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Abstract 

Let P be a polyhedral subdivision in lR3 with a t,otal of 
n faces. We show ghat t,here is an embedding u of the 
vertices, edges, and facets of P into a subdivision &, 
where every vertes coordinate of Q is an integral multi- 
ple of 2-p”fian+‘l. For each face f of P, the Hausdorff 
distance in the 1;, metric between f and o(f) is at 
most, 3/2. The embedding u preserves or collapses ver- 
tical order on faces of P. The subdivision Q has O(n4) 
vertices in the worst, case, and can be computed in the 
same time. 

1 Introduction 

Geometric algoribhms are usually described in the “real- 
number RAM” model of computaCon, where arithmetic 
operations on real numbers have unit cost. A program- 
mer implementing a geometric algorithm must find some 
substitution for real arithmetic. The substitution of es- 
act arit,hmetic on a subset of t,he reals, say the integers 
or the rationals, avoids t,he difficulties that can arise 
from naive substit,ution of floating-point arithmetic [4, 
12, 14,151. The substitution is not trivial, since the re- 
quired arithmetic bit-lengt,h usually esceeds the native 
arithmetic bit-length of most computer hardware, and 
some form of soft.ware arit.hmet,ic is required. 

Recent research has made the use of software esact 
arithmetic for geometric algorithms much more attrac- 
tive. A predicate on geometric data is determined by 
the sign of an arithmetic expression in t.he coordinates 
of the data. A promising skategy for sign-evaluation 
is adaptive-precision aribhmetic [6, 13, 201, where the 
expression is evaluated to higher and higher precision 
until its sign is known, i.e. until t.he magnitude of the 
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espression esceeds an error bound. Low precision, even 
floating-point, suffices most of the time, since most in- 
stances of geometric predicates are easy. In addidion, 
for some basic predicates like the sign of a determinant, 
there are alternative evaluation strategies that require 
arithmetic with relatively low precision [l, 2, 31. 

Esact arithmetic would be more useful if high-level 
geomet.ric rounding algorithms were available. Virtu- 
ally any geometric construction that produces new geo- 
metric data increases the bit.-length of geomekic coordi- 
nates. For esample, suppose points are represented wit.11 
homogeneous int,eger coordinates. The plane through 
three such points has coefficients whose bit-lengt.hs arc 
about three Cmes the point coordinat,e bit-1engG; the 
point of intersection of three such planes has coordinate 
bit-length about nine times that of t,he original points. 
Thus a solid modeler, which implements boolean oper- 
ations and rigid motions on polyhedra, might product 
a polyhedron with high coordinate bit-lengt,h even if 
the onginal polyhedra had short coordinate bit-length. 
Typically an application requires only a low-precision 
approximat,ion, not t.he esact answer. Hence t,here is 
a need for high-level rounding, which replaces a geo- 
metric structure with high bit-length coordinates with 
an approximating structure with short bit-1engt.h coor- 
dinates. It does not suffice to round each coordinate 
independently, since such rounding is a geometric per- 
turbation, and may introduce inconsistencies between 
geometric and combinatorial information. Furt,hermore, 
some change in combinatorial structure is inevitable; in- 
deed, in certain cases it is NP-hard to determine if it 
is possible to round to low-precision without changing 
combinatorial structure [19]. 

There are satisfactory high-level rounding algorithm8 
for polygonal subdivisions in two dimensions. One such 
algorithm is snap-rounding [lo]. Fis a polygonal subdi- 
vision, with arbitrary-precision coordinates. A pi.4 is 
a unit square in the plane centered at a point with inte- 
ger coordinates; a pixel is hot if it contains a vertes of 
the subdivision. Snap-rounding replaces each vertes by 
the center of the pixel containing the vertes, and each 
edge by the polygonal chain through the centers of thr 
hot pixels met by the edge, iu the same order as met 
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by the. edge. The snap-rounded subdivision approxi- 
mates the original subdivision in the sense that each 
vertex and edge of the original subdivision has an image 
in the snap-rounded arrangement whose Hausdorif dis- 
tance is at most l/2 in the L, metric. Snap-rounding 
may change the combinatorial structure of the subdivi- 
sion, for example, vertices and edges may collapse to- 
gether, but some combinatorial ordering information is 
preserved [lo]. 

This paper generalizes snap-rounding to polyhedral 
subdivisions in three dimensions. Fix a polyhedral sub- 
division P with a total of n vertices, edges, and facets. 
WC show that there is a polyhedral subdivision Q so 
that each vertex coordinate is an integer multiple of 
1/28°~anl‘+2. Each face f of P has an image u(f) in Q 
so that the Hausdorff distance between f and o(f) is 
at most 3/2. As with snap-rounding in two dimensions, 
f and a(f) may have different combinatorial structure: 
an edge may be replaced with a polygonal chain, and 
a facet with a triangulation. Two vertices may col- 
lapse together; the polygonal chains for two edges or 
the triangulations for two facets may collapse together 
or overlap partially, perhaps in several places. However, 
vertical order is preserved (or collapsed): if face f is ver- 
tically above face f’ (i.e. there is a line parallel to the 
z-axis meeting both faces, and the intersection with f 
has higher a-coordinate), then o(f) is above (or over- 
laps) a(f’). In the worst case Q has O(n4) vertices and 
can be computed in time O(n4). 

Other work. Greene and Yao mere the first to suggest 
a rounding scheme for polygonal subdivisions in two 
dimensions [8], Hobby [ll] and Greene [9] give algo- 
rithms to compute the snap-rounding of the arrange- 
ment formed by a set of intersecting edges. Guibas 
and Marimount [lo] show horn to maintain the snap 
rounded arrangement of edges under insertion and dele- 
tion of edges; they also give elementary proofs of basic 
topological properties of snap rounding. Goodrich et 
al [7] give improved algorithms to snap-round a set of 
intersecting edges, in the case when there are many in- 
tersections within a pixel. Milenkovic [18] suggests a 
“shortest-path” geometric rounding scheme that some- 
times introduces fewer bends than snap rounding. 

