
edges ab, ac, and bc for facet f are all pairwise incident,
then the lifting of A for facet f, Iy (A), is simply the tri-
angle with those edges. Unfortunately, incidence cannot
be guaranteed (though, of course, both lifted edges ab
and ac meet the vertical line through ¢, and similarly
for b and c). Hence I;(A) must be a triangulation of
the polygon formed by the lifted edges ab, ac, and be,
and perhaps edges along the vertical lines through e, b,
and c. See figure 4. It is easy to triangulate the poly-
gon using a central vertex whose zy-projection is within
triangle A. However, a vertical boundary edge may be
shared among several different liftings. To ensure that
there are no crossings among edges, each central vertex
must have distinct coordinates. Since there may be »
central vertices, coordinates that are integer multiples
of roughly 1/n are necessary. More details of the lifting
appear in section 6.

Naively the rounded subdivision Q has at most O(n*)
faces: the triangulation T has O(n?) tricmg;lesé so for
each facet f the rounding o(f) consists of O(n®) lifted
triangles {Is(A)}. However, in the worst case each lifted
triangle l¢(A) may consist of O(n) faces, since there
could be linearly many vertices on the vertical edges of
its boundary. Hence Q has O(r*) faces.

2 The main theorem

For points a,b € R® and sets A, B C 3, d(a,b) is the
L., distance between ¢ and b (the L., distance iz used
exclusively in this paper); d(e, B) is infsep d(e, b); and
d(A, B) is sup, 4 d(e, B). Note that d is symmetric for
points, but not in general for sets. Hausdorff distance
du(A, B) is max(d(4, B), d(B, 4)).

The direction parallel to the z-axis is the wvertical



Figure 4: The liftings of triangle Aabc for facets f and
f' have boundary aaobyscy and ajaobyicsr, respectively.

direction, Two sets A, B C R? are vertically ordered
A < B (read “A is below B”) if there is a vertical line
meeting both A and B, and for every vertical line { meet-
ing A and B, Anlis below B NI, ie. the z-coordinate
of every point of A N1 is less than the z-coordinate of
every point in BN, Sets A and B satisfy A < B
if there is a vertical line meeting both, and for every
vertical line meeting both, A N1 is below or intersects
Bnl, Asis well-known, < is not transitive in general; it
is transitive among a family of sets that have the same
zy-projection, If in addition, every set in the family is
a surface, i.e. every vertical line misses the set or meets
it at one point, then < is also transitive.

A subdivision P in R® is a set of compact convex
polyhedral cells so that every face of every cell is in
the subdivision and so that the intersection of two cells
is a face of both. Cells of dimension 0, 1, and 2 are
vertices, edges, and facets, respectively. |P] is the union
of the cells of P, An embedding of a subdivision P into
a subdivision @ is 2 mapping ¢ that maps each cell of
P into a subdivision contained in @ so that if f is a face
of f!, then o(f) C o(f').

To simplify notation somewhat, we extend d and <
to subdivisions, Thus for subdivisions P and @, P < Q
means |P| < [Q] and d(P, Q) means d(|P],|Q|).

Throughout this paper we assume that subdivisions
in IR? do not include cells of dimension 3. Furthermore,
we assume that every subdivision is in general position,
specifically, that no edge or facet is parallel to a coordi-
nate axis and that no vertex has a coordinate that is an
integer multiple of 1/2. The general position assump-
tion simplifies presentation; it is not hard to remove
(either explicitly or for example by an infinitesimal sym-
bolic rigid motion).

Theorem 2.1 Let P be a subdivision in R® with a total
of n cells; set . = 38/2. There is a subdivision Q and an
embedding o of P into Q so that:

1, For each cell f of P, du(f,o(f)) < x.
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2. Each vertex coordinate of Q is an integral multiple
of 1/2[2-{-1053 n] .

3. If cells f,f' of P satisfy f < f', then o(f) =
a(f).

4. Q can be computed in time O(n*) and has O(n*)

cells,

This theorem follows from the discussion below. At a
high level, the algorithm required for step (4) has three
steps.

