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Abstract

We apply Smith’s construction [9] to generate four-dimensional GLV
curves with fast arithmetic in the group law as well as in the base field.
As Costello and Longa did in [5] for a 128-bit security level, we obtained
an interesting curve for fast GLV scalar multiplication, providing a high
level of security (254 bits). Our curve is defined over a well-known finite
field: Fp2 where p = 2255−19. We finally explicit the two endomorphisms
used during GLV decomposition.

Introduction
In , Gallant, Lambert and Vanstone introduce in [6] a new method named
GLV1, to compute the scalar multiplication on certain elliptic curves. These
curves are defined over Fp and have an endomorphism ϕ, acting as a fast scalar
multiplication by its eigenvalue λ on a subgroup G ⊂ E(Fp) of order N . To
compute [k]P , they decompose

k ≡ k1 + λk2 mod N

with k1, k2 half the size of k, and then compute [k]P = [k1]P + [k2]ϕ(P ) with
a multi-exponentiation. It becomes interesting to use the GLV method if the
endomorphism evaluation is not too expensive. This latter criterion makes the
GLV curves very rare among the elliptic curves, and [6] gives only few examples
of such curves.

In , Smith gives in [9] families of curves with two endomorphisms ϕ,ψ
acting on a subgroup of E(Fq). Theses curves are defined over Fp2 and come
from reduction of Q-curves. This construction is interesting because it gives a
larger number of curves. Analogously, decomposing k with the eigenvalues gives

1Gallant-Lambert-Vanstone method
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[k]P = [k1]P + [k2]ϕ(P ) + [k3]ψ(P ) + [k4]ϕ ◦ ψ(P ) with log(k1), . . . , log(k4) '
log(k)/4.

In , Costello and Longa use in [5] the Mersenne prime p = 2127 − 1
to generate a Smith curve with 127 bits of security. The arithmetic of this
special field, added to the four-dimensional GLV method, gives an efficient scalar
multiplication on the subgroup of the curve.

The idea of this preprint is to search for a Q-curve as in [5] but at a higher
security level (256-bit security level). We also want a fast finite field arithmetic,
hence we choose among primes with special binary decomposition. These condi-
tions permit a fast scalar multiplication using a four-dimensional GLV method.
For modularity and to re-use efficient hardware implementation, we searched
for secure Q-curves over the Curve25519 prime p = 2255 − 19.

1 Generating four-dimensional GLV curves
We follow the method described by Smith in [9] to generate elliptic curves
endowed with two endomorphisms. The curves arise from Q-curves taken from
the Hasegawa article [7].

1.1 Q-curves
Hasegawa presents in [7] families of Q-curves Ed,∆,s of prime degree d, defined
over a quadratic extension of Q, say K = Q(

√
∆). We note σ the conjugation

of the quadratic field K. These curves are parametrized by a square-free integer
∆ and a rational s:

Ẽd,∆,s : y2 = x3 +Ad,∆(s)x+Bd,∆(s)

The explicit values of Ad,∆(s) and Bd,∆(s) can be found in [9]. A Q-curve of
degree d has an isogeny ϕ̃ : Ẽ −→ σẼ of degree d, defined over Q(

√
∆,
√
−d).

Setting ψ̃ := σϕ̃ ◦ ϕ̃, we obtain an endomorphism of Ẽ, of degree d2, which is
[±d].

1.2 Reducing a Q-curve modulo p

In order to obtain a curve defined over a finite field, we reduce our Q-curve
mod a prime p. It makes sense if we define Ẽ on the integer ring OK , and then
consider OK/pOK . We want to keep the Q-curve structure so p needs to satisfy
some conditions:

• p is inert in OK , i.e
(

∆
p

)
= −1.

If pOK is prime, OK/pOK ' Fp[X]/(X2 −∆) ' Fp[
√

∆ mod p] ' Fp2 .

• ∆E := 123(4Ad,∆(s)3 + 27Bd,∆(s)2) 6≡ 0 mod p.
To get an elliptic curve over the finite field, we choose p such that the
curve is not singular. p is said to be of good reduction for Ẽ.
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• gcd(p, d) = 1.
We want to keep the d-isogeny in the reduction curve.

Under these conditions, the p-Frobenius (p) : Fp2 −→ Fp2 is the reduction of
σ : K −→ K. We also need to choose (p) to be the reduction of

σ̃ : Q(
√

∆,
√
−d) −→ Q(

√
∆,
√
−d)

that means that σ̃(
√
−d) =

(
−d
p

)√
−d.