Goodrich et al [7] propose a scheme for snap-rounding 
a set of edges in three dimensions after first adding 
as vertices the points of “closest encounter” between 
nearby edges. Milenkovic [16] sketches a scheme for 
rounding a polyhedral subdivision in three dimensions 
(in fact, any dimension). Unfortunately, both schemes 
hnvc the property that rounded edges can cross (see 
below), which violates any notion of topological consis- 
tency. 

Fortune [g] suggests a high-level rounding algorithm 
for polyhedra in three dimensions. Hii algorithm as- 
uumca that a polyhedron is presented by the equations 
of its face planes (and the combinatorial incidence struc- 
ture of faces), not the coordinates of vertices as assumed 
by snap-rounding. His algorithm does not appear to ex- 

tend from polyhedra to polyhedral subdivisions. 

1.1 Overview 

We give a brief overview of the rounding algorithm. We 
start by mentioning some difliculties with the three- 
dimensional extension of snap-rounding. 

The obvious way to snapround a vertex in three 
dimensions is to replace it with the center of the voxel 
containing it. (A uozel is a unit cube centered at an 
integer point.) However, it is less clear how to snap 
round edges and facets. 

Snaprounding a set of edges in three-dimensions re- 
quires the addition of new vertices, unlike the situa- 
tion in two dimensions. Consider two transverse nearby 
edges. Bounding the endpoints to voxel centers perturbs 
the edges, and hence the edges may change orientation 
or cross. We can attempt to prevent this by adding a 
vertex in the interior of each edge near the other edge; 
then either the two new vertices are in the same voxel 
and snapround together, or they are in different voxels 
and the snaprounded edges will not cross. Clearly, it 
might be necessary to add quadratically many vertices, 
if the edges form a “cross-hatch” pattern. 

Snaprounding with facets as mell is more problem- 
atic. If a vertex v and a facet f are nearby, we can add 
a new vertex V’ to f to ensure that v and f are prop 
erly separated or collapsed. However, this requires that 
f be triangulated, which introduces new edges. Poten- 
tially these edges are close to old edges, which could 
require new vertices, and it is not immediate that the 
process is finite. We can attempt to ensure termina- 
tion by projecting nearby edges onto a facet, and then 
trianguIating the facet compatibly with the projection. 
The actual rounding algorithm is a formalization of this 
idea. 

The founding algorithm. Orthogonally project all the 
edges of the subdivision P onto the zy-plane, form the 
arrangement, snapround, and compute a triangulation 
T. Each face of P has au image within the triangulation: 
the image of an edge is a polygonal chain, and the image 
of a facet is a subtriangulation of T. The rounding of 
each facet f is obtained by lifting the image of f in T 
to three dimensions in such a may as to approximate 
f. By considering each cylinder over a vertex, edge, or 
triangle of T separately, we can ensure that the lifting 
preserves (or collapses) the vertical order on faces of P. 

There are several technical ditbculties with this algo- 
rithm. We must first ensure that there are no crossings 
among the polygonal chains that result from rounding 
the edges of P. Figure 1 indicates one may such a cross- 
ing could occur. To prevent crossings, we subdivide the 
edges of P by all xy-, xz--, and yz-intersection points. 
(If the orthogonal projections of e and e’ into the zz- 
plane cross at a point p, and 1 is the line parallel to the 
y-axis through p, then en I and e’n I are zz-intersection 
points.) Unfortunately, this subdivision is not quite suf- 
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Figure 1: Vertices a and a’ project to the same pixel in 
the cg-plane, as do b and b’. Hence in three dimensions, 
the snap-rounding of ab crosses the snaprounding of 
a’b’. 

ficient to prevent crossings among snap-rounded edges. 
In figure 2, d’ and C* have endpoints on column facets. 
The zy-, II-, and yz-projections of d’ and e* are all dii 
joint., but. their snap-roundings cross. Fortunately, the 
configuration of figure 2 is almost, the only way this can 
happen, and we can show t.hat there is a slight modiiica- 
tion of snap-rounding that, avoids crossings. In figure 2, 
the modiied snap-rounding of d” is a two-edge polyg- 
onal chain, connecting a snap-rounded endpoint of d’ 
to the snap-rounded endpoint of e’ on t,he same verti- 
cal line, and then to the other snap-rounded endpoint 
of d’. We sham that t,he distance between an edge and 
its modified snaprounding increases slightly, to at most 
3lZ. (The configuration in figure 2 can be modified to 
shorn that. t,he “close encounter= subdivision of Goodrich 
tit al [?] does not. prevent” edge crossings.) Section 4 de- 
scribes the modification of snap-rounding. 

Let. TJ be the image of facet f within triangulation 
T. We lift Tf to three dimensions by first lifting each 
edge and then the interior of each triangle. The lifting 
of an edge must. satisfy three conditions: it must be 
close to f; it, must. not cross any other edge; and it 
must preserve vertical order. This last, condition is a 
bit. tricky. Consider the sibuation given in cross-section 
in figure 3, wibh e, e’, and f ort,hogonal to the figure. 
Assume t.hat edges e and e’ project and snap-round to 
the same edge d in the triangulation T. Edge e is above 
facet f, so the lifting of edge d for facet f must be on 

Figure 2: p(d*) and p(e*) cross, although the zy-, zz-, 
and yz-projections of d’ and e* do not. 