1. Subdivide the vertices and edges of P, forming a
set of vertices and edges P* (Section 4).

. Orthogonally project P* onto the zy-plane, snap-
round, and triangulate the convex hull of the re-
sulting subdivision. Let T be the resulting trian-
gulation.

. For each cell fin P, lift Ty (the image of f in T)
to a subdivision Q; C IR® (Sections 5 and 6).

3 Definitions

A pizelis an open unit square in the zy-plane centered
at an integer point; pixel(g) is the pixel containing point
g- A vozelis an open unit cube in IR? centered at an
integer point; voxel(g) is the voxel containing point g.
A column (of voxels) is all voxels whose centers have
the same 2- and y-coordinates; column(g) is the column
containing g.

Let A be a subdivision in the zy-plane. A pixel is
hot (with respect to A) if it contains a vertex. The snap-
rounding (with respect to A) of an edge e of A is the
polygonal chain connecting the centers of the hot pixels
met by e in the same order as met by e; similarly the
snap-rounding of a vertex of A is the center of the hot
pixel containing it. A basic fact[10] is that two polygo-
nal chains that result from snap-rounding intersect only
at vertices and edges of both chains. The snap-rounding
of A is obtained by replacing each edge and vertex of A
with its snap-rounding with respect to A; it is a polygo-
nal subdivision whose vertices are hot pixel centers, i.e.
integer points, and whose edges connect integer points.

Let 72y be orthogonal projection onto the zy-plane,
and similarly for 7. and 7y,. A set A CR3is overa
set P in the zy-plane if xzy4(A4) = P. If A is a surface
with p € wzy(A), then A, is the point of A over p (i.e.
7zy(Ap) = p). If A and B are surfaces over the same set,
then max(A, B) is the pointwise maximum (viewed as
functions of the zy-plane), and min(A, B) is the point-
wise minimum. If A, B, C are surfaces over the same set
with A - B, then snap(G, [A, B]) is min(4, max(B, C)).
Clearly, A = snap(C, [A, B]) > B.

Suppose a set P in the zy-plane is fixed. We define

symbolic sets T (top) and L (bottom) satisfying L <
A < T for any other set A over P. We have for example



min(A4, T) = A = max(4, 1); we define min and max of
an empty collection to be T and L, respectively.

Two edges cross if they intersect at a point interior
to at least one of the edges.

Proposition 3.1 Let T C R? be conver, {s1,...,5:}
ke a finite set of points in IR® with conver hull S, and (et
2 0. Ifd(5,T) < fori=1,...,k, thend(5,T) < &.

Proof:  Any point in S can be expressed as ) oqsi
with 0 € a, <1 and &, = 1. For each s, there is a
point ¢, € T so that d(s,,t,) < . Cleatly > aits € T
and d(3_ a5,y 0eti) is the maximum absolute value
of any coordinate of Y & (s —#;), which is bounded by
K since Ea, =1, a, > 0, and the absolute value of
cach coordinate of 5, — #, is bounded by «. O

4 Snap-rounding edges

Define p(g) to be the center of the voxel containing ¢,
and extend to p to edges: p(gq’) is the edge p(q)p(q).
‘The mapping p is the obvious extension of snap-rounding
to threce dimensions (ignoring snapping to hot voxels,
which is unimportant here). Unfortunately, p may caunse
two edges to cross. We now define a refinement P* of
the vertices and edges of P and a modification 7 of p s0
that no two edges in r(P*) cross.

4.1 The subdivision P*

Let ¢ and ¢’ be two edges of P whose zy-projections
cross at a point p. An ry-infersection point (of P) is
cither point on € or ¢’ that meets the line through p
parallel to the z-axis. The definition of an zz— or yz2-
intersection point is similar.

Subdivision P* results from subdividing the edges
of P. At any point in the process, é denotes the sub-
division of edge ¢ of P; any voxel containing a vertex
is a hot voxel; and any column of voxels containing a
Lot voxel is a hot column. There are two steps in the
subdivision:

1. Subdivide the edges of P at all zy-, z£2-, and yz-
intersection points of P.

2%

. For each edge e of P, split é by each hot column
C it meets: é must meet C in a consecutive sat
of voxels; ¢ is split by C by further subdividing €
at any point in the first voxel (if ¢ does not yet
have a vertex in the first voxel) and similarly by
subdividing € in the last voxel.