We obtain the following reduced curves and isogenies:

σẼ/Q(
√

∆,
√
−d) (p)E/Fp2

Ẽ/Q(
√

∆) E/Fp2

Reduction mod p

Reduction mod p

ϕ̃σϕ̃ ϕ(p)ϕ

Note that if Ẽ : y2 = x3 + Ãx+ B̃, the reduction mod p of σẼ is (p)E : y2 =
x3 + Apx + Bp. We note πp : (x, y) 7→ (xp, yp) the p-Frobenius. It defines a
p-isogeny from (p)E to E. We also note πE = π2

p. Composing πp with ϕ, we
get ψ := πp ◦ ϕ ∈ End(E), of degree pd. The GLV method is efficient only if ψ
is easy to evaluate. Computing ψ is as difficult as computing ϕ because πp is
just2 the conjugacy in Fp2 . ϕ is defined with Vélu’s formulas, by polynomials
of degree about d and so Smith considers Hasegawa Q-curves of small degree d:

Ẽ2,∆,s : y2 = x3 +A2,∆(s) +B2,∆(s) Ẽ3,∆,s : y2 = x3 +A3,∆(s) +B3,∆(s)

Ẽ5,−1,s : y2 = x3 +A5,−1(s) +B5,−1(s) Ẽ7,∆,s : y2 = x3 +A7,∆(s) +B7,∆(s)

The values of the coefficients are computed in SageMath [10] in http://bit.
ly/2BTCY8v.
The following results give the eigenvalue for ψ (where tE is the trace of the
curve E):

Theorem 1 (Smith, [9]). ψ satisfies ψ2 = [εpd]πE. There exists r ∈ Z such that
dr2 = 2p + εptE, for which [r]ψ = [p] + εpπE. The ψ characteristic polynomial
is Pψ(T ) = T 2 − rdT + dp.

Corollary 2 (Smith, [9]). Let E be an ordinary elliptic curve. If G ⊂ E(Fp2)
is a cyclic subgroup of order N such that ψ(G) ⊂ G, then the eigenvalue of ψ
on G is

λψ ≡
p+ εp
r

mod N

This latter result gives a GLV decomposition in dimension 2 for some families
of curves. In order to get a four-dimensional GLVmethod, we look for CM curves
among them.

2only one multiplication by −1 because (a + b
√

∆)p = a− b
√

∆

3

http://bit.ly/2BTCY8v
http://bit.ly/2BTCY8v


1.3 Q-curves with complex multiplication
1.3.1 Complex multiplication method

We are looking for ordinary CM curves. Their endomorphism ring is an order
OD (of discriminant D = −D0f

2) in an imaginary quadratic field. We follow
[9, §9]. The method is based on the Hilbert polynomial:

HD(X) :=
∏

E/End(E)=OD

(X − j(E))

HD ∈ Z[X] is monic and irreducible over Z.
We note that OD =: End(Ed,∆,s) = End(σEd,∆,s) to deduce that j(Ed,∆,s) and
j(σEd,∆,s) are two conjugated roots of HD. Since HD is irreducible over Z, there
is no other j-invariant possible, and HD has degree 1 or 2. Furthermore, there
is a finite number of possible D where deg(HD) ∈ {1, 2}:

D0 3 3 3 4 4 7 7 8 11 19 43 67 163

f 1 2 3 1 2 1 2 1 1 1 1 1 1

D −3 −12 −27 −4 −16 −7 −28 −8 −11 −19 −43 −67 −163

Discriminant D = −D0 · f2 for deg(HD) = 1

D0 3 3 3 4 4 4 7 8 8 11 15 15

f 4 5 7 3 4 5 4 2 3 3 1 2

D −48 −75 −147 −36 −64 −100 −112 −32 −72 −99 −15 −60

D0 20 24 35 40 51 52 88 91 115 123 148 187

f 1 1 1 1 1 1 1 1 1 1 1 1

D −20 −24 −35 −40 −51 −52 −88 −91 −115 −123 −148 −187

D0 232 235 267 403 427

f 1 1 1 1 1

D −232 −235 −267 −403 −427

Discriminant D = −D0 · f2 for deg(HD) = 2

From the list of possible D, we compute HD and factorize it to find the possible
j-invariants:

−D0 · f
2 j-invariant

−3 · 12 0

−3 · 22 24 · 33 · 53

−3 · 32 −215 · 3 · 53

−4 · 12 26 · 33

−4 · 22 23 · 33 · 113

−7 · 12 −33 · 53

−7 · 22 33 · 53 · 173

−8 · 12 26 · 53

−11 · 12 −215

−19 · 12 −215 · 33

−43 · 12 −218 · 33 · 53

−67 · 12 −215 · 33 · 53 · 113

−163 · 12 −218 · 33 · 53 · 233 · 293

−D0 · f
2 j-invariant

−3 · 42 40500(35010 ± 20213
√

3)