B 

e’ 

e 

f 

Figure 3: Side view. Edge e is above facet f and c’ iti 
below. Hence the rounding of facet f must cont.ain the 
vertical interval from the rounding of e to t,he rounding 
of e’. 

or below the rounding of e. Similarly, edge e’ is below 
facet f, so the lifting of edge d for facet f must, on or 
above the rounding of e. Hence t,he lifting of d for facet 
f must at least span the vertical inberval between t,hn 
rounding of e and the rounding of e’. Sect,ion 5 below 
describes how to lift triangulaaion edges. 

Consider a t.riangle A = Aabc of Tf . If the lifted 
edges ab, ac, and bc for facet f are all pairwise incident., 
then the lifting of A for facet f, If (A), is simply the t,ri- 
angle with those edges. Unfortunately, incidence cannot 
be guaranteed (though, of course, bot.h lifted edges ab 
and ac meet the verbical line through a, and similarly 
for b and c). Hence If(A) must be a t.riangulat.ion of 
the polygon formed by the lifted edges ab, ac, and bc, 
and perhaps edges along the vertical lines t.hrough a, b, 
and c. See figure 4. It is easy t,o t,riangulate the poly- 
gon using a central vertex whose zy-project,ion is within 
triangle A. However, a vertical boundary edge may bc 
shared among several different liftings. To ensure t.hat 
there are no crossings among edges, each cent.ral vertex 
must have distinct coordinates. Since there may be rr 
central vertices, coordinates that are integer mult.iplc:: 
of roughly l/=n are necessary. More det,ails of the Wing 
appear in sect.ion 6. 

Naively the rounded subdivision Q has at most O(na) 
faces: the triangulabion T has O(n’) trianglesd so for 
each facet f the rounding g(f) consists of O(n ) lifted 
t<riangles {If(A)}. H owever, in the worst case each lifted 
triangle If(A) may consist of O(n) faces, since there 
could be linearly many vertices on bhe vertical edges of 
its boundary. Hence Q has O(n4) faces. 

2 The main theorem 

For points a, b E II@? and sets A, B C R3, d(a, b) is t,hc 
L, dist,ance between a and b (the LC3 distance is used 
exclusively in this paper); d(a, B) is infbEB d(a, b); and 
d(A, B) is sup,sA d(a, B). Note that d is symmetric for 
points, but not in general for sets. Hausdorff distance 
d&A, B) is max(d(A, B), d(B, A)). 

The direction parallel to the z-axis is the wcrtical 
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Figure 4: The liftings of triangle Aabc for facets f and 
f’ have boundary alacbfcf and alacbycy, respectively. 

direction, Two sets A, I3 c JR3 are uerticully ordered 
A + B (read KA is below B”) if there is a vertical line 
meeting both A and B, and for every vertical line 1 meet- 
ing A and B, A tl 1 is below B 17 1, i.e. the z-coordinate 
of every point of A f~ 1 is less than the z-coordinate of 
every point in B 17 1. Sets A and B satisfy A 5 B 
if there is a vertical line meeting both, and for every 
vertical line meeting both, A n I is below or intersects 
B i-71, As is well-known, -X is not transitive in general; it 
is transitive among a family of sets that have the same 
zu-projection. If in addition, every set in the family is 
a arfacc, i.e. every vertical line misses the set or meets 
it at one point, then 5 is also transitive. 

A subdivision P in R3 is a set of compact convex 
polyhedral cells so that every face of every cell is in 
the subdivision and so that the intersection of two cells 
in a face of both. Cells of dimension 0, 1, and 2 are 
uerticee, edges, and facets, respectiveIy. IPI is the union 
of the cells of P. An embedding of a subdivision P into 
a subdivision Q is a mapping u that maps each cell of 
P into a subdivision contained in Q so that if f is a face 
off’, then a(f) E c(f’). 

To aimplify notation somewhat, we extend d and < 
to aubdiviGons. Thus for subdivisions P and Q, P + Q 
means IPI -: IQ1 and d(P,Q) means d(lPI, [Ql). 

Throughout this paper we assume that subdivisions 
in m3 do not include cells of dimension 3. Furthermore, 
we assume that every subdivision is in general position, 
specifically, that no edge or facet is parallel to a coordi- 
nate axis and that no vertex has a coordinate that is au 
integer multiple of l/2. The general position assump 
tion simplifies presentation; it is not hard to remove 
(either explicitly or for example by an infinitesimal sym- 
bolic rigid motion). 

Theorem 2.1 Let P be a subdivision in IR3 with a total 
of n celb; set K = 312. There is a subdivision Q and an 
embedding u of P into Q so that: 

1. For each cell f of P, dH(f,o(f)) < K. 

2. Each uertez coordinate of Q is an integral multiple 
of 1/2W”92 nl- 

3. If cells f, f’ of P satisfy f 5 f’, then u(f) 5 
u(f’) . 

4. yelEn be computed in time O(n’) and has O(n’) 
. 

This theorem follows from the discussion below. At a 
high level, the algorithm required for step (4) has three 
steps. 

Subdivide the vertices and edges of P, forming a 
set of vertices and edges P’ (Section 4). 

Orthogonally project P’ onto the zy-plane, snap- 
round, and triangulate the convex hull of the re- 
suiting subdivision. Let T be the resulting trian- 
gulation. 

For each cell f in P, lift Tf (the image off in T) 
to a subdivision Qr c lR3 (Sections 5 and 6). 

3 Definitions 

A pizel is an open unit square in the zy-plane centered 
at an integer point; pixel(q) is the pixel containing point 
q. A vozel is an open unit cube in R3 centered at an 
integer point; voxel(q) is the voxel containing point q. 
A column (of voxels) is all voxels whose centers have 
the same z- and y-coordinates; column(q) is the column 
containing q. 