Splitting by hot columns has an easy consequence:
for any edge ¢ of P, the snap-rounding of wsy(€) with
respect to m.,(P*) is identical to the snap rounding of
Tzy(€) with respect to é. Henceforth we use a super-
script “* for edges and vertices of P*. For ¢* an edge of

120

P*, we write s(e*) for the snap-rounding of mzy(e*). It
is immediate that if d*,e* are edges of P*, then p(d*)
crosses p(e*) only if s(d*) = s(e*).

Lemma 4.1 P* has O(n®) vertices; there are O(a?)
hot columns and O(n®) hot vozels.

Proof: Clearly there are at most O(n®) zy-, z2-, and
yz-intersection points, and O(n) vertices of P. Splitting
edges by hot columns adds no new hot columns, hence
there are O(n?) hot columns. For each edge ¢ of P
and for each hot column, there are at most two vertices
added when é is split by the column. Hence there are
O(n®) vertices altogether. O

As mentioned earlier, T is a triangulation of the con-
vex hull of s(P*). Consider the edges E* in P* bounding
a facet f of P. The projection m.y(E*) forms a simple
cycle, but the snap-rounding s(E*) need not. However,
it is not hard to see that s(E*) consists of some number
of simple cycles connected by polygonal chains. Let T
be the subtriangulation of T' consisting of the vertices
and edges of s(£*) plus any vertices, edges and triangles
of T interior to the simple cycles in s(E*).

For v a vertex of T, ¢ an edge of T, and A a triangle
of T, define

P} = {e"€P :5(e")=¢}
P} = {v*eP':s(x*)=v}
F. = {feP':e€Ty}
Fa = {feP':AeTy}

where v* and e* are vertices and edges of P*, respec-
tively, and f is a facet of P.

4.2 The mapping 7

Lemma 4.2 Let e be an edge of T. If d*,¢e* € P and
p(d*), p(e*) cross, then either there és an endpoint w of
o(d*) with d(w, e*) < & or an endpoint w' of p(e*) with
d(w',d*) < &.

The intricate proof of this lemma is omitted due to lack
of space.

Lemma 4.3 Let e be an edge of T. There is a mapping
7 defined on P} so that

1. For all edges e* € PZ, v(e*) is an edge over ¢ with

endpoints among the endpoints of p(P;).
. For all edges e*, d(r(e*),e*) < k.
. 7(P2) is noncrossing.

4. T can be computed in time quadratic in the size of
Pr.
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Figure b: Definition of + on new edge e*.

Proof: We define 7 inductively, adding edges of P. one
by one in arbitrary order. The addition of an edge may
change the definition of 7 on other edges as well; how-
ever, properties (1) through (3) of the lemma statement
are maintained.

So suppose 7 has been defined on a subset S of P;
and e’ is the next edge. If no edge of r(S) crosses
p(e*), then simply define 7(e*) = p(e*). Otherwise,
gince 7(S) is noncrossing, we can assume up to a sym-
metric argument that every edge 7(d*) crossing p(e*)
has 7(d*)u > p(e*)u and 7(d*)y < p(e*)s. Let g be the
highest (in <) vertex in 7(S)u so that d(g,e”) < & and
let r be the lowest vertex in 7(S)y so that d(r,e*) < .
If there is an edge ¢'r' not crossing any edge in 7(S)
with ¢’ € 7(5)u, ¢’ between p(e*)u and g, r' € 7(S).,
and ' between p(e*)y and r, define r(e*) = ¢'r’; condi-
tion (2) of the lemma is easily verified. Otherwise, let
S’ be the subset of S crossing gr; §' must not be empty.
Clearly for any d* € 5, 7(d*)u - g and 7(d*)}v < 7. See
figure 5,

We claim that for any edge 7(d*) € S', either d(g,d*)
< kor d(r,d*) < k. If p(d*)u =< g, then certainly
d(g,d*) < d(r(d*)u,d*) < &. Similarly if p(d*)s > r,
then d(r,d*) < . Otherwise p(d*)u > g = p(e*)u and
p(d*)y < v = p(e®)v, so p(d*) crosses p(e). See fig-
ure 5, By lemma 4.2 and the definition of ¢ and r,
either d(p(e*)v,d*) < & or d(p(e*)u,d*) < &, so either
d(g,d*) < & or d(r,d*) < k.