−3 · 52 884736(−369830 ± 165393
√

5)

−3 · 72 331776000(−52518123 ± 11460394
√

21)

−4 · 32 192(399849 ± 230888
√

3)

−4 · 42 54(761354780 ± 538359129
√

2)

−4 · 52 1728(12740595841 ± 5697769392
√

5)

−7 · 42 3375(40728492440 ± 15393923181
√

7)

−8 · 22 1000(26125 ± 18473
√

2)

−8 · 32 8000(23604673 ± 9636536
√

6)

−11 · 32 180224(−104359189 ± 18166603
√

33)

−15 · 12 135/2(−1415 ± 637
√

5)

−15 · 22 135/2(274207975 ± 122629507
√

5)

−20 · 12 320(1975 ± 884
√

5)

−24 · 12 1728(1399 ± 988
√

2)

−35 · 12 163840(−360 ± 161
√

5)

4



−D0 · f
2 j-invariant

−40 · 12 8640(24635 ± 11016
√

5)

−51 · 12 442368(−6263 ± 1519
√

17)

−52 · 12 216000(15965 ± 4428
√

13)

−88 · 12 216000(14571395 ± 10303524
√

2)

−91 · 12 884736(−5854330 ± 1623699
√

13)

−115 · 12 4423680(−48360710 ± 21627567
√

5)

−123 · 12 110592000(−6122264 ± 956137
√

41)

−148 · 12 216000(91805981021 ± 15092810460
√

37)

−187 · 12 940032000(−2417649815 ± 586366209
√

17)

−232 · 12 216000(1399837865393267 ± 259943365786104
√

29)

−235 · 12 5887918080(−69903946375 ± 31261995198
√

5)

−267 · 12 55296000(−177979346192125 ± 18865772964857
√

89)

−403 · 12 110592000(−11089461214325319155 ± 3075663155809161078
√

13)

−427 · 12 147197952000(−53028779614147702 ± 6789639488444631
√

61)

Each discriminant D gives one (or two) j-invariant of curves with endomor-
phisms ring OD. These tables are computed using the construct_CM_j_roots
function from http://bit.ly/2BTCY8v.

1.3.2 CM Hasegawa Q-curves

Our Q-curves are parametrized by d, s and ∆. Their j-invariant are given by

j(Ẽd,∆,s) =
123 · 4Ad,∆(s)3

4Ad,∆(s)3 + 27Bd,∆(s)2

We solve j(Ed,∆,s) = j for j in the latter table, with the conditions s ∈ Q,
∆ square-free, and d ∈ {2, 3, 5, 7}. This algorithm is computed in SageMath
[10] at http://bit.ly/2BTCY8v. It gives sometimes a solution for which a CM
Hasegawa Q-curve Ed,∆,s arises:

Degree 2

s
√

∆ D
5
9

√
−7 −7 · 12

0 −8 · 12

7
12

√
3 −4 · 32

161
360

√
5 −4 · 52

20
49

√
6 −8 · 32

1
2

√
5 −20 · 12

2
3

√
2 −24 · 12

4
9

√
5 −40 · 12

5
18

√
13 −52 · 12

70
99

√
2 −88 · 12

145
882

√
37 −148 · 12

1820
9801

√
29 −232 · 12

Degree 3

s
√

∆ D
0 −3 · 22

5
2

√
−2 −8 · 12

1
4

√
−11 −11 · 12

5
9

√
3 −3 · 42

9
20

√
5 −3 · 52

55
252

√
21 −3 · 72

1
√

5 −15 · 12

11
25

√
5 −15 · 22

1
2

√
2 −24 · 12

1
4

√
17 −51 · 12

5
32

√
41 −123 · 12

53
500

√
89 −267 · 12

Degree 7

s
√

∆ D

3
√
−3 −3 · 12

5
3

√
−3 −3 · 22

1
5

√
−3 −3 · 32

0 −7 · 22

1
3

√
−19 −19 · 12

1
3

√
7 −7 · 42

1
√

5 −35 · 12

1
3

√
13 −91 · 12

5
39

√
61 −427 · 12

In degree 5, [9] explains that we need to fix ∆ to get a family of curves. We
choose here ∆ = −1 as [9] did. We only get two curves for s = 1 and −9/13,
with j-invariant 663, and with End(E) of discriminant −4 · 22.
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2 Systematic search of curves
We now look for good primes for the reduction. Recall that p must be inert in
Q(
√

∆), coprime to d and must not divide ∆E .