Let A be a subdivision in the zy-plane. A pixel is 
hot (5th respect to A) ifit contains a vertex. The snap- 
rounding (with respect to A) of an edge e of A is the 
polygonal chain connecting the centers of the hot pixels 
met by e in the same order as met by e; similarly the 
snap-rounding of a vertex of A is the center of the hot 
pixel containing it. A basic fact[lO] is that two polygc+ 
nal chains that result from snap-rounding intersect only 
at vertices and edges of both chains. The snap-rounding 
of A is obtained by replacing each edge and vertex of A 
with its snap-rounding with respect to A; it is a polygo- 
nal subdivision whose vertices are hot pixel centers, i.e. 
integer points, and whose edges connect integer points. 

Let rzIy be orthogonal projection onto the zy-plane, 
and similarly for rzls and x9,. A set A C R3 is over a 
set P in the zy-plane if xty(A) = P. If A is a surface 
with p E rzfg(A), then Ap is the point of A over p (i.e. 
n&A,) = p). If A and B are surfaces over the same set, 
then max(A, B) is the pointwise maximum (viewed as 
functions of the zy-plane), and min(A, B) is the point- 
wise minimum. If A, B, C are surfaces over the same set 
with A > B, then snap(C, [A, B]) is min(A,max(B, C)). 
Clearly, A 2 snap(C, [A, B]) 2 B. 

Suppose a set P in the zy-plane is fixed. We define 
symbolic sets T (top) and I (bottom) satisfying J. < 
A 4 T for any other set A over P. We have for example 
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min(A, T) = A = max(A, I); v.~e define min and max of 
au empty collection to be T and I, respecbively. 

Two edges cro.ss if t,hey intersect. at a point interior 
to at least one of the edges. 

Proposition 3.1 Let T c lR3 be cooawes, {sl,.. .,s~:} 
bc a fim't~ set of points in R3 with convex hull S, and I’et 
I: > 0. Ifd(sl, T) < t; for i = 1,. . . , k, &en d(S, T) 5 li. 

Proof: Any point, in S can be expressed as c~isi 
with 0 <:~~<landCa,= 1. For each si, there is a 
point t, E T SO bhat d(s,, tl) 5 t;. Clearly Caiti E T 
and d(xct,s,, xa,ti) is ahe maximum absolut,e value 
of any coordinate of c LT,(S, - ti), which is bounded by 
tc since Ca, = 1, a, 1 0, and t.he absolute value of 
each coordinate of sI - t, is bounded by K. 0 

4 Snap-rounding edges 

Define p(q) to be the center of the vosel containing q, 
and estend to p to edges: p(qq’) is the edge p(q)p(q’). 
The mapping p is the obvious estension of snap-roundiug 
to three dimensions (ignoring snapping to hot vosels, 
which is unimportant here). Unfortunately, p may cause 
two edges to cross. R7e now define a refinement. P* of 
thr vertices and edges of P and a modification r of p 30 
that no t.wo edges in r(P*) cross. 

4.1 The subdivision P’ 

Let e aud 6’ be t.wo edges of P whose zy-projections 
CKH at a poinb p. An zy-intersection point (of P) is 
either point on e or e’ bhat meets t,he line through p 
parallel to the z-axis. The definition of an xz- or yz- 
intersection point is similar. 

Subdivision P’ results from subdividing the edges 
of P. Ab any point in the process, t? denotes the sub- 
division of edge e of P; any vosel containing a vertes 
is a hot vosel; and any column of vosels containing a 
hot vowel is a hot column. There are bwo steps in the 
subdivision: 

I. Subdivide the edges of P at a!.l xy-, xz-, and yz- 
intersection points of P. 

3. For each edge e of P, split d by each hot column 
C it, meets: d must meet C in a consecutive set 
of vosels; i is split by C by further subdividing & 
at any point, in the first vosel (if e^ does not yet 
have a vertes in the first vosel) and similarly by 
subdividing g in the last vosel. 

Splitting by hot. columns has an easy consequence: 
for any edge e of P, t,he snap-rounding of nzp(d) with 
respect to rz,,(P*) is identical to t,he snap rounding of 
r&G) with respect, to t. Henceforth we use a super- 
&ipt ‘*’ for edges and vertices of P’. For e’ an edge of 

P’, me write s(e*) for the snap-rounding of n&e”). It 
is immediate that if d*,e* are edges of P’, then p(d*) 
crosses p(e*) only if s(d*) = s(e*). 

Lemma 4.1 P” has O(n3) vertices; there are O(2) 
hot columns and O(n3) hot voxels. 

Proof: Clearly there are at most O(n2) zy-, zu”-, and 
yz-intersection points, and O(n) vertices of P. Spkting 
edges by hot columns adds no new hot columns, hence 
there are O(n2) hot columns. For each edge e of P 
and for each hot column, there are at most two vertices 
added when e^ is split by the column. Hence there are 
O(n3) vertices altogether. •I 

As mentioned earlier, T is a triangulation of the con- 
vex hull of s(P*). Consider the edges E’ in P’ bounding 
a facet f of P. The projection ?rzll(E*) forms a simple 
cycle, but the snap-rounding s(E*) need not. However, 
it is not hard to see that s(E*) consists of some number 
of simple cycles connected by polygonal chains. Let T/ 
be the subtriangulation of T consist.ing of 6he vertices 
and edges of s(E*) plus any vert,ices, edges and triangles 
of T interior to the simple cycles in s(E*). 

For v a vertes of T, e an edge of T, and a a t,riangle 
of T, define 

P,’ = {e* E P’ : s(e*) = e} 

P,’ = (2)’ E P’ : s(C) = v} 

F, = {fEP*:eETf} 

FA = {~EP*:AET~} 

where v* and e’ are vert.ices and edges of P’, respcc- 
tively, and f is a facet of P. 

4.2 The mapping r 

Lemma 4.2 Let e be an edge of T. If d*,e* E P,’ and 
p(d*), p(e*) cross, then either there is an endpoint UJ of 
p(d*) with d(w, e*) < K or an endpoint w’ of p(e’) tuith 
H(w’, d’) < ti. 