Let @ be the set of edges d* € S’ so that d(g,d*) < &,
and 2 = '\ Q. Define r(e*) = gr; for d* € Q, redefine
7(d")u = ¢; and for d* € R, redefine r(d*)y = 7. It is
casy to check that r satisfies conditions (1) through (3).
The running time is immediate, O

Henceforth we let 7 be defined on all edges of P*, by
choosing a definition on P; separately for each edge e
of T, using lemma 4.3. Since there can be O(n?) edges
¢ in T, and O(n) edges in P, computation of 7 takes
time O(n*).

There is no guarantee that d(e*, 7(e*)) < & nor that
7(c*) and p(e*) have the same endpoints. In section 6,
we guarantee both properties by in effect augmenting
(e*) to a polygonal chain using vertical edges connect-
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Figure 6: R. is the shaded region plus the portion of
the edges inside pixel(u) and pixel(v).

ing its endpoints to the endpoints of p(e*).

5 Lifting triangle edges

The desired embedding o(f) of facet f of P will even-
tually be obtained by lifting each vertex, edge, and tri-
angle of T¥ to three dimensions. This section handles
a technically difficult case, the lifting of an edge e of
a triangle A of Ty to the “lifted edge” lya(e). The
lifted edge will satisfy three properties: f =< f' implies
lya(e) =2 lya, ie. vertical order is preserved or col-
lapsed; d(Isa(e),f) < &; and no pair of lifted edges
cross.

5.1 The order < and the snapping lemma

Let edge e of T' have endpoints # and ». Define R.
to be the convex hull of mzy(P.), less the interior of
pixel(v) and pixel(v), unioned with wzy(P:). See fig-
ure 6. Notice that there are no intersections among
the boundaries of {wz,(f) : f € Fa} within R. except
possibly at the endpoints of edges of #zy(P2). Facet
f € Fe covers e if no edge in P. bounds f; it is easy
to check that R, C wzy(f). A facet f covers facet f'
at e if Tzy(f') O Re C 2y(f) N Re. For any two facets
£, ' € F., either f covers f' at e, or f' covers f at e.

Suppose that e is an edge of triangle A of T. The
covering order < on the facets in Fj is any total order
so that f < f’ implies f' covers f at e. (The order
depends on both e and A, but to keep the notation
simple we do not make this dependence explicit.) The
order < can be described as follows. Assume that A lies
to the left of the e, directed from endpoint © to endpoint
v; direct all edges in P from pixel(u) to pixel(v). If
facets fo,fi € Fa have bounding edges ej,e] € P,
then fo < f1 if eg is to the left of e3; all facets covering
e appear at the end of the order <, and are ordered
arbitrarily among themselves.

For aset S C IR, let V() be all points on all vertical
lines through S. Let fa be a facet of P, e an edge of
T, and A an edge over e with endpoints u and v. Edge
A approzimates fa at e if d(Au, fa NV (R:)) < & and
d(Av, faNV(R.)) < &. Clearly, if A approximates fa
at e, then d(4, fa) < s. Also, if ¢* € P. is a boundary
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edge of face f, then 7(c*) approximates f at e.

Lemma 5.1 Let edge e bound triangle A of T. Suppose
fa, fe.fc € Fa with fa > fc = fB, A,B,C are edges
over ¢ approrimating fs, I, fo, respectively, A > B,
and fc covers fa and fg. Then snap(C,[A, B]) also
approximates fo ate.