2.1 Secure cardinality
Elliptic curve cryptography requires a subgroup of E(Fp2) of prime order. That
is why we look for curves with #E(Fp2) with a large prime factor.

Ordinary and supersingular curves

Smith shows in [9] that if Ed,∆,s is supersingular, #Ed,∆,s(Fp2) = (p± 1)2 and
so the prime factors are too small for us. That is why we look for ordinary
elliptic curves.

We can distinguish ordinary and supersingular curves with the ideal (p2).
It always factorizes in (p2) = (f)(f) in End(E) because of the Frobenius. Over
finite fields, End(E) is an order in an imaginary quadratic field or in a quaternion
algebra depending on whether if E is ordinary or supersingular. It means that
given an order OD corresponding to a curve E with End(E) ⊇ OD,

p is inert in OD ⇐⇒ E is supersingular
p splits in OD ⇐⇒ E is ordinary

The case p ramified does not occur in our case: in quadratic fields, a prime
ramifies when it divides D, and we use curves with small discriminant and large
primes.

The inert and splitting primes are in the same proportion so a CM curve
over a number field reduces for half of the primes into a supersingular elliptic
curve.

Computing the cardinality

For each prime p, we compute the trace of the curve tE in order to get the
cardinality #E(Fp2) = p2 + 1 − tE . The trace tE is also the trace of the p2-
Frobenius f, seen as an algebraic integer. We compute the Frobenius using the
CM property of the curve:
We factorize the ideal (p) = (p, π)(p, π̄) in OD, and then write

(p2) = (p, π)(p, π̄)(p, π)(p, π̄)

From (p, π), we compute the ideal (p, π)2 which is exactly the principal ideal
(f). Unfortunately, the generator given by Cornacchia’s algorithm [4, page 36]
is not always f: it can be αf for α a unity of OD. We need to distinguish three
possibilities:

1. If OD = Z[j]. Then, the generators are ±f,±jf,±j2f. We get the sextic
twisted curves with each generator. It is the case for the j = 0 curves.
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2. If OD = Z[i]. Then, the generators are ±f,±if. We get the quartic twisted
curves with each generator. It is the case for the j = 1728 curves.

3. Otherwise, there are two generators: ±f. We get the curve and its quadratic
twist.

The computation code in SageMath [10] is available at http://bit.ly/2BTCY8v.

Finding a secure cardinality

Best attacks on elliptic curves are in O(
√
N) operations, where N is the prime

order of the elliptic curve (sub-)group. We use a 256 bits prime to obtain a
base-field Fp2 and an elliptic curve with approximately 2512 elements, in order
to get 256 bits of security. Given #E(Fp2), we factorize it and store the curve if
it has a big prime factor. We also store the twisted curves cardinalities because
we look for twist-security. The twisted curves traces are given by the other
generators of (f).

2.2 Special base fields
The arithmetic in the base-field is very important to get an efficient scalar
multiplication in practice. That is why we look for special primes, for which the
arithmetic is known to be fast:

2256±k ± ε 0 ≤ k ≤ 8 − 212 ≤ ε ≤ 212

pk,w[εk−1, . . . , ε0] := 2kw +
∑

0≤i<k

εi2
iw εi ∈ {0,±1}

We chose to explore the primes such that:

• n := kw is approximately 256.

• w is taken equal to or a bit less than the machine word size 32 or 64, to
allow efficient arithmetic or carry-free multiplications.

• k is kept minimal, as the complexity of a multiplication modulo a prime
heavily depends on the number of words: we consider k from 8 to 10 words
around 32 bits, or 4 to 5 words of size about 64 bits.

The values used are summarized in the following table:

n 256 252 255 260 265 256 252 260
k 4 4 5 5 5 8 9 10
w 64 63 51 52 53 32 28 26

We are particularly interested in the well-known primes p25519 2255 − 19
and NISTp256 2256 + 296 − 1 = p256,32[00001002], and we also include some
primes of the compact form qn ± ε (q = 6, 7, 8, 9, ε < 10) recommended in [3].
These patterns lead to the study of 1543 primes, whose generation is available
at http://bit.ly/2BTCY8v.
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2.3 Search results
Among theses families of curves, reduced over these special primes, we get 88
curves with cofactor < 28. We encode εi ∈ {0,±1} as an integer mod 3, so
that 2 represents −1. The following tables list all possible GLV4-curves for the
explored primes. The cofactor of the curve is given in column labelled h, and
column ts indicates whether the twist is secure.