The intricate proof of thii lemma is omitted due to lack 
of space. 

Lemma 4.3 Let e be an edge of T. There is a mapping 
r defined on P,’ so that 

I. For all edges e” .$ P,‘, r(e*) is an edge ower c with 
endpoints among the endpoints of p(P,‘). 

2. For all edges e*, d(r(e*), e*) < t;. 

3. r(P:) is raoncrossing. 

4. r can be computed in time quadratic in the six of 
P,“. 

120 



?.,PW /T \ /’ ‘\. ,/ : . , 
‘. /’ :r 

: *E /’ ,’ \\ .m / ‘. /’ ‘\ * 
‘0 /’ ‘\ : 

e+ ‘\ : 

Figure 6: Definition of 7 on new edge e’. 

Proof: We define r inductively, adding edges of P,’ one 
by one in arbitrary order. The addition of an edge may 
change the definition of r on other edges as well; hom- 
ever, properties (1) through (3) of the lemma statement 
are maintained. 

So suppose 7 has been defined on a subset S of P,’ 
and e’ is the next edge. If no edge of r(S) crosses 
p(e’), then simply define r(e*) = p(e*). Otherwise, 
since ~(5) is noncrossing, we can assume up to a sym- 
metric argument that every edge r(P) crossing p(e’) 
has ~(d’ U % p(e*)” and ~(8)” 4 p(e*)“. Let q be the 
highest in $) vertex in TV so that d(q, e*) < K and 2 
let r be the lowest vertex in r(S)” so that d(r,e*) < 6. 
If there is an edge q’r’ not crossing any edge in r(S) 
with q’ E r-(S),, q’ between p(e’), and q, r’ E r(S),, 
and t’ between p(e’)” and r, define r(e*) = q’r’; condi- 
tion (2) of the lemma is easily verified. Otherwise, let 
S’ be the subset of S crossing qr; S’ must not be empty. 
Clearly for any d’ E S’, r(d*),, + q and r(d’)v < r. See 
figure 6. 

We claim that for any edge r(d’) E S’, either d(q, d*) 
< t; or d(r,d* 

2 
< it. If p(d’)U 4 q, then certainly 

d(q,d*) < d(r d*)u,d*) < 6. Si&arly if p(d*), t r, 
then d(r,d*) < K. Otherwise p(d*)” + q > p(e’), and 
p(d’)” -: r 5 p(e*)“, so p(d’) crosses p(2). See fig- 
ure 6, By lemma 4.2 and the definition of q and r, 
either d(p(e*)“,d*) < R or d(p(e’),,d’) < a, so either 
d(q, d’) < t; or d(r, d*) < K. 

Let Q be the set of edges d’ E S’ so that d(q, d’) < 6, 
and R = S’ \ Q. Define r(e*) = qr; for d’ E Q, redefine 
r(d’)u = q; and for d’ E R, redefine r(d*)” = r. It is 
easy to check that r satisfies conditions (1) through (3). 
The running time is immediate. •I 

Henceforth we let r be defined on all edges of P’, by 
choosing a definition on P,’ separately for each edge e 
of !I’, using lemma 4.3. Since there can be O(n2) edges 
e in T, and O(n) edges in Pz, computation of r takes 
time O(a”). 

There is no guarantee that d(e*, r(e*)) 5 K nor that 
r(c*) and p(e*) have the same endpoints. In section 6, 
we guarantee both properties by in effect augmenting 
r(e*) to a polygonal chain using vertical edges connect- 

Figure 6: R, is the shaded region plus the portion of 
the edges inside pixel(u) and pixel(v). 

ing its endpoints to the endpoints of p(e*). 

5 Lifting triangle edges 

The desired embedding a(f) of facet f of P ~vill even- 
tually be obtained by lifting each vertex, edge, and tri- 
angle of T’ to three dimensions. This section handles 
a technically difhcult case, the lifting of an edge e of 
a triangle A of T’ to the ‘lifted edge” Ifa( The 
lifted edge will satisfy three properties: j’ 5 f’ implies 
If*(e) 3 If!&, i.e. vertical order is preserved or col- 
lapsed; d(lfa(eh f) < K; and no pair of lifted edges 
cross. 

5.1 The order a and the snapping lemma 

Let edge e of T have endpoints I and u. Define R, 
to be the convex hull of +(P:), less the interior of 
pixel(u) and pixel(u), unioned with ?T=~(P~). See fig- 
ure 6. Notice that there are no intersections among 
the boundaries of {r=,(f) : f E FA} within R, except 
possibly at the endpoints of edges of x&P:). Facet 
f E 1;: wvers e if no edge in P,’ bounds f; it is easy 
to check that Re C rz9(f). A facet f covers facet f’ 
at e if r&f’) n R, 5 q&f) I-I Re. For any two facets 
f, f’ E Fe, either f covers f’ at e, or f’ covers f at e. 

Suppose that e is an edge of triangle A of T. The 
covering order a on the facets in FA is any total order 
so that f a f’ implies f’ covers f at e. (The order 
depends on both e and A, but to keep the notation 
simple we do not make this dependence explicit.) The 
order a can be described as follows. Assume that A lies 
to the left of the e, directed from endpoint u to endpoint 
u; direct all edges in P,’ from pixel(u) to pixel(u). If 
facets fo, fl E FA have bounding edges e(;, er E P,“, 
then fo a fi if ez is to the left of e;; all facets covering 
e appear at the end of the order a, and are ordered 
arbitrarily among themselves. 

For aset S C R3, let V(S) be all points on all vertical 
lines through S. Let fA be a facet of P, e an edge of 
T, and A an edge over e with endpoints 1 and v. Edge 
A approzimates fA at e if d(Au, fA n V(Re)) < K and 
d(A,, fA fl V(R,)) < K. Clearly, if A approximates fA 
at e, then d(A, f.4) < K Also, if e* E P,’ is a boundary 
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Figure 7: Proof of lemma 5.1, side view. TB is solid 
square, TC dashed. 

edge of face f, then r(e*) approsimates f at e. 