Proof: We claim max(B,C) approximates fc at ¢;
a similar result holds for min, from which the lemma
follows. Let u be an endpoint of e. We show

d(max(Bu, Cu), fo NV(Re)) < k.

If Cy = By, there is nothing to prove, so suppose Cy <
Bu.

Let Tp and T be the cubes of sidelength 2« centered
at By and Cy, respectively, and T' = V' (TB) (clearly also
= V(T¢)). See figure 7.

Since B approximates fg, there is a point b € fr N
V(R.)NTs. Since fc = fe and fc covers fp at ¢, there
is a point ¢ € fo with ¢ & b; clearly ¢ € T. Since C
approximates fc, there is a point ¢’ € feNV(R:)NTe.
Since fe NV(R.)NT is path-connected, there is a path
in fe NV{(R)NT from ¢ to ¢'. Since ¢ is above the
bottom facet of T, ¢’ is below the top facet of Tc, and
Tp = T¢, some point of the path meets Tg. Hence
d(By, fo) < £. O

5.2 Default edges.

Let e be an edge of Ty with endpoints « and » and with
some triangle incident. We define the default lifting of
edge ¢ for facet f, cs(¢), which is to be used in the
absence of other constraints. If ¢ is a boundary edge of
T, then there is a unique edge €* € P; bounding facet
f, and we define cg(e) = r(e*). Otherwise suppose ¢ is
an interior edge of T¥; clearly f covers € and no edge
in P} meets f. The definition is slightly complicated
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because of the requirement that e not cross any edge in
(P7).

Define lows(e) to be the edge 49, where 4 is the
center of the lowest voxel X in column() so that X N
FNV(R.) is not empty, and similarly for . A pair
of distinct edges (e*,}*) in P is a bracketing pair if
e* > fand f > b*, 7(e*) = 7(b*) and no edge -r(d‘),
d* € P;, lies between (a*) and 7(b*) (possibly 7(a*) =
7(b*)). The existence of a bracketing pa.u: can be seen by
indexing the edges of Ps = {ej,...,€.} so that r(eg) =
r(e1) = ... = 7(e). Either f > 65, and the pair (T, e)
suffices (with the definition 7(T) = T); or ¢}, - f, and
the pair (e}, L) suffices; or there is i so that an ¢ }~ f
and f > €iy1, and the pair (e.y1,¢i) suffices. Define

c5(e) = snap(low(e), [r(a®), 7(6")]),

choosmg bracketmg pair (a b‘) so tha.t (r(a'),r(b‘))

is minimal in < among bracketing pairs. Set C{¢) =

{es(e): f € Fa}.
Lemma 5.2 Let f be a facet of P and e an edge of Ty.

1. ¢¢(e) approzimates f ate.
2. If ,F' covere and f < f', then cs(e) < ep(e).
3. 7(P2)UC(e) is noncrossing.

Proof:

1. If e is a bounding edge of Ty, then the claim ix
immediate. Otherwise

cs(e) = snap(low;(e), [r(a"), 7(b%)]),

for some bracketing pair (¢*,b*). Let ¢* and b* be inci-
dent to faces f, and fi, respectively. It is easy to check
that lows(e) approximates f. Clearly r(a*) approxi-
mates fq, 7(b*) approximates f, and f covers f, and
f (since e is not a bounding edge of Ty). Part (1) in
thus immediate from lemma 5.1.

2. We have Re C 7zy(f), Rc C may(f'), and f < f7, 50
lowy(e) < lowi(e). Let a},b} and a}s, b} be bracketing
pairs for f and f', respectively. We claim 7(a}) < r(a}:)
and 7(b%) < 7(b}), from which cs(e) =% cp(e) follows
easily. Clearly -r(a}) = 7(b%). It cannot be that 7(b}) ~
r(af:), for agr > f' &= f and f would have a bracketing
pair below (a},b%), contradlctmg minimality. No cdge
of 7(P}) lies between 7(a}) and r(b!), so0 it must be
that 7(a}) > 7(a}). Similarly 7(b%:) = 7(b%).