Prime Curve h ts
p8,32[22121212] E2,13,5/18 18 no
p9,28[2012101] E2,29,1820/9801 8 no
p9,28[20002122] E2,5,1/2 2 no
p9,28[12001102] E2,5,1/2 2 no
p9,28[12010221] E7,13,1/3 133 no
p9,28[201000211] E3,5,1 12 no
p9,28[201000211] E3,5,11/25 12 no
p9,28[100221021] E7,61,5/39 7 no
p9,28[110122201] E2,3,7/12 18 no
p9,28[110122201] E2,5,161/360 18 no
p10,26[2120112] E2,37,145/882 158 no
p10,26[22020001] E3,89,53/500 177 no
p10,26[20011222] E7,13,1/3 47 no
p10,26[21211102] E7,61,5/39 25 no
p10,26[12102112] E3,5,1 36 no
p10,26[12102112] E3,5,11/25 36 no
p10,26[10012011] E2,5,161/360 34 no
p10,26[201112011] E7,13,1/3 252 no
p10,26[212121001] E2,3,7/12 18 no
p10,26[210002212] E7,13,1/3 28 no
p10,26[211010022] E2,37,145/882 2 no
p10,26[121111012] E3,17,1/4 147 no
p10,26[100110211] E2,3,7/12 18 no
p10,26[101200201] E3,17,1/4 27 no
p10,26[111202212] E2,13,5/18 14 no
p10,26[2221210212] E2,37,145/882 98 no
p10,26[2000220102] E7,5,1 9 no
p10,26[2001212212] E7,5,1 189 no
p10,26[2012002102] E3,17,1/4 132 no
p10,26[2121211122] E2,29,1820/9801 8 no
p10,26[1202222101] E2,3,7/12 18 no
p10,26[1012100212] E2,13,5/18 126 no
p10,26[1012101001] E3,5,1 12 no
p10,26[1012101001] E3,5,11/25 12 no
p10,26[1010120022] E2,5,4/9 56 no
p10,26[1122121111] E2,3,7/12 18 no
p10,26[1110020002] E2,5,1/2 2 no
p10,26[1110020002] E2,29,1820/9801 248 no
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Prime Curve h ts Prime Curve h ts
2256 + 3003 E2,37, 145882

86 no 2261 − 1251 E3,41, 5
32

3 yes
2256 + 3003 E2,37, 145882

86 no 2261 − 1629 E3,5,1 12 no
2257 + 155 E2,13, 5

18
34 no 2261 − 1629 E3,5, 1125

12 no
2257 + 3981 E2,2, 7099

124 no 2251 − 1339 E2,29, 18209801
4 no

2255 − 19 E2,2, 70
99

4 no 2251 + 3879 E3,89, 53
500

12 no
2258 + 529 E7,5,1 9 yes 2262 − 71 E3,17, 14

12 no
2258 + 2467 E3,41, 5

32
9 no 2262 + 3205 E3,2, 12

24 no
2258 + 2973 E2,2, 7099

4 no 2262 + 3243 E2,2, 7099
172 no

2258 + 2973 E2,29, 18209801
188 no 2263 + 2169 E2,5, 161360

34 no
2258 + 3397 E2,3, 7

12
2 no 2263 − 3097 E2,37, 145882

2 no
2254 − 1427 E2,29, 18209801

4 no 2263 + 3725 E2,5, 161360
2 no

2254 + 2913 E2,5, 161360
2 no 2263 + 3933 E3,89, 53

500
12 no

2254 − 3897 E7,13, 13
63 no 2249 − 75 E2,3, 7

12
2 no

2259 − 2605 E2,5, 12
54 no 2249 − 75 E2,5, 161360

2 no
2259 + 3111 E3,89, 53

500
12 no 2249 − 1959 E3,89, 53

500
12 no

2259 + 3279 E2,5, 12
14 no 2249 − 2109 E2,13, 5

18
22 no

2260 − 995 E2,3, 7
12

2 no 2264 + 841 E3,89, 53
500

36 no
2260 − 2147 E2,3, 7

12
34 no 2264 − 1257 E2,29, 18209801

8 no
2260 + 2983 E2,13, 5

18
98 no 2264 − 3113 E7,13, 13

1 no
2260 − 3995 E2,2, 7099

36 no 2264 − 3695 E2,3, 7
12

18 no
2260 − 3995 E2,29, 18209801

4 no 2248 + 483 E2,13, 5
18

22 no
2252 + 421 E2,3, 7

12
2 no 2248 + 1527 E7,5,1 9 no

2252 − 749 E2,5, 12
18 no 798 − 2 E7,13, 13

76 no
2252 − 3609 E2,5, 49

56 no 2292 + 13 E2,3, 7
12

2 no
2252 + 4093 E3,17, 14

3 no 2320 + 27 E2,5, 12
54 no

Certain curves have some good properties:

• One curve has prime order N of 528 bits for p = 2264 − 3113:

N = 87869410049671804351768330228241833181048771841834309
24024913227757495274747154733622024848806303376940523
20110703912930098196981893481301728517785874307577441

Its twist is unfortunately not secure.