Lemma 5.1 Let edge e bound triangle A of T. Suppose 
.f;l, .fB, fc E FA with f~ 2 fc 2 f~, A, B, C are edges 
oew c approximating f.4, fB, fc, respectively, A 2 B, 
and fc covers fA and fB. Then snap(C,[A, B]) also 
approximates fc at e. 

Proof: \17e claim max(B,C) approsimates fc at e; 
a similar results holds for min, from which the lemma 
follows. Let, u be an endpoint of e. We shorn 

d(max(B,, G), fc n V(R,)) < K. 

If C, 2 B,, there is not.hing to prove, so suppose C, 4 
B lb. 

Let, TB and Tc be t,he cubes of sidelength 21; centered 
at. B, and C,, respectively, and T = V(TB) (clearly also 
T = V(Tc)). See figure 7. 

Since B approximat,es fB, there is a point b E fB n 
V(R,)~TB. Since fc 2 fB and fc covers fB at e, there 
is a point, c E fc wit.h c 2 b; clearly c E T. Since C 
approsimatcs fc, there is a point c’ E fc n V(R,) ~Tc. 
Since fc n V(R,) n T is pat,h-connected, there is a path 
in fc n V(‘(Iz,) n T from c to c’. Since c is above t,he 
bot,tom facet of TB, c’ is below t.he top facet of To, and 
TB 2 Tc, some point of t.he path meets TB. Hence 
d(B,, fc) < K. 0 

5.2 Default edges. 

Let. e be an edge of Tj with endpoints u and v and with 
some triangle incident.. l;Ve define the defaedt ilifiing of 
edge e for facet f, cj(e), which is to be used in the 
absence of other constraints. If e is a boundary edge of 
Tj, then bhere is a unique edge e* E P,’ bounding facet 
f, and we define cj(e) = r(e*). Otherwise suppose e is 
an interior edge of Tj; clearly f covers e and no edge 
in P,’ meets f. The definition is slightly complicated 

because of the requirement that e not cross any edge in 
+T). 

Define lowr(e) to be t.he edge 25, where I? is t.ho 
center of the lowest vowel X in column(u) so t.hab X n 
f n V(R,) is not empty, and similarly for 0. A pair 
of distinct edges (a*, b*) in P: is a bracketing pair if 
a* + f and f + b’, ~(a*) 2 r(b*) and no edge r(d’), 
d’ E PC’, lies between ~(a*) and I (possibly ~(a*) = 
r(b*)). The existence of a bracketing pair can be seen by 
indesing the edges of P,’ = {e;, . . . , ec} so t,hat r(cg+) 2 
T(er) 2 . . . 2 r(ez). Either f + ei, and the pair (T,e;) 
suffices (with the definition r(T) = T); or er’, :- f, and 
the pair (ei,I) suffices; or there is i so that, an ci ‘r f 
and f + ei+l, and the pair (e,+i, ei) suffices. Define 

de) = snap(lo~vde), k(a*), r(b*)l), 
choosing bracketing pair (a’, b’) so t,hat (r(a”),r(b*)) 
is minimal in < among bracket.ing pairs. Set C(c) s 
{cj(e):f E FA}- 

Lemma 5.2 Let f be a facet of P and e an cdgc of Tj, 

I. cj(e) approsimates f ate. 

2. If f, f’ cover e and f 5 f’, then cj(e) =f cjt(c). 

3. r(P,‘) UC(e) is noncrossing. 

Proof: 

1. If e is a bounding edge of Tj, then the claim i:-1 
immediate. Otherwise 

de> = snw(lo~vAe), W), ~(W, 
for some bracketing pair (Q*, b’). Let a* and b’ be inci- 
dent to faces fa and fb, respectively. It. is easy to check 
that lowj(e) approximates f. Clearly r(a*) approxi- 
mates fa, r(b*) approximates fb, and f covers fs and 
fb (since e is not a bounding edge of Tj). Part (1) is 
thus immediate from lemma 5.1. 

2. We have R, C r=,(f), R, G 7r=((f’), and f -: f’, so 
lowj(e) 5 lowft(e). Let ai, bj and a;,, b;, be bracketing 
pairs for f and f’, respectively. We claim ~(a;) 5 r(u;, ) 
and r(b;) 3 r(b;,), from which cj(e) 5 cf~(e) follow 
easily. Clearly r(u;) 2 T(b;). It cannot be that ~(67) > 
r(uj~), for aft + f’ 2 f and f would have a bracket,ing 
pair below (cc;, bj), contradicting minimality. No cdgo 
of T(P,‘) lies between r(ui) and ~(a;), so it must be 
that r(u;,) > r(u;). Similarly T(b;,) 2 r(bj). 

3. Clearly no edge cj(e) crosses an edge of r(P:). Also 
clearly, if f and f’ have distinct bracketing pairs, t,hen 
cr(e) and cjj(e) do not, cross. If f and f’ have bhe 
same bracketing pair, then cj(e) and cft(e) do not CFOY:I 
because lowj(e) and lowj,(e) do not cross. 0 

5.3 Lifting triangle edges. 

Let, e be an edge of triangle A of T. For facets f E FA 
in the order <3, simultaneously and induct,ively define 
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ala(e) and bfA(e) (the constraints from above and be- 
low, re8pcctiuely) and IfA (e) (the lifting of edge e of A 
in j), a.3 follows: 

Q/A(e) = mm{lfl&(e) : f’ a f and f’ > f) 

b/de) = max{l,‘A(e) : f’ a f and f’ 4 f) 

h(e) = sw(cf(e), bfA(eh b(e)])- 

We hW3 efA(e) 2 bra(e) by lemma 5.3(l) below. 