3. Clearly no edge cg(¢) crosses an edge of 7(P;). Also
clearly, if f and f have distinct bracketing pairs, then
cg(e) and cys(e) do not cross. If f and f' have the
same bracketing pair, then ¢¢(e) and ¢ys(e) do not cross
because lowg(e) and low i (e) do not cross. O

5.3 Lifting triangle edges.

Let e be aun edge of triangle A of T\ For facets f € Fa
in the order «, simultaneously and inductively define



asa(e) and bsa(e) (the constraints from above and be-
low, respectively) and Iya(e) (the lifting of edge e of A
in f), as follows:

agale) = min{lpa(e): f < f and f' > £}
bra(e) = max{lpa(e): f < f and f' < f}
lya(e) = snap(cs(e),[arale), brale)])-

We have aga(e) &= bya(e) by lemma 5.3(1) below.

Lemma 6.3 Let ¢ be an edge of triangle A of T' with
cdge e, and let f, f' € Fa.

1. asa(e) = bsale).

2. If f 2 f, thenlya(e) 2 1pa(e).
3. lyn(e) approzimates f at e.

4. Lia(e) € T(P2YU Cle).

Proof: 1. and 2, We prove both simultaneously by
induction on <. Ifaga(e) = Torbsa(e) =L, asale) =
bya(e) is immediate. Otherwise aga(e) = lfa(e) and
bra(e) = lpa(e) for some facets fo = f = fi, so by
induction hypothesis asa(€) &= bsa(e). For (2), suppose
J = f'; without loss of generality assume f’ <1 f. Then
by definition Iy a(e) = asa(e) = lra(e).

3, Since lsa(e) is defined in the order <«, the claim
follows from an easy induction using lemma 5.1.

4, By lemma 5.2, (P7) U C(e) is noncrossing, so the
“snap” in the definition of Iga(e) results in an element
of 7(PgYUC(e). O

6 The subdivision @

In this section we define the subdivision @ and the em-
bedding o of P into @ required by theorem 2.1. For
technical reasons ¢ is defined on P* as well,

We first define a “vertical carrier” over each vertex
and edge of T, TFor v a vertex of T, let VC(v) be the
vertical chain of edges through p(Py), i.e. all edges con-
necting two vertices of p(Py) that are adjacent in verti-
cal order, Let ¢ be an edge of T’ with endpoints « and
v, Consider the edges 7(P;) U {lsa(e) : A incident to
¢, f € Fa}; they are noncrossing, by lemmas 5.1(3) and
5.3(4). Split each edge at its midpoint. These edges
together with VO(u) and VC(v) form a planar graph
(in the plane through VC(u) and VC(x)); let VC(e) be
any triangulation of this graph.

For v* a vertex of P*, define o(v*) = p(v*). Let
¢* & PZ, where edge e in T has endpoints u and v. De-
fine o(e*) to be the subdivision consisting of r(e*), the
subchain of VC?‘ connecting 7(e*)u to p(e*)u and the
subchain of VC(v) connecting r(e*)v to p(e*)v. Extend
o to edges e of P:

e*EP*, e*Ce

a(e”)

a(e) =
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Figure 8: Construction of I;(A) for triangle A of T}
with vertices a, b, c.

Clearly o(e) is a subdivision. We extend o to facets in
section 6.2.

Lemma 6.1 Ifw,w' are vertices or edges of P and w <
w', then o(w) <£ o(w’).

Proof: The claim is immediate for two vertices. Sup-
pose w is a vertex and w’ an edge; the symmetric case
is similar. Then o(w’) contains a vertical chain of edges
from the center of the first voxel in column(w) met by
w' to the center of the last such voxel. Since w < w',
p(w) is below or on the chain, and o(w) 2 o(w’). The
case of two edges is similax. O

6.1 Lifting triangles

Let A be a triangle of Ty with vertices a, b, c. Consider
the edges Isa(abd), lya(ac), Iga(be). There is no guar-
antee that these edges are pairwise incident {of course
both ;4 (abd) and lra(ac) are incident to vertices over
a, and similarly for the other pairs). We form a (three-
dimensional) polygon from Isa (ab), lsa(ac), Iya(bc) by
adding the vertical subchain of L(a) connecting lya (ab)q
to Iga(ac)a (if they are not equal) and similarly for the
b and c endpoints. The lifting of A for facet f, l;(A),
is a triangulation of this polygon, described as follows.