• Two curves are secure and twist-secure (both orders have cofactor < 28):

– E7,5,1 for p = 2258 + 529. Its cofactor is 9 and its twist is prime.

– E3,41,5/32 for p = 2261 − 1251. Its cofactor is 3 and its twist 52.

• Curves with special primes known to have a fast arithmetic: three curves
defined over the primes 798−2, 2292+13, 2320+27, and the curve presented
in the following section, for p = 2255 − 19.
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3 The QtEd curve
We obtain a four-dimensional GLV curve with p = 2255 − 19. The curve comes
from the reduction of the Q-curve E2,2,70/99:

E(Fp2) : y2 = x3 +

(
−30 +

140

11
·
√

2

)
x+

(
56− 560

11
·
√

2

)
This curve is not twist-secure, but we chose to favour efficient base field

arithmetic and group law rather than twist-security; in particular, the base field
arithmetic implementation can rely on the same implementation than for curve
Ed25519, providing extra concision for two levels of security. Moreover, most
cryptographic schemes do not depend on twist-security; still, the twist of this
curve has a cardinality divisible by two primes of size above 200 bits, and the
curve itself has a minimal cofactor of only 4.

3.1 High security
The cardinality #E(Fp2) factorizes in 4 ·N with N prime of 508 bits:

#E(Fp2) = 4 ·N

N = 837987995621412318723376562387865382967460363787024
586107722590232610251879073047955441365222409345448
472682727742170061679779878946355915266474990239807

It means that we get 254 bits of security, and we can use the twisted Edwards
model to get a more efficient group law. To our knowledge, no public four-
dimensional GLV curve has been proposed with 256 bits of security.

3.2 Twisted Edwards form
Our curve can be represented in twisted Edwards form. We follow [9] to get the
new representation of the curve.

3.2.1 From Weierstrass to twisted Edwards form

A twisted Edwards form of our curve is

Ete
a,d : (12 + 2BM )︸ ︷︷ ︸

a

x2 + y2 = 1 + (12− 2BM )︸ ︷︷ ︸
d

x2y2

where BM =
√

2C2,∆(s) and C2,∆(s) = 9 + 9s
√

∆.
The isomorphisms between the two representations of the curve is given by:

E −→ Ete
a,d

(x, y) 7−→
(
x−4
y , x−4−BM

x−4+BM

)
Ete
a,d −→ E

(x, y) 7−→
(

4−BM 1+y
y−1 ,−BM

1+y
x(y−1)

)
10



3.2.2 An efficient twisted Edwards form

The efficient twisted Edwards form is given by

Ete
a′,d′ :

√
2 · x2 + y2 = 1 + d′x2y2

where
a′ =

√
2

d′=3573088016646614954480418932420406244859581372259686051269315845535794557597·
√

2

+3473749962157088117213622815292986398536428998352053700108297286112825423766

The maps between the Weierstrass and the efficient twisted Edwards form are
given by:

E −→ Ete
a′,d′

(x, y) 7−→
(√

a
a′
x−4
y , x−4−BM

x−4+BM

)
Ete
a′,d′ −→ E

(x, y) 7−→
(

4−BM 1+y
y−1 ,−BM

1+y√
a′/ax(y−1)

)
As explained in [2], each pair (a′, d′) such as d′

a′ = d
a give two isomorphic

curves Ete
a,d and Ete

a′,d′ , and the maps between them are given by:

Ete
a,d −→ Ete

a′,d′

(x, y) 7−→ (
√
a/a′x, y)

Ete
a′,d′ −→ Ete

a,d

(x, y) 7−→ (
√
a′/ax, y)

In order to get an efficient group law, we choose a′ of minimum size. Un-
fortunately, all isomorphic curves to our curve are bound to non-square a’s,
therefore we fix a′ =

√
2. We stress that multiplication by a′ is completely

straightforward, resorting to a swap and a multiplication by 2. We deduce
d′ = a′d/a:

d′=3573088016646614954480418932420406244859581372259686051269315845535794557597·
√