Lemma G.3 Let e be an edge of triangle A of T tuith 
edge e, and let f, f’ E FA. 

Prooj: 1. and 2, We prove both simultaneously by 
induction on 4. If UjA(e) = TOI bfn(e) = 1, UjA(e)k 

is immediate. Otherkse UfA(e) = if,,A(e) and 
= i/$(e) for some facets fo > f > fi, so by 

induction hypothesis UfA(e) + bjA(e). For (2), suppose 
f 5 f’; without loss of gener&ty assume f a f. Then 
by definition If/A(e) 2 UjA(e) t: ifA(e). 

3, Since IfA is defined in the order Q, the claim 
follows from an easy induction using lemma 5.1. 
4, By lemma 5.2, T(P,‘) U C(e) is noncrossing, so the 
%nap” in the definition of ljA(e) results in an element 
of r(Pi) U C(e). 0 

G The Pubdivision Q 

In this section we define the subdivision Q and the em- 
bedding u of F into Q required by theorem 2.1. For 
technical reasons G is defined on P’ as lvell. 

We first dellne a “vertical carrier” over each vertex 
and edge of T, For u a vertex of T, let VC(w) be the 
vertical chain of edges through p(PG), i.e. all edges con- 
necting two vertices of p(P;) that are adjacent in verti- 
cal order. Let e be an edge of T Jvith endpoints u and 
2). Consider the edges r(P:) U {IfA : A incident to 
e, f E FA); they are noncrossing, by lemmas 5.1(3) and 
5,3(4). Split each edge at its midpoint. These edges 
together with VC(21) and VC(v) form a planar graph 
(in the plane throu&h VC(u) and VC(U)); let VC(e) be 
any trianguIation of this graph. 

For v* a vertex of P’, define ~(0’) = p(v’). Let 
C* E P,‘, where edge e in T has endpoints u and u. De- 
fine b(e*) to be the subdivision consisting of T(e*), the 
nubchain of V/c u connecting r(e*)” to p(e’)u and the 
subchain of VC [I v connecting r(e*)” to p(e*)v. Extend 
u to edges e of P: 

u(c) = U u(e*) 

Figure 8: Construction of If(A) for triangle A of T/ 
tith vertices a, b, c. 

Clearly a(e) is a subdivision. We extend 0 to facets in 
section 6.2. 

Lemma 6.1 If w, w’ are vertices or edges of P and w 5 
w’, then U(W) 5 u(w’). 

Proof: The claim is immediate for two vertices. Sup 
pose w is a vertex and w’ an edge; the symmetric case 
is similar. Then u(w’) contains a vertical chain of edges 
from the center of the first voxel in column(w) met by 
w’ to the center of the last such voxel. Since w < w’, 
p(w) is below or on the chain, and U(W) 1 u(w’). The 
case of tlvo edges is similar. 0 

6.1 lifting triangles 

Let A be a trian~e of Tf mith vertices Q, b, c. Consider 
the edges Z~~(ub~, ifA( IfA( There is no guar- 
antee that these edaes are oakvise incident (of course 
both Zm(ab) and 1 & UC &e incident to vertices over ( ) 
a, and similarly for the other pairs). We form a (three- 
dimensional) polygon from Ifa( Ifa( lja(bc) by 
adding the vertical subchaiu of L(s) connecting Ifa( 
to lfA(oc)o (if they are not equal) and similarly for the 
b and c endpoints. The lifting of A for facet f, Zf(A), 
is a triangulation of this polygon, described as follo\vs. 

Split edges IfA( Zig, lja(bc) at their respec- 
tive midpoints m& mat, mbc, and add the three edges 
connecting midpoints. This forms a triauf$e mabrYkmbc 
and three polygons, mhere e.g. the a-polygon (off) con- 
sists of edge m&m,,, the two subedges of IfA and 
IfA nrith endpoints over Q, and possibly a vertical 
chain over a. See figure 3. 

For points p, q E JR3 and (Y E I& let ac[p,q] be the 
point (l- o)p + up, i.e. the point a fraction cr of the 
way from p to q. 

The a-indez of f is the number of distinct pairs 
(+A(ab), I,Q(uc)), where f’ k f. Let “f = i/2n053 “1, 
lvhere i is the e-index of f; clearly 0 < crf < 1. First 
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See figure 3. Triangulate t.he a-polygon of f with wf, 
i.e. connect 211 to nzac, OR&, and any vertes on the chain 
from I$A(ab), t0 ~fA(aC),. If IfA( > IfA(Uc),, the 
construction is similar, with mab and onoC interchanged 
and IfA( substituting for ifA(a The other two 
polygons are triangulated in a similar fashion. 

Lemma 6.2 Let A be a triangle ofT and f, f’ E FA. 

Iff 3 f’, then If(A) 3 If!(A). 

Every vertex coordinate of!f(A) is an integral mul- 
tiple of 1/2p0ga n1+2. 

If(A) has O(n) cells. 

Proof: 

1. Let, A have vertices a, b, c. Every vertex of If(A) is 
within the convex hull of {ijA(ab), Ifa( Ifa(b 
The claim follows using lemma 5.3(l) and proposition 
3.1. 
2. ‘liTe can assume that lfA(ac), 2 ljA(ab),. usiug 
lemma 5.3(2), we must. have 

CIAO 2 ~~A(QC), and IfI&( 2 afA(ub),. 