Split edges Iya (ab), Iga(ac), Iga(bc) at their respec-
tive midpoints mas, Mac, Mec, and add the three edges
connecting midpoints. This forms a triangle mapmacmee
and three polygons, where e.g. the a-polygon (of f) con-
sists of edge mapmac, the two subedges of Iya(ab) and
lsa(ac) with endpoints over @, and possibly a vertical
chain over a. See figure 8.

For points p,¢ € R® and o € R, let afp,q] be the
point (1 — a)p + ag, i.e. the point a fraction « of the
way from p to g.

The a-index of f is the number of distinct pairs
(154 (ab), I1a(ac)), where f' = f. Let ay = ¢/2M8am1,
where i is the a-index of f; clearly 0 < ay < 1. First



assume lsa(ac)a = lpa(ab)a. Set

1
vf = Q'f[ E[IfA(ac)a, mab],mac]-

See figure 8. Triangulate the a-polygon of f with vy,
i.e. connect vy to Mmae, Map, and any vertex on the chain
from l_fA(ab)a, to lfA(ac)a. It IfA(ab)a - Iﬂ_\(ac)a, the
construction is similar, with map and m,. interchanged
and lya(ab)a substituting for Ia(ac)e. The other two
polygons are triangulated in a similar fashion.

Lemma 6.2 Let A be a triangle of T and f, f' € Fa.
. d(g(A), f) < k.
2 I f 2, thenlp(A) 2 (D).

3. Every vertex coordinate of l;(A) is an integral mul-
tiple of 1/2M°62 w142,

. If(A) has O(n) cells.

Py

oa

Praoof:

1. Let A have vertices a,b, c. Every vertex of If(4) is
within the convex hull of {lza(abd), I;a(ac), lra(be)}.
The claim follows using lemma 5.3(1) and proposition
3.1.

2. We can assume that lza(ac)a = lya(ab)a. Using
lemma 5.3(2), we must have

IflA(aC)a - IfA(ac)a and lflA(ab)a, = lfA(ab)a.

I {pra(ab)a = Iza(ac)a, then the result is immediate,
since the convex hull of {Isa(ab), lsa(ac)} and the con-
vex hull of {lz:a(ab),lpra{ac)} have disjoint interiors.
Hence we can assume that

lpra(ac)a = la(ac)a &= dpra(ab)a &= Ira(ab)a.

Let ¢ and i be the a-indices of f and f” respectively. If
if =i, then the a-polygons for f and f' are identical.
Otherwise, iy > iy since f < f'. Let s be the edge
connecting vy to the midpoint of Iyia(ac); clearly we
have wzy(vs) € wog(s) since ay > ayr. Furthermore we
have vy < s, since Ifa(ab) = Ipra(ab) and lpa(ac) =<
lgra(ac) with inequality holding in at least one case.
I (A) 2 1u(A) follows easily.

3., 4. Immediate, O

6.2 Vertical ordering
It is tempting to define o(f) =J ser, Is(A). This def-

inition would preserve or collapse vertical order (in the
sense of theorem 2.1) over triangles of 7', but not nec-
essarily over edges and vertices. Hence we develop an
alternate definition of o(f).

Let E¢(v) be the set of all endpoints over » of all
edges lga(e), where edge e of T is incident to » and
triangle A of T is incident to e. Define
af(») = min{o(2"):v" € Py and v* = f} U E¢(v)
be(v) = max{o(v*):¢" € Py and v* < f} U Ef(v).
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The lifting of vertex v for facet f, l;(v), is the subchain
of VC(v) connecting as(v) and bs(v).

For e an edge of Ty, let E(e) be all edges Iya(e),
where A varies over triangles in Ty incident to e. Define
as(e) min{o(e*): e* € P; and €* = f}U Ey(e)
bs(e) max{c(e®) : e* € P, and ¢* < f} U Ey(c).