2

+3473749962157088117213622815292986398536428998352053700108297286112825423766

3.3 A well-known base field arithmetic
Our curve is defined over Fp2 where p = 2255 − 19 is the Curve25519 prime.
The prime field Fp is intensively used in practice, and has a fast implementation,
given by Daniel J. Bernstein. See [1] for details.
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3.4 Computing the endomorphisms
Computing ψ

As a Q-curve of degree 2, E is endowed with an endomorphism ψ = [
√

2] of a
subgroup of E(Fp2):

ψ : (x, y) 7→
((
−x

2
− C2,2(70/99)

x− 4

)p
,

(
y√
−2

(
−1

2
+
C2,2(70/99)

(x− 4)2

))p)
Choosing
√
−2=19681161376707505956807079304988542015446066515923890162744021073123829784752·

√
2

ψ acts as [λ] with

λ =3506297578596165759345628933926506463904106805826089265978646

6960308360374607013470707020131196354707775231872550763080227

1381792284325778231258805621048 mod N

and evaluating this endomorphism costs 2 inversions, 10 multiplications and
14 additions in Fp2 .

Computing Ψ

The curve has also a second endomorphism Ψ = [
√
−22] because of its endomor-

phism ring Z[
√
−22]. We compute it in SageMath [10] with the Stark algorithm

[8, page 157] The resulting expression is a rational fraction of polynomials of
degree 22 and 21, which is too expensive. Since on E(Fp2) we have an endo-
morphism

√
2, we can compute another endomorphism, [

√
−11] which is much

less expensive. As suggested by Aurore Guillevic, we use a similar method as
for the construction of ψ:

• The division polynomial P11 generates the 11-torsion group

E[11] ' Z/11Z× Z/11Z

of order 121. This polynomial is of degree (112− 1)/2 = 60 and factorizes
over Fp2 in two polynomials of degree 5 and 55. The first irreducible factor
of P11 generates a subgroup G of order 11 of E[11].

• We use the Vélu’s formulas to get the 11-isogeny f : E −→ E/G.

• The curve E/G is isomorphic to (p)E. We denote g : E/G −→ (p)E this iso-
morphism. It has the form (x, y) 7→ (u2x, u3y) where u = 4

√
AE/G/AE =

6
√
BE/G/BE .

• Finally, we use the Frobenius πp : (p)E −→ E to get the endomorphism

[
√
−11] = πp ◦ g ◦ f

12



This second endomorphism acts as [µ] where

µ = 686246467133965114535845324701724742860090894377617
498271263771018744928543579046480086807222028697558
756550712915407298895104196897923792276170496367948
mod N

and its evaluation costs 1 inversion, 42 multiplications and 33 additions in Fp2 .
Its complete expression is given in Appendix A.

Conclusion
We computed the Smith method in SageMath [10] in order to find curves with
high security, combined with a four-dimensional GLV. After searching over some
interesting primes, we found couples of curves that can be used in practice.
Among them, one seems to be very efficient: QtEd. We describe its endo-
morphisms used for the four-dimensional GLV method, and express its twisted
Edwards form.
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A Computing
√
−11

[
√
−11] = πp ◦ g ◦ f

where
πp(a+ b ·

√
2, c+ d ·

√
2) = (a− b ·

√
2, c− d ·

√
2)

g(x, y) = (u2x, u3y)

with:

u=17048639620362878853615386438258801088262380274051614841274467045891723895160··
√

2

f(x, y) =

(
p1(x)q5(x)r5(x)

v5(x)2
, y · s5(x)t5(x)u5(x)

v5(x)3

)
p1(x) = p0 + x with

p0 =38275801280003584244414328566062472603812973029016836004751458613804085439085 ·
√

2

+ 898578218329846369454066874754356751789769322511291129458116214933309266486

q5(x) = x5 +
∑4
i=0 qix

i with

q4 =20836077483202599229642265035805532028066799526144631562081474462199808839091 ·
√

2

+ 19984852802444363430649121922706769540233406465891809506690680709173110297255

q3 =46942396086131417481305513893594603539418111478284570080947424796068765736948 ·
√

2

+ 11662962956071875238053825824181586612879966232442490682652842449826014511944

q2 =28070927367604263208812040216032297786391720385463092545266114816746189412848 ·
√

2

+ 45023418001293663479768936177038537939769079345761359735792261148001281245690

q1 =21336635906730707225613666810331945227179080217308680697354158436447272061478 ·
√

2

+ 40806047395922549355245800854321397130530154061717740407736765302551301799534

q0 =49645866484416460979311626652818635183385616538855988674227466155518658694358 ·
√

2

+ 13943022910141592953045356728268013562274454864252820449362394557945024453391

r5(x) = x5 +
∑4
i=0 rix

i with

r4 =56680210474110011949514391406819903221390212110479096472624650931909235361756 ·
√