If Ifla(ab), t- ifA(a bhen the result is immediate, 
since bhe conves hull of {ifA( IfA( and the con- 
ves hull of {Z~t~(ab),lftA(~~)} have disjoint interiors. 
Hence we can assume t.hat 

~f’A(ac), 2 ifA&& 2 lfla(ab), t: Ifa(a 

Let. if and ifr be t,he u-indices off and f’ respectively. If 
if = s’fl, t.hen t,he a-polygons for f and f’ are identical. 
Otherwise, if > df! since f 5 f’. Let s be the edge 
connecting “fl to the midpoint of iflA(ac); clearly we 
kav: my) E.x~~(s) since af > af1. Furthermore we 

a\’ s, Smce IfA 4 lpA(ab) and IfA 5 
ifJA(ac) 1vivit.h inequality holdmg in at least one case. 
If (A) 5 lp (A) follows easily. 
3., 4. Immediate. 0 

6.2 Vertical ordering 

It. is temphing to define u(f) = UAeT, If(A). This def- 
inition would preserve or collapse vertical order (in the 
sense of theorem 2.1) over t.riangles of T, but not REC- 
essarily over edges and vertices. Hence we develop an 
alternate definition of g(f). 

Let, &((v) be the set. of all endpoints over v of all 
edges ifA( where edge e of T is incident to v and 
triangle A of T is incident to e. Define 

af (u) = min{c(v*) : V* E P,* and ZJ* 2 f} U Ef(v) 

bf(v) = max{a(v*) : V* E P,’ and V* 5 f} U Ef(u). 

The l$tfting of vertex w for facet f, If(u), is t,he subchain 
of VC(v) connecting car(v) and bf(v). 

For e an edge of Tf, let Ef(e) be all edges IjA(e), 
where A varies over triangles in Tf incident to e. Define 

uf(e) = min{u(e*) : e’ E P,’ and e” 2 f} U Ef (c) 

bf(e) = max{u(e*) : e* E P,’ and e* 5 f} U Ef(e). 

The I$tfting of edge e for facet f, L(e), is all edges and 
vertices w of VC(e) satisfying bf(e) > zu and w 2 u/(c). 

Lemma 6.3 Suppose w is a vertex or edge of T, PLI* E 
PC, and f is a facet of P. Then w* 5 f implies u(w*) 5 
If(w) and w* k f implies u(w*) 2 If(w). 

Proof: By construction. 0 

Lemma 6.4 Let f be a facet of P and w an edge of Tf. 
Then d(Zf(w), f) 5 K. 

Proof: Similar to the proof of lemma 5.1. 0 
For each facet f of P, define 

u(f) = u Id48 
WETJ 

where w varies over vertices, edges, and triangles. It is 
easy to check that u(f) is a subdivision. 

Lemma 6.5 If f, f’ are cells of P and f -: f’, then 
u(f) 5 u(f’)- 

Proof: The lemma follows from lemmas 6.1 and 6.3 if 
one of f and f’ is a vertex or edge. So suppose both 
are facets. For each triangle A in both Tj and T/r, 
If(A) 5 Ifl(A) by lemma 6.2. Suppose e is an edge in 
both Tf and Tft. If there is a triangle A in both TJ and 
T~J incident to e, lemma 6.2 again implies f!(e) 5 IJI (e), 
Otherwise, up to symmetry, there is an edge e* E P,’ 
bounding f with e’ 5 f’, so by lemma 6.3, u(c’) 4 
If)(e). Since e* 5 f, u(e*) C_ I!(e), and It(e) 4 Z/I(C~ 
A similar argument shows that if u is a vertex% both 
Tf and Tfr, then If(w) 5 ELI. Hence u(f) 5 a(f'). 
0 

6.3 The subdivision Q 

Let Q = U, u(f) , where f varies over all facets of P. 
It is easy to check that Q is a subdivision and that u is 
an embedding of P into Q. 

Lemma 6.6 Q has O(n4) cells and can be computed in 
time O(n”). 

Proof: For each facet f of P, Tf has O(n2) t,riangles 
A. By lemma 6.2, It(A) has O(n) cells. Hence a(f) has 
O(n3) cells, for a total of O(n”) over all facets of f. Q 
can easily be computed in the same time. •I 
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6.4 Hauodorff distance 

It follow immediately from lemmas 6.2 and 6.4 that 
d(b(f), f) 5 t;, The proof that &(0(f), f) 5 K requires 
a proof that d(f, a(f)) < K, Thii proof has a topological 
flavor, using d(e,a(e)) 5 tc for each edge e bounding f. 
The proof is omitted due to lack of space. 

7 Discussion 

It may be possible to improve the worst-case bounds 
given in theorem 2.1. For example, the O(a4) bound on 
the size of Q could be an artifact of vertical projection; 
perhaps an O(n3) bound could be obtained by using 
different projection directions in different places, each 
tuned to the local configuration. Obtaining a worst-case 
bound below O(n3) seems very challenging. It would 
alrjo be desirable to remove the extra /log, a]+2 bits 
needed for vertex coordinates; again, this may be an 
artifact of vertical projection. 

The algorithm of theorem 2.1 adds many vertices, far 
more than are necessary unless the input subdivision 
has been chosen by an adversary. Another challenge 
in to devise a straightforward algorithm that adds ver- 
tices only to nearby features, just enough to avoid self- 
intersections and to maintain combinatorial ordering. 
Presumably, most subdivisions would need far fewer 
new vertices than the bounds given in theorem 2.1. 

A programmer would probably prefer a simple round- 
ing algorithm, even at the expense of degraded worst- 
caee bounds, as long as the typical-case bounds are rea- 
sonable. One reason that the rounding algorithm is 
complicated is the need to avoid edge crossings. Milen- 
kovic [17] suggests rounding existing vertices to integer 
coordinates. If two rounded edges cross, then a ver- 
tex of intersection is added, with coordinates computed 
exactly, This would require a constant-factor increase 
in the bit-length of some vertex coordinates, and hence 
of some predicate evaluations. However, the maximum 
required bit-length is still bounded, and perhaps the 
incrcaeed-length calculations are relatively infrequent. 
It may be that this approach can lead to a practical 
rounding algorithm. 
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