The lifting of edge € for facet f, l;(e), is all edges and
vertices w of V'C(e) satisfying bs(e) &= w and w = ay(e).

Lemma 6.3 Suppose w is a vertezx or edge of T, w* &
Pg,, and f is a facet of P. Thenw* = f implies o(w*) <
lf(w) and w* = f implies o(w*) = lf(w).

Proof: By construction. O

Lemma 6.4 Let f be a facet of P and w an edge of Ty.
Then d(ly(w), f) < .

Proof: Similar to the proof of lemma 5.1. O
For each facet f of P, define

o(f)= | U(w),

WET!

where w varies over vertices, edges, and triangles. It is
easy to check that o(f) is a subdivision.

Lemma 6.5 If f, f' are cells of P and f < f', then
o(f) 2 o(f')-

Proof: The lemma follows from lemmas 6.1 and 6.3 if
one of f and f’ is a vertex or edge. So suppose both
are facets. For each triangle A in both Ty and Ty,
1f(A) 2 1(A) by lemma 6.2, Suppose e is an edge in
both Ty and Ty. If there is a triangle A in both Ty and
Ty+ incident to e, lemma 6.2 again implies Iy (€) =< 151 (e).
Otherwise, up to symmetry, there is an edge ¢* € P;
bounding f with ¢* < f', so by lemma 6.3, o(¢*) =<
ls1{e). Since e* X f, o(e*) C ls(e), and I5(e) < Uy1(c).
A similar argument shows that if » is a vertex in both
T and Ty, then If(v) < ly(v). Hence o(f) < o(f').
a

6.3 The subdivision Q@

Let Q= f o(f) , where f varies over all facets of P.

It is easy to check that @ is a subdivision and that ¢ is
an embedding of P iunto Q.

Lemma 6.6 Q has O(n*) cells and can be computed in
time O(n?).

Proof: For each facet f of P, Ty has O(n?) triangles
A. By lemma 6.2, I;(A) has O(n) cells. Hence o(f) has
O(n®) cells, for a total of O(r*) over all facets of f. Q
can easily be computed in the same time. D



6.4 Hausdorff distance

It follows immediately from lemmas 6.2 and 6.4 that
d(o(f), f) £ #. The proof that dxr(o(f), f) < & requires
a proof that d(f, a(f)) < «. This proof has a topological
flavor, using d(e,o(e)) < & for each edge e bounding f.
The proof is omitted due to lack of space.

Discussion

It may be possible to improve the worst-case bounds
given in theorem 2.1. For example, the O(n*) bound on
the size of @ could be an artifact of vertical projection;
perhaps an O(n®) bound could be obtained by using
different projection directions in different places, each
tuned to the local configuration. Obtaining a worst-case
bound below O(n®) seems very challenging. It would
also be desirable to remove the extra [log, n]+42 bits
needed for vertex coordinates; again, this may be an
artifact of vertical projection.

The algorithm of theorem 2.1 adds many vertices, far
more than are necessary unless the input subdivision
has been chosen by an adversary. Another challenge
is to devise a straightforward algorithm that adds ver-
tices only to nearby features, just enough to avoid self-
intersections and to maintain combinatorial ordering.
Presumably, most subdivisions would need far fewer
new vertices than the bounds given in theorem 2.1.

A programmer would probably prefer a simple round-
ing algorithm, even at the expense of degraded worst-
case bounds, as long as the typical-case bounds are rea-
sonable, One reason that the rounding algorithm is
complicated is the need to avoid edge crossings. Milen-
kovic [17] suggests rounding existing vertices to integer
coordinates, If two rounded edges cross, then a ver-
tex of intersection is added, with coordinates computed
exactly, This would require a constant-factor increase
in the bit-length of some vertex coordinates, and hence
of gome predicate evaluations. However, the maximum
required bit-length is still bounded, and perhaps the
increased-length calculations are relatively infrequent.
It may be that this approach can lead to a practical
rounding algorithm,
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