2

+ 37012613597883887911682303706882827634611816544417181383579995079850145256208

r3 =8208669343569473918303359687864149687232450536144631271808465509225973954234 ·
√

2

+ 797615358534484479551333341886157358873753379140782471243873583964797200562

r2 =49231339724014934873699263883118506136612936073664341567736653812211497697503 ·
√

2

+ 341704645865841901083250011290930317215890779482717533165751213695487824486

r1 =48519087285741807468788663910008161223445066722226919647066440802719296211489 ·
√

2

+ 2054861017456370915625036542761178630216191658490998509405064877452678347259

r0 =18069026743071610882866223930374191865741365027175038468355958241797621031056 ·
√

2

+ 27713001949210587339617062138197513394403867313660943722763639518608739669703

v5(x) = x5 +
∑4
i=0 six

i with

v4 =17 ·
√

2

v3 =36842937484600607634772586139127970680585904211794724921645594911608723067225 ·
√

2

+ 204
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v2 =10526553567028745038506453182607991623024544060512778549041598546173920876938 ·
√

2

+ 52632767835143725192532265913039958115122720302563892745207992730869604381558

v1 =26316383917571862596266132956519979057561360151281946372603996365434802190387 ·
√

2

+ 37321417192192823318341061283791970299814292578181669401147485754616628563274

v0 =20574627426465274393444431220551983626820699754638612618581306249339936259275 ·
√

2

+ 48065461535399848213015003168519961749760831350688513622689943774885051934639

s5(x) = x5 +
∑4
i=0 six

i with

s4 =16008688261727522996013065652219254486405871289723488232208527764762277541252 ·
√

2

+ 15315387355970619090944851794859556751834865300171403826164568244009313305295

s3 =15186842253257712524866655016326918725461423925759472695795074349138598859959 ·
√

2

+ 62767429318733179444146932946206591272733530025546893197458787444100114613

s2 =37385334186929753400766011209585094875481575733461982151463940826096061569607 ·
√

2

+ 9458249835759025941143694542472028672136182637019254210414537249743777968129

s1 =2201647554582509067489596817617256479547527852727127320314425401109706999933 ·
√

2

+ 38866354183945959698016413970458324494489746910665797434433767850132032599295

s0 =32839196677481465673549991544405871823069027091285810245848350589163393816065 ·
√

2

+ 41721349339161290861205954630034623685220146549671119230937774653130983038193

t5(x) = x5 +
∑4
i=0 tix

i with

t4 =41887356356930574715772426852124699440229121043096793787520264239194287278731 ·
√

2

+ 42580657262687478620840640709484397174800127032648878193564223759947251514674

t3 =602988097285405032893024757585068709075392165009695127767323470122282454798 ·
√

2

+ 57833277189339364532341345571397747335362258802794735126531333216512464705792

t2 =57353647916328951945792067433886829731739320811153024789910446089469226318879 ·
√

2

+ 37911241215870326732135344779263933631474265635288249260272656208038865977070

t1 =13588182795960608490270082956294730954989288238042040503247972418151174316952 ·
√

2

+ 7546177452498961608125675061949638570663924628867817077249643921634800358750

t0 =23142929110807769303961600381282083626652411775986693855872878042761549027776 ·
√

2

+ 40577160366699806712571770252173310822062652468883331243387450344228761997627

u5(x) = x5 +
∑4
i=0 uix

i with

u4 =17 ·
√

2

+ 57896044618658097711785492504343953926634992332820282019728792003956564819929

u3 =57896044618658097711785492504343953926634992332820282019728792003956564819749 ·
√

2

+ 284

u2 =1132 ·
√

2

+ 15789830350543117557759679773911987434536816090769167823562397819260881312917

u1 =36842937484600607634772586139127970680585904211794724921645594911608723064225 ·
√

2

+ 15789830350543117557759679773911987434536816090769167823562397819260881318777

u0 =43063173683299411521162763019759965730554952974825003155170175870711494497222 ·
√

2

+ 21053107134057490077012906365215983246049088121025557098083197092347841748396

16


	Generating four-dimensional GLV curves
	Q-curves
	Reducing a Q-curve modulo p
	Q-curves with complex multiplication
	Complex multiplication method
	CM Hasegawa Q-curves


	Systematic search of curves
	Secure cardinality
	Special base fields
	Search results

	The 4QtEd curve
	High security
	Twisted Edwards form
	From Weierstrass to twisted Edwards form
	An efficient twisted Edwards form

	A well-known base field arithmetic
	Computing the endomorphisms

	Computing -